JPS60263481A - Manufacture of photovoltaic device - Google Patents

Manufacture of photovoltaic device

Info

Publication number
JPS60263481A
JPS60263481A JP59121052A JP12105284A JPS60263481A JP S60263481 A JPS60263481 A JP S60263481A JP 59121052 A JP59121052 A JP 59121052A JP 12105284 A JP12105284 A JP 12105284A JP S60263481 A JPS60263481 A JP S60263481A
Authority
JP
Japan
Prior art keywords
substrate
energy beam
holding
processing
distance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59121052A
Other languages
Japanese (ja)
Inventor
Hiroshi Kawada
河田 宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd, Sanyo Denki Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP59121052A priority Critical patent/JPS60263481A/en
Publication of JPS60263481A publication Critical patent/JPS60263481A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)
  • Roof Covering Using Slabs Or Stiff Sheets (AREA)

Abstract

PURPOSE:To enable to perform the desired processing on a film adhered on the nonplanar main surface of the substrate according to irradiation of an energy beam by a method wherein the opposed distance of the convergent means of the energybeam and the surface to be processed is detected and the relative distance of the holding surface of the substrate and the convergent means is modified so that the diameter of the energy beam to reach the surface to be processed is almost constantly held. CONSTITUTION:When contactor is used one piece in number, the point of the contactor 9 is made to come into contact slidingly to a substrate 1 being formed the surface thereof into a carved surface in the vicinity of the irradiation point of a laser beam 6 and the contactor 9 detects it for the surface of the substrate 1 to vertically move by the movement of the substrate 1 to the X axis direction and sends the displacement signal to an amplifier 10. The signal, amplified in the amplifier 10, is inputted in a Z axis driving circuit 11 and the substrate 1, displaced in the upper and lower directions by making a Z axis table 13 drive, is made to immediately shift for making roughly constant the relative distance of the surface to be processed and an objective lens 7. For more precisely holding constantly the distance between the objective lens 7 and the substrate 1 are used plural pieces of contactors. By this way, the processing width and the beam intensity become constant, thereby enabling to perform a uniform processing.

Description

【発明の詳細な説明】 (イ)本発明は曲面或いは平面を組合せた非平面状主面
に被着された膜状の光電変換領域をレーザビームの如き
エネルギビームの照射によりパターニング加工する光起
電力装置の製造方法に関する。
Detailed Description of the Invention (a) The present invention is a photovoltaic method in which a film-like photoelectric conversion region adhered to a non-planar main surface that is a combination of curved surfaces or flat surfaces is patterned by irradiation with an energy beam such as a laser beam. The present invention relates to a method of manufacturing a power device.

(ロ)従来技術 反応ガスのプラズマ分解等により得られる非品質シリコ
ン系の半導体膜が光エネルギを直接4気エネルギに変換
Tる光起電力装置、所謂太陽電池や、電子写真複写機の
感光体ドラム等に用いられつつある。就中、光起電力装
置はS尽蔵な太陽光を主たるエネルギ源としでいるため
に、エネルギ資源の枯渇が問題となる中で脚光を浴びて
いる。
(b) Conventional technology Photovoltaic devices, so-called solar cells, and photoreceptors of electrophotographic copying machines, in which non-quality silicon-based semiconductor films obtained by plasma decomposition of reactive gases directly convert light energy into 4-dimensional energy. It is being used for drums, etc. In particular, photovoltaic devices have been in the spotlight as the depletion of energy resources has become a problem because they use sunlight, which is depleted in S, as their main energy source.

太陽は晴天時に約IKW/ゴのエネルギを地表に与えて
Sつ、家庭で斯るエネルギを磁気エネルギに変換する光
起電力装置を′4力源とする場合、家屋の屋上或いは屋
根上に敷設する方法が一般的である。
The sun gives about IKW/G of energy to the earth's surface when the weather is clear, and if a photovoltaic device that converts this energy into magnetic energy is used as a power source at home, it should be installed on the roof of the house or on the roof. The most common method is to

特開昭57−68454号公報、或いは実開昭58−1
1261号公報に開示された太陽電池を備えた屋根瓦、
即ち瓦状光起電力装置は斯る家庭用電力源として好適で
ある。
Japanese Unexamined Patent Publication No. 57-68454 or Utility Model Application No. 58-1
A roof tile equipped with a solar cell disclosed in Publication No. 1261,
That is, the shingled photovoltaic device is suitable as such a household power source.

一方、光起電力装置に於いて、光利用効率を左右する一
つの要因は、装置全体の受光面積(即ち、! 基板面積
)に対し、実際に発電に寄与する光電変換領域の占める
割合いである。然るに1つの光電変換領域が発生する電
圧は無負荷の開放電圧に於いて概し゛rIV以下である
ために、通常の光起電力装置にあっては共通基板上に於
いて複数の光電変換領域が電気的に直列接続されており
、従って各光電変換領域の隣接間隔部に必然的に尽IL
「る光電変換領域の存在しない領域は上記面積割合を低
下させる。
On the other hand, in a photovoltaic device, one factor that influences the light utilization efficiency is the ratio of the photoelectric conversion area that actually contributes to power generation to the light-receiving area of the entire device (i.e., substrate area). . However, since the voltage generated by one photoelectric conversion region is generally less than rIV at no-load open-circuit voltage, in a normal photovoltaic device, multiple photoelectric conversion regions are arranged on a common substrate. are electrically connected in series and therefore necessarily have an exhaustion at adjacent intervals of each photovoltaic conversion region.
``A region where no photoelectric conversion region exists reduces the above area ratio.

従って、従来から光利用効率を上昇せしめることを目的
として膜状光電変換領域のパターン形成に対し、フォト
リングラフィ技術やレーザパターニング技術が用いられ
、就中細密加工性に富むと共に、大面積の加工にも最適
なレーザパターニング技術が有望視されている。
Therefore, photolithography technology and laser patterning technology have traditionally been used for patterning film-like photoelectric conversion regions with the aim of increasing light utilization efficiency. The most suitable laser patterning technology is also seen as promising.

然し乍ら、上述の如き瓦状光起電力装置にあっては膜状
の光電変換領域が被着形成される瓦本体の被着面は波状
にうねった曲面状を呈しているために、レーザパターニ
ング技術を適用しようとすると、レーザビームを収束せ
しめる対物レンズと、被加工面との対向距離の変動は免
れず、所望の加工(パターン形成)を施すことができな
い。
However, in the tile-shaped photovoltaic device as described above, the adhesion surface of the tile body on which the film-like photoelectric conversion region is formed has a wavy curved surface, so laser patterning technology is difficult to apply. When attempting to apply this, the distance between the objective lens that converges the laser beam and the surface to be processed inevitably fluctuates, making it impossible to perform the desired processing (pattern formation).

P埼 発明の目的 本発明は斯る点に鑑みて為されたものであって、その目
的は曲面或いは平面を組合せた非平面状主面に被着され
た膜にエネルギビームの照射により所望の加工を施すこ
とにある。
Purpose of the Invention The present invention has been made in view of the above, and its purpose is to irradiate a desired surface with an energy beam to a film deposited on a non-planar main surface that is a combination of curved surfaces or flat surfaces. The purpose is to perform processing.

に)発明の構成 本発明製造方法は、基板の非平面状絶縁表面に光電変換
領域の構成膜を形成し、該構成膜をエネルギビームの照
射によりパターニング加工するに際し、エネルギビーム
の収束手段と被加工面との対向距離を検出して斯る検出
出力に基づき被加工面に到達するエネルギビームのビー
ム径をほぼ一定に保つべく基板の保持面と収束手段との
相対距離を変更する構成にある。
B) Structure of the Invention The manufacturing method of the present invention involves forming a constituent film of a photoelectric conversion region on a non-planar insulating surface of a substrate, and patterning the constituent film by irradiation with an energy beam. The device is configured to detect the facing distance to the processing surface and change the relative distance between the holding surface of the substrate and the converging means based on the detection output in order to keep the beam diameter of the energy beam reaching the processing surface almost constant. .

(ホ)実施例 方 以下に本発明製造法を和瓦状光起電力装置の^ 製造方法に適用した実施例につき説明する。(e) Examples direction The manufacturing method of the present invention will be described below for a Japanese tile-shaped photovoltaic device. An example applied to the manufacturing method will be described.

第1図及び第2図は本発明製造方法により製造される光
起電力装置を示し、第1図は斜視図、第2図は第1図に
於けるA−A1線断面図であって、(1)は強化ガラス
・透明セラミックス等の透光性且つ絶縁性の材料を和瓦
状に成型し波状の絶縁表面が付与された基板、(211
21・・・は上記基板(1)の絶縁表面に一定間隔を隔
てて整列配置された複数の光電変換領域である。上記光
電変換領域(2)+21・・・は1例えば基板(1)側
から、酸化スズ、酸化インジウムスズ等の透明導電膜(
3)(31・・・と、その内部に半導体接合を備えた非
晶質シリコン系の非晶質半導体膜(4)(4)・・・と
、該半導体膜f4)(4)・・・とオーミック接触する
アルミニウム等の裏面電極膜f5)(51・・・と、が
順次積層されたミクロンオーダの膜状を呈する。
1 and 2 show a photovoltaic device manufactured by the manufacturing method of the present invention, FIG. 1 is a perspective view, and FIG. 2 is a sectional view taken along line A-A1 in FIG. (1) is a substrate made of a translucent and insulating material such as tempered glass or transparent ceramics molded into a Japanese tile shape and provided with a wavy insulating surface; (211)
21... are a plurality of photoelectric conversion regions arranged at regular intervals on the insulating surface of the substrate (1). The photoelectric conversion regions (2) + 21... are formed of a transparent conductive film (for example, from the substrate (1) side) such as tin oxide, indium tin oxide, etc.
3) (31..., an amorphous silicon-based amorphous semiconductor film (4) (4)... with a semiconductor junction therein, and the semiconductor film f4) (4)... A back electrode film f5) (51...) made of aluminum or the like which is in ohmic contact with the back electrode film f5) (51...) is sequentially laminated to form a film on the order of microns.

各非晶質半導体膜+41(41・・・は、その内部に例
えば膜面に平行なPIN接合を形成すべく受光面側から
厚み50〜250A程度のP型層、4000〜7000
A程度の夏型(真性)層及び300〜600A程度のN
型層が順次積層被着され、従って基板(1)及び透明導
電膜(31(3)・・・を透過して光入射があると、主
に夏型層に於いて自由状態の電子及び正孔が発生し、斯
る電子及び正孔は上記各層が形成するPIN接合電界に
引かれて各透明導電膜(3)(3)・・・及び裏面電極
膜(51451・・・に集電され、隣接する充電変換領
域f21 (21・・・の透明導電膜f31 +31・
・・と裏面電極膜(51(51・・・との隣接間隔部(
6H61・・・に於ける重畳により電気的に相加された
電力が取り出される。
Each amorphous semiconductor film +41 (41... is a P-type layer with a thickness of about 50 to 250 A from the light-receiving surface side, for example, to form a PIN junction parallel to the film surface, 4000 to 7000
Summer type (intrinsic) layer of about A and N of about 300 to 600 A
When the mold layers are sequentially deposited and light is incident through the substrate (1) and the transparent conductive film (31 (3)...), free-state electrons and positive electrons are generated mainly in the summer mold layer. Holes are generated, and these electrons and holes are attracted by the PIN junction electric field formed by each of the above layers and are collected by each transparent conductive film (3) (3)... and back electrode film (51451...). , adjacent charge conversion region f21 (transparent conductive film f31 +31.
... and the back electrode film (51 (adjacent space part with 51...)
The electric power electrically added by the superposition in 6H61... is taken out.

第3図乃至第5図は膜状の光電変換領域f21 F21
・・・を構成する上記透明導電膜(3)、非晶質半導体
膜(4)及び裏面電極膜(5)を、レーザビーム(6)
の照射により各光電変換領域(21(21・・・毎に個
別に分割する工程を示している。各膜f31. T4)
、(51の個別のレーザパターニングは例えば特開昭5
7−12568号公報lく開示された如く、各膜(3)
、+41.+51の被着工程終了後毎に施される。
3 to 5 show a film-like photoelectric conversion region f21 F21
The transparent conductive film (3), the amorphous semiconductor film (4), and the back electrode film (5) constituting... are exposed to a laser beam (6).
The process of individually dividing each photoelectric conversion region (21 (21...) by irradiation with each film f31. T4) is shown.
, (51 individual laser patterning methods are described in, for example, Japanese Patent Application Laid-open No. 5
As disclosed in Publication No. 7-12568, each film (3)
, +41. It is applied after each +51 deposition step.

斯るレーザパターニングに於いて留意しなければならな
いことは、各膜(3)、(4)、(5)が被着せしめら
れる基板(1)の絶縁表面が非平面状、即ち本実施例に
あっては曲面状を呈するために、ただ単にレーザビーム
(6)を一方向に走査あるいはテーブルを一方向に移動
させたのでは、レーザの収束手段で勢 −ある対物レンズと被加工面の対向距離が変動すること
である。対物レンズと被加工面の対向距離が変動すると
、当然のことながら被加工面に照射されるビームのスポ
ット径が変化することになり、加工中とビーム強度が変
化するために均一な加工を施すことは困難である。
What must be kept in mind in such laser patterning is that the insulating surface of the substrate (1) on which the films (3), (4), and (5) are deposited is non-planar; In order to obtain a curved surface, if the laser beam (6) is simply scanned in one direction or the table is moved in one direction, the laser convergence means will cause the objective lens to face the surface to be processed. This is because the distance varies. If the facing distance between the objective lens and the workpiece surface changes, the spot diameter of the beam irradiated onto the workpiece surface will naturally change, and since the beam intensity changes during processing, it is difficult to perform uniform processing. That is difficult.

今、例えば第3図のようにレーザビーム(6)の走査方
向をX軸、対物レンズ(7)の光軸を2軸とした時X軸
のみで/、C(、X軸とY軸との2軸を同時に駆動する
必要が生じる。
For example, if the scanning direction of the laser beam (6) is the X-axis and the optical axis of the objective lens (7) is two axes as shown in Figure 3, then only the X-axis /, C(, It becomes necessary to drive two axes simultaneously.

1つの方法としては加工テーブル(8)のX軸とY軸と
の2軸が同時に駆動されるようにプログラムでコントロ
ールする方法が考えられる。しかしながら、加工時にお
ける対物レンズ(7)と被加工面の距離の変動は通常0
61〜1腸程度に抑えなければならず、基板(1)の非
平面状絶縁表面の形状のばら付きは、一般にこの値を上
まわることを考えると、上記プログラムによるコントロ
ールには自と限界がある。
One possible method is to use a program to control the two axes of the processing table (8), the X-axis and the Y-axis, so that they are driven simultaneously. However, the variation in the distance between the objective lens (7) and the surface to be processed during processing is usually 0.
Considering that the variation in the shape of the non-planar insulating surface of the substrate (1) generally exceeds this value, there is a limit to the control using the above program. be.

そこで、本発明では、加工中宮に被加工面と対物レンズ
(91との対向距離を検出するための検出手段として、
被加工面に摺接する接触子を設け、加工物のZ軸方向の
駆動に上記接触子からの信号を使用することによって対
物レンズ(g)と被加工面の距離をほぼ一定に保ち良好
な加工を可能とするものである。
Therefore, in the present invention, as a detection means for detecting the facing distance between the surface to be processed and the objective lens (91),
By providing a contact that slides on the surface to be machined and using the signal from the contact to drive the workpiece in the Z-axis direction, the distance between the objective lens (g) and the surface to be machined can be kept almost constant and good machining can be achieved. This makes it possible to

@4図は接触子を1個使用した場合の原理図である。接
触子(9)の先端は、レーザビーム(6)の照射点の近
傍で曲面をなす基板(1)に摺接しており、基板(1)
のX軸方向への移動によって基板表面が上下動するのを
検出し、その変位(検出)信号を増幅器1ll)に送る
。増幅器+IIで増情された信号はZ軸駆動回路0υに
入力され2軸テーブル(13を駆動する事により、上下
方向に変位した基板(1)を直ちに被加工面と対物レン
ズ(7)との相対距離をはシ一定にすべく移動せしめる
@Figure 4 is a principle diagram when one contact is used. The tip of the contactor (9) is in sliding contact with the curved substrate (1) near the irradiation point of the laser beam (6), and
The vertical movement of the substrate surface due to the movement of the substrate in the X-axis direction is detected, and the displacement (detection) signal is sent to the amplifier 1ll). The signal amplified by the amplifier +II is input to the Z-axis drive circuit 0υ, and by driving the two-axis table (13), the vertically displaced substrate (1) is immediately brought into contact with the workpiece surface and the objective lens (7). It is moved to keep the relative distance constant.

次に本発明によりレーザパターニングがどのように行わ
れるのかを説明する。第1図から第3図に示すように各
光電変換領域f21 F21・・・をレーザビーム(6
)の照射によって分割する際、あらかじめ基板(1)上
でレーザビーム(6)をどのように走査するかをX、Y
テーブル(141(151の動きとして、XY軸駆動装
置(12内部に記憶させておく。基板tl)と対物レン
ズ(7)の距離を適当にセットした後、XY軸駆動装置
0zを起動する。基板(1)が前後左右に移動するに従
い、接触子(9)が上下するが、接触子からの信号は直
ちに増幅器OrJを介してZ軸駆動部(111に入力さ
れ。
Next, how laser patterning is performed according to the present invention will be explained. As shown in FIGS. 1 to 3, each photoelectric conversion region f21 F21... is connected to a laser beam (6
), how to scan the laser beam (6) on the substrate (1) in advance in X and Y directions.
As for the movement of the table (141 (151), after setting the distance between the XY-axis drive device (stored inside the board 12) and the objective lens (7) appropriately, start the XY-axis drive device 0z. As the contactor (1) moves back and forth and left and right, the contactor (9) moves up and down, but the signal from the contactor is immediately input to the Z-axis drive unit (111) via the amplifier OrJ.

2軸テーブルを上ドに移動させるので、基板(1)と対
物レンズ等)の距離は常に最初にセットした値に保たれ
る。
Since the two-axis table is moved upward, the distance between the substrate (1) and the objective lens, etc. is always maintained at the initially set value.

この場合、接触子(9)の応答性、増幅器OG及びZ軸
駆動回路ODの回路の応答性、Z軸テーブルq3の応答
性等の問題が発生し、曲面の追従に多少の遅れが発生す
る事が考えられるが、増幅器(1〔のゲインを太き(と
って9り又、2軸テーブルαJのモータのトルクを大き
くと”つてやることにより遅れは0.1〜1ml程度に
押える事が可能であり、この程度の距離の変動であれば
加工φビーム強度の変化はそれほど太き(なく、十分良
好なパターニングが可能である。
In this case, problems such as the responsiveness of the contactor (9), the circuit responsiveness of the amplifier OG and the Z-axis drive circuit OD, and the responsiveness of the Z-axis table q3 occur, resulting in a slight delay in following the curved surface. However, by increasing the gain of the amplifier (1) or increasing the torque of the motor of the two-axis table αJ, the delay can be suppressed to about 0.1 to 1 ml. It is possible, and if the distance is varied to this extent, the change in the machining φ beam intensity will not be so large, and sufficiently good patterning will be possible.

対物レンズと基板(1)との距離を更に精度良く一定に
保つためには接触子を複数個使用するのが良い。その実
施例をglf15図に示す。この場合、接触子(16R
)(16L)はレーザビーム(6)をはさむ形で2個設
置され、それぞれ基板(1)に摺接している。接触子(
16R)(16L)の信号はいずれも信号切換部(1η
に入力されいずれかの信号が増幅器(10)に出力され
る。(16R)(16L)のいずれの信号を増幅器(1
0)に出力するかを決定する信号はXY軸馳駆動部+1
3り出力される。
In order to keep the distance between the objective lens and the substrate (1) more precise and constant, it is preferable to use a plurality of contacts. An example of this is shown in figure glf15. In this case, the contact (16R
) (16L) are installed to sandwich the laser beam (6), and each is in sliding contact with the substrate (1). Contact (
16R) (16L) are all sent to the signal switching section (1η
One of the signals is output to the amplifier (10). (16R) (16L)
The signal that determines whether to output to
3 are output.

次に第5図を用いて動作を説明する。Next, the operation will be explained using FIG.

XY軸駆動部t12)はあらかじめ記憶された順序でX
Yテーブルを駆動するが、基板(1)をR方向に駆動す
る時は、一方の接触子(161+)を選択し、基板(1
)をL方向に駆動する時は他方の接触子(16L)を選
択Tるような信号を信号切換部(1ηに送る。この場合
レーザビーム(6)の照射位置08)と接触子の位置と
の間隔gを適当に設定すると接触子f161は常に加工
位置より先の位置で基板(1)の位置検出を行うので、
接触子00の応答おくれ、X軸テーブル(131の応答
お1 <、□。□、4.□3.え、8゜ 較して、より精度の高い追従が可能となり対物レンズ(
7)と被加工面の距離は、更に正確に一定値に保たれる
The XY-axis drive unit t12) moves the
When driving the Y table, but when driving the substrate (1) in the R direction, select one contact (161+) and move the substrate (1).
) in the L direction, sends a signal that selects the other contact (16L) to the signal switching unit (1η. In this case, the irradiation position 08 of the laser beam (6)) and the position of the contact If the interval g is set appropriately, the contact f161 will always detect the position of the substrate (1) at a position ahead of the processing position, so
The response of the contactor 00 is delayed, and the response of the X-axis table (131) is 1 <, □. □, 4.
7) The distance between the machined surface and the surface to be processed is more accurately kept at a constant value.

斯るレーザ加工に好適なレーザは例えば波長1゜06 
μm (D Nd I YAG L/−ザであり、該Y
AGL/−ザによる各膜(31,+41、(5)の加工
しきい値パワー密度は上記実施例に於いて大孔2 X 
10’ W/、J〜8上下させる構成とする事も可能で
ある。又、基板の変位の測定を上記接触式に限らず光学
的な反射光の変化として検出したり、或いは静電容量の
変化として検出する方法を採用しても良く、その場合検
出手段は非接触となる。
A laser suitable for such laser processing has a wavelength of 1°06, for example.
μm (D Nd I YAG L/-the, and the Y
The processing threshold power density of each film (31, +41, (5)) by the AGL/- laser is large hole 2X in the above example.
It is also possible to configure it to move up and down by 10'W/, J~8. Furthermore, the measurement of the displacement of the substrate is not limited to the above-mentioned contact method, but a method of detecting it as a change in optically reflected light or a change in capacitance may also be adopted, in which case the detection means is non-contact. becomes.

(へ)発明の効果 本発明は以上の説明から明らかな如く、エネルギビーム
にて非平面状絶縁表面上に被着される膜の加工を行なう
際に常に対物レンズ等の収束手段と被加工面の距離を一
定に保ち、所定の強度と収束径のエネルギビームを被加
工物に照射せしめる事ができ所望のパターニングを施す
ことかできる。
(f) Effects of the Invention As is clear from the above description, when processing a film deposited on a non-planar insulating surface using an energy beam, the present invention always uses a converging means such as an objective lens and a surface to be processed. By keeping the distance constant and irradiating the workpiece with an energy beam of a predetermined intensity and convergence diameter, desired patterning can be performed.

法に適用した実施例を示し、@1図は瓦状光起電力装置
の斜視図、第2図はgJ1図に於けるA−1線拡大断面
図、第3図はレーザビームの照射状態を説明するための
概略的斜視図、第4図は本発明の原理図、第5図は別の
実施例の原理図、を夫々示している。
Fig. 1 is a perspective view of a shingled photovoltaic device, Fig. 2 is an enlarged sectional view taken along line A-1 in Fig. gJ1, and Fig. 3 shows the laser beam irradiation state. FIG. 4 is a schematic perspective view for explanation, FIG. 4 is a diagram showing the principle of the present invention, and FIG. 5 is a diagram showing the principle of another embodiment.

(1)・・・基板、(2)・・・光電変換領域、(6)
・・・レーザビーム、(7)・・・対物レンズ、(9)
・・・接触子、(lω・・・増幅器、(1υ・・・2軸
駆動回路、+121・・・xy軸駆動回路、(1m +
141 +15)・・・zxy軸テーブル、0ω・・・
接触子、(1η・・・信号切換回路。
(1)...Substrate, (2)...Photoelectric conversion region, (6)
... Laser beam, (7) ... Objective lens, (9)
...Contactor, (lω...Amplifier, (1υ...2-axis drive circuit, +121...xy-axis drive circuit, (1m +
141 +15)...zxy axis table, 0ω...
Contact, (1η...signal switching circuit.

出願人 三洋電機株式会社 代理人 弁理士佐野静夫Applicant: Sanyo Electric Co., Ltd. Agent: Patent attorney Shizuo Sano

Claims (3)

【特許請求の範囲】[Claims] (1)基板の非平面状絶縁表面に形成された膜状の光電
変換領域の構成膜をエネルギビームの照射によりパター
ニング加工する光起電力装置の製造方法であって、上記
パターニング加工を施すパターニング加工装置は、上記
エネルギビームの収束手段と被加工面との対向距離を検
出する検出手段と、上記基板を保持する保持手段と、該
保持手段の保持面と上記収束手段との相対距離を変更す
る変更手段と、上記エネルギビームを走査する走査手段
と、を備え、上記走査手段により走査され被加工面1こ
到達するエネルギビームのビーム径をほぼ一定に保つべ
く、上記検出手段の検出出力に基づき上記保持手段の保
持面と、上記収束手段との相対距離を変更することを特
徴とした光起電力装置の製造方法。
(1) A method for manufacturing a photovoltaic device, in which a constituent film of a film-like photoelectric conversion region formed on a non-planar insulating surface of a substrate is patterned by irradiation with an energy beam, the patterning process performing the patterning process. The apparatus includes a detection means for detecting a facing distance between the energy beam convergence means and the surface to be processed, a holding means for holding the substrate, and a relative distance between the holding surface of the holding means and the convergence means. a changing means, and a scanning means for scanning the energy beam, based on the detection output of the detection means, in order to keep the beam diameter of the energy beam scanned by the scanning means and reaching the workpiece surface substantially constant. A method for manufacturing a photovoltaic device, comprising changing a relative distance between a holding surface of the holding means and the converging means.
(2)上記保持手段は加工テーブルであり、該加工テー
ブルをX軸方向に移動せしめることにより上記エネルギ
ビームを走査すると共に、該エネルギビームのビーム軸
方向に上記加工テーブルを移動せしめることによって該
加工テーブル面と収束手段との相対距離を変更すること
を特徴とする特許請求の範囲第1項記載の光量(刃装置
の製造方法。
(2) The holding means is a processing table, and the processing table is moved in the X-axis direction to scan the energy beam, and the processing table is moved in the beam axis direction of the energy beam to perform the processing. A light amount (a method for manufacturing a blade device) according to claim 1, characterized in that the relative distance between the table surface and the convergence means is changed.
(3)上記保持手段は加工テーブルであり、該加工テー
ブルをX軸方向に移動せしめることにより上記エネルギ
ビームを走査すると共に、該エネルギビームのビーム軸
方向に上記収束手段を移動せしめることによって該加工
テーブル面と収束手段との相対距離を変更することを特
徴とする特許請求の範囲第1項記載の光起電力装置の製
造方法。
(3) The holding means is a processing table, and by moving the processing table in the X-axis direction, the energy beam is scanned, and by moving the focusing means in the beam axis direction of the energy beam, the processing is performed. The method of manufacturing a photovoltaic device according to claim 1, characterized in that the relative distance between the table surface and the converging means is changed.
JP59121052A 1984-06-12 1984-06-12 Manufacture of photovoltaic device Pending JPS60263481A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59121052A JPS60263481A (en) 1984-06-12 1984-06-12 Manufacture of photovoltaic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59121052A JPS60263481A (en) 1984-06-12 1984-06-12 Manufacture of photovoltaic device

Publications (1)

Publication Number Publication Date
JPS60263481A true JPS60263481A (en) 1985-12-26

Family

ID=14801641

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59121052A Pending JPS60263481A (en) 1984-06-12 1984-06-12 Manufacture of photovoltaic device

Country Status (1)

Country Link
JP (1) JPS60263481A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6424469A (en) * 1987-07-20 1989-01-26 Sanyo Electric Co Photosensor manufacturing equipment

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58168489A (en) * 1982-03-31 1983-10-04 Mitsubishi Heavy Ind Ltd Automatic focusing device of laser working machine
JPS5916786B1 (en) * 1977-04-09 1984-04-17 Ace Denken Kk

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5916786B1 (en) * 1977-04-09 1984-04-17 Ace Denken Kk
JPS58168489A (en) * 1982-03-31 1983-10-04 Mitsubishi Heavy Ind Ltd Automatic focusing device of laser working machine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6424469A (en) * 1987-07-20 1989-01-26 Sanyo Electric Co Photosensor manufacturing equipment

Similar Documents

Publication Publication Date Title
Haas et al. High speed laser processing for monolithical series connection of silicon thin‐film modules
US7259321B2 (en) Method of manufacturing thin film photovoltaic modules
US20080105303A1 (en) Method and Manufacturing Thin Film Photovoltaic Modules
JP3017422B2 (en) Photovoltaic element array and manufacturing method thereof
US20100062560A1 (en) Application specific solar cell and method for manufacture using thin film photovoltaic materials
JP2013535334A (en) Laser processing with multiple beams and respective suitable laser optical heads
GB2077038A (en) Fabrication of a solar battery using laserscribing
US8329496B2 (en) Dithered scanned laser beam for scribing solar cell structures
EP1466368A1 (en) Method of manufacturing thin film photovoltaic modules
KR101458251B1 (en) A thin-film solar cell system and method and apparatus for manufacturing a thin-film solar cell
JP4233741B2 (en) Solar cell module and manufacturing method thereof
CN104766907A (en) Flexible CIGS thin-film solar cell connecting method
JP4949126B2 (en) Manufacturing method of translucent thin film solar cell.
JPS60263481A (en) Manufacture of photovoltaic device
JP2010092893A (en) Method for manufacturing thin film solar cell module
JPS61278171A (en) Thin film photoelectric conversion device
US20110300692A1 (en) Method for dividing a semiconductor film formed on a substrate into plural regions by multiple laser beam irradiation
CN102598310A (en) Laser drilling of vias in back contact solar cells
JPH02174173A (en) Working of film
JP2001119048A (en) Method for manufacturing integrated thin-film solar cell
CN209886907U (en) Battery laser edge-etching system
JPH0352272A (en) Processing method for film
JP4287560B2 (en) Method for manufacturing thin film photoelectric conversion module
Haas et al. Patterning of thin-film silicon modules using lasers with tailored beam shapes and different wavelengths
JPS6072279A (en) Method of film processing