JP2671928B2 - Multi-function element - Google Patents

Multi-function element

Info

Publication number
JP2671928B2
JP2671928B2 JP63201417A JP20141788A JP2671928B2 JP 2671928 B2 JP2671928 B2 JP 2671928B2 JP 63201417 A JP63201417 A JP 63201417A JP 20141788 A JP20141788 A JP 20141788A JP 2671928 B2 JP2671928 B2 JP 2671928B2
Authority
JP
Japan
Prior art keywords
voltage
varistor
srtio
glass
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63201417A
Other languages
Japanese (ja)
Other versions
JPH0249404A (en
Inventor
和敬 中村
敏晃 加地
昌禎 前田
康信 米田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP63201417A priority Critical patent/JP2671928B2/en
Publication of JPH0249404A publication Critical patent/JPH0249404A/en
Application granted granted Critical
Publication of JP2671928B2 publication Critical patent/JP2671928B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、SrTiO3系半導体磁器を主成分とし、その結
晶粒界に高抵抗層を形成したバリスタ機能およびコンデ
ンサ機能を有する複合機能素子の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention relates to a composite function element having a varistor function and a capacitor function, which is mainly composed of SrTiO 3 based semiconductor porcelain and has a high resistance layer formed at a grain boundary thereof. Regarding improvement.

〔従来の技術〕 近年、種々の電子機器においてマイクロコンピュータ
が搭載されるようになってきており、その場合ノイズに
よる機器の誤動作等が大きな問題となっている。従っ
て、電圧ノイズを吸収するためのバリスタの需要が増加
してきている。
[Prior Art] In recent years, microcomputers have been mounted in various electronic devices, and in that case, malfunction of the devices due to noise has become a serious problem. Accordingly, the demand for varistors for absorbing voltage noise has been increasing.

バリスタ材としては、結晶粒界に高抵抗層を形成した
半導体磁器が知られており、従来より、ZnO系、SiC系あ
るいはSrTiO3系のもの等が用いられている。
As a varistor material, a semiconductor porcelain having a high resistance layer formed at a crystal grain boundary is known, and conventionally, a ZnO-based, SiC-based or SrTiO 3 -based material has been used.

〔発明が解決しようとする技術的課題〕[Technical problem to be solved by the invention]

しかしながら、実用化の進んでいるZnO系バリスタ
は、電圧非直線性に優れているが、高速のノイズに対す
る応答が悪く、静電気ノイズ等の吸収には効果が小さい
という問題があった。
However, the ZnO-based varistor, which has been put into practical use, has excellent voltage nonlinearity, but has a problem in that it has a poor response to high-speed noise and has a small effect in absorbing electrostatic noise and the like.

他方、SiC系のものでは、電圧非直線性がさほど良く
なく、ノイズ電圧を吸収しきれない場合があった。
On the other hand, in the case of the SiC type, the voltage non-linearity was not so good, and the noise voltage could not be absorbed in some cases.

従って、SrTiO3系のバリスタが注目されてきている。
SrTiO3系半導体磁器を用いたバリスタの最大の特徴は、
静電容量が大きいことであり、ZnO系半導体磁器に比べ
て10倍近い静電容量を有する。従って、高速ノイズの吸
収能に優れているものである。
Therefore, SrTiO 3 -based varistors have been attracting attention.
The greatest feature of varistor using SrTiO 3 based semiconductor porcelain is
It has a large capacitance, and has a capacitance that is about 10 times that of a ZnO-based semiconductor ceramic. Therefore, it is excellent in high-speed noise absorbing ability.

しかしながら、バリスタ特性、すなわち電圧非直線性
については、SrTiO3系半導体磁器は、SiC系半導体磁器
に比べて2倍程度の性能を有するが、ZnO系に比べると1
/2〜1/5とかなり劣る。よって、電圧抑制効果が小さい
ので、SrTiO3系半導体磁器の使用を考える上で大きな問
題となっていた。
However, in terms of varistor characteristics, that is, voltage non-linearity, SrTiO 3 -based semiconductor porcelain has about twice the performance of SiC-based semiconductor porcelain, but 1% better than ZnO-based porcelain.
It is considerably inferior to / 2 to 1/5. Therefore, since the voltage suppression effect is small, it has been a serious problem in considering the use of SrTiO 3 based semiconductor porcelain.

また、マイクロコンピュータの駆動電圧は3〜5V程度
であり、現状では、この低い電圧に対応し得るバリスタ
は存在しない。従って、このような低電圧に対応し得る
バリスタが要望されている。
Further, the driving voltage of the microcomputer is about 3 to 5V, and at present, there is no varistor capable of handling this low voltage. Therefore, there is a demand for a varistor capable of handling such a low voltage.

よって、本発明の目的は、高速ノイズの吸収能に優
れ、かつ電圧非直線性も高められており、さらに所望の
バリスタ電圧を容易に得ることが可能なSrTiO3系複合機
能素子を提供することにある。
Therefore, an object of the present invention is to provide a SrTiO 3 -based multi-functional device that is excellent in absorbing high-speed noise, has improved voltage nonlinearity, and can easily obtain a desired varistor voltage. It is in.

〔技術的課題を解決するための手段〕[Means for solving technical problems]

本発明の複合機能素子は、SrTiO3を主成分とし、半導
体化剤として希土類元素、Nb、WおよびTaの各酸化物か
らなる群から選択した少なくとも一種を0.05〜1重量%
含み、結晶粒界にガラスが拡散されている半導体磁器を
用いて構成されており、上記ガラスが、B2O3及びSiO2
少なくとも一種と、Bi2O3、PbO、およびZnOのうち少な
くとも1種とを含んでいることを特徴とする。
The multi-functional device of the present invention contains SrTiO 3 as a main component and at least one selected from the group consisting of oxides of rare earth elements, Nb, W and Ta as a semiconducting agent in an amount of 0.05 to 1% by weight.
Included, which is configured using a semiconductor porcelain in which glass is diffused into the crystal grain boundaries, the glass is at least one of B 2 O 3 and SiO 2 , Bi 2 O 3 , at least PbO, and ZnO. It is characterized by including one kind.

上記の構成のうち、希土類元素、Nb、WおよびTaの各
酸化物の少なくとも一種を0.05〜1重量%含ませている
のは、SrTiO3系磁器の粒界に高抵抗層を形成し半導体化
するためであり、従来から用いられているものである。
In the above-mentioned constitution, at least one kind of oxides of rare earth elements, Nb, W and Ta is contained in an amount of 0.05 to 1% by weight because a high resistance layer is formed at a grain boundary of a SrTiO 3 -based porcelain to form a semiconductor. This is because it is used conventionally.

〔発明の作用および効果〕[Action and Effect of the Invention]

従来より、SrTiO3を主成分とした半導体磁器の作成に
際し、Bi、Pb、Zn、Cu、Na、B、Si等を用いて酸化拡散
することにより、SrTiO3系のバリスタやコンデンサを構
成し得ることは知られていた。
Conventionally, when a semiconductor porcelain containing SrTiO 3 as a main component is prepared, an SrTiO 3 based varistor or capacitor can be formed by oxidizing and diffusing Bi, Pb, Zn, Cu, Na, B, Si and the like. That was known.

そこで、本願発明者達は、このようなSrTiO3系半導体
磁器の特性を活かしつつ、より電圧非直線性に優れた複
合機能素子を得るべく鋭意検討した結果、上記のように
結晶粒界に一旦ガラス化された酸化物を拡散させれば、
より優れた電圧非直線性を有する複合機能素子の得られ
ることを見出し、本発明に至ったものである。
Therefore, the inventors of the present application, while taking advantage of the characteristics of such SrTiO 3 -based semiconductor ceramics, as a result of earnest study to obtain a composite functional element having more excellent voltage non-linearity, as described above, once in the grain boundaries. If you diffuse the vitrified oxide,
The inventors of the present invention have found that a compound functional device having more excellent voltage non-linearity can be obtained, and have completed the present invention.

すなわち、本発明によれば、結晶粒界に上記B2O3及び
SiO2の少なくとも一種と、Bi2O3、PbO及びZnOのうちの
少なくとも1種とを含んでいるガラスが拡散されている
ので、SrTiO3系半導体磁器の大きな静電容量を維持した
ままで、優れた電圧非直線性が実現される。よって、高
速のノイズを効果的に吸収することが可能であり、かつ
電圧抑制効果においても優れた複合機能素子を得ること
ができる。のみならず、ガラスの拡散量を調整すること
により、バリスタ電圧をコントロールすることも容易で
あり、従って低電圧対応のバリスタを実現することも容
易である。
That is, according to the present invention, the B 2 O 3 and
Since the glass containing at least one kind of SiO 2 and at least one kind of Bi 2 O 3 , PbO and ZnO is diffused, while maintaining a large capacitance of the SrTiO 3 based semiconductor porcelain, Excellent voltage nonlinearity is realized. Therefore, it is possible to effectively absorb high-speed noise, and to obtain a composite function element excellent in voltage suppression effect. Not only that, it is also easy to control the varistor voltage by adjusting the diffusion amount of the glass, and therefore it is easy to realize a varistor compatible with low voltage.

〔実施例の説明〕[Explanation of Example]

SrCO3とTiO2を、SrTiO3を得る比率に配合し、半導体
化剤として、Y2O3が全重量の0.05重量%となるように混
合したものを用意した。このようにして調製した混合物
を1000℃〜1200℃の温度で約3時間、予備焼成し、しか
る後粉砕した。
SrCO 3 and TiO 2 were mixed in a ratio to obtain SrTiO 3, and as a semiconducting agent, a mixture was prepared so that Y 2 O 3 was 0.05% by weight based on the total weight. The mixture thus prepared was precalcined at a temperature of 1000 ° C. to 1200 ° C. for about 3 hours and then pulverized.

得られた微粉末原料に、有機質バインダとして、ポリ
ビニルアルコールを混入し、造粒した。
Polyvinyl alcohol was mixed as an organic binder into the obtained fine powder raw material and granulated.

次に、造粒粉末を500kg/cm〜2トン/cm程度の圧力に
て成形し、直径7mm×肉厚0.5mmの円板状成形体とした。
この成形体を1100℃〜1200℃の範囲の温度で空気中にお
いて焼成し、さらにN2:H2=95モル%:5モル%の還元性
雰囲気下において1400℃〜1500℃の温度で3時間焼成し
た。
Next, the granulated powder was molded under a pressure of about 500 kg / cm to 2 ton / cm to obtain a disk-shaped molded body having a diameter of 7 mm and a wall thickness of 0.5 mm.
This molded body is fired in air at a temperature in the range of 1100 ° C to 1200 ° C, and further in a reducing atmosphere of N 2 : H 2 = 95 mol%: 5 mol% at a temperature of 1400 ° C to 1500 ° C for 3 hours. Baked.

得られた焼結体の表面に、下記の第1表に示す組成の
酸化剤をガラス化して得られたガラスを0.1重量%塗布
し、900℃〜1200℃の温度で2時間熱処理した。最後
に、このユニットの表面にインジウム−ガリウム合金を
電極として塗布し、バリスタ電圧(V1mA)、電圧非直線
係数(α)、静電容量C、誘電損失(tanδ)を測定し
た。結果を第2表に示す。
On the surface of the obtained sintered body, 0.1% by weight of glass obtained by vitrifying the oxidizing agent having the composition shown in Table 1 below was applied, and heat-treated at a temperature of 900 ° C to 1200 ° C for 2 hours. Finally, the surface of this unit was coated with an indium-gallium alloy as an electrode, and the varistor voltage (V 1mA ), voltage non-linearity coefficient (α), capacitance C, and dielectric loss (tan δ) were measured. The results are shown in Table 2.

なお、比較のために、Na酸化物(ガラス化していない
もの)を拡散させたものについて、同様にユニットを構
成し、特性を測定した(第1表および第2表における記
号Mで示した試料が、この比較例を示す)。
For comparison, a unit in which the Na oxide (non-vitrified) was diffused was similarly constructed and the characteristics were measured (samples indicated by symbol M in Tables 1 and 2). However, this comparative example is shown).

第2表から明らかなように、本発明の実施例の素子で
は、比較例のものに比べてはるかに大きな静電容量を示
し、かつ電圧非直線係数αも高いことがわかる。
As is apparent from Table 2, the devices of the examples of the present invention show much larger capacitance than the devices of the comparative examples and also have a high voltage nonlinear coefficient α.

次に、ガラス添加物の添加量と、バリスタ電圧および
電圧非直線係数の変化を第1図および第2図に示す。こ
れらは、第2表に示した実施例1,10および20についての
特性を示すものである。
Next, changes in the varistor voltage and the voltage non-linearity coefficient and the addition amount of the glass additive are shown in FIGS. 1 and 2. These show the characteristics for Examples 1, 10 and 20 shown in Table 2.

第1図から明らかなように、ガラス添加物の塗布量が
大きくなるにつれ、バリスタ電圧V1mAが高くなることが
わかる。従って、このガラス添加物の塗布量をコントロ
ールすることにより種々のバリスタ電圧の複合機能素子
を実現し得ることがわかる。
As is clear from FIG. 1, the varistor voltage V 1mA increases as the coating amount of the glass additive increases. Therefore, it is understood that by controlling the coating amount of this glass additive, it is possible to realize a multi-functional device having various varistor voltages.

また、第2図から明らかなように、ガラス添加物の塗
布量により、電圧非直線係数がかなり変化することがわ
かる。すなわち、ガラスの塗布量が0.05重量%より少な
くなると電圧非直線係数が急激に低下し、他方1重量%
を超えた場合にも電圧非直線係数が急低下してバリスタ
特性がほとんど消失することがわかる。実際の測定に際
しては、1重量%を超えた場合には、バリスタ特性がほ
とんど消失し、測定中に熱破壊を生じることがわかっ
た。
Further, as is clear from FIG. 2, it can be seen that the voltage non-linearity coefficient changes considerably depending on the coating amount of the glass additive. That is, when the glass coating amount is less than 0.05% by weight, the voltage non-linearity coefficient sharply decreases, while on the other hand, 1% by weight.
It can be seen that the voltage non-linearity coefficient drops sharply and the varistor characteristic almost disappears even when the value exceeds. In actual measurement, it has been found that when the content exceeds 1% by weight, the varistor characteristics almost disappear and thermal breakdown occurs during the measurement.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の実施例におけるバリスタ電圧とガラス
酸化物の添加量との関係を示す図、第2図は本発明の実
施例における電圧非直線係数とガラス酸化物添加量との
関係を示す図である。
FIG. 1 shows the relationship between the varistor voltage and the amount of glass oxide added in the example of the present invention, and FIG. 2 shows the relationship between the voltage nonlinearity coefficient and the amount of glass oxide added in the example of the present invention. FIG.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 前田 昌禎 京都府長岡京市天神2丁目26番10号 株 式会社村田製作所内 (72)発明者 米田 康信 京都府長岡京市天神2丁目26番10号 株 式会社村田製作所内 (56)参考文献 特開 昭56−169316(JP,A) 特開 昭57−27001(JP,A) 特開 昭61−271802(JP,A) ─────────────────────────────────────────────────── ─── Continuation of front page (72) Masayoshi Maeda 2-26-10 Tenjin Tenjin, Nagaokakyo City, Kyoto Prefecture Murata Manufacturing Co., Ltd. (72) Yasunobu Yoneda 2-26-10 Tenjin Nagaokakyo, Kyoto Prefecture Murata Manufacturing Co., Ltd. (56) Reference JP-A-56-169316 (JP, A) JP-A-57-27001 (JP, A) JP-A-61-271802 (JP, A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】SrTiO3を主成分とし、半導体化剤として希
土類元素、Nb、WおよびTaの各酸化物からなる群から選
択した少なくとも一種を0.05〜1重量%含み、結晶粒界
にガラスが拡散されている半導体磁器を用いて構成され
ており、 前記ガラスが、B2O3及びSiO2のうちの少なくとも一種
と、Bi2O3、PbO、及びZnOのうち少なくとも一種とを含
んでいる複合機能素子。
1. SrTiO 3 as a main component and at least 0.05 to 1% by weight of at least one selected from the group consisting of oxides of rare earth elements, Nb, W and Ta as a semiconducting agent, and glass is contained in the crystal grain boundaries. It is configured by using a diffused semiconductor porcelain, and the glass contains at least one of B 2 O 3 and SiO 2 , and at least one of Bi 2 O 3 , PbO, and ZnO. Multi-function element.
JP63201417A 1988-08-11 1988-08-11 Multi-function element Expired - Fee Related JP2671928B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63201417A JP2671928B2 (en) 1988-08-11 1988-08-11 Multi-function element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63201417A JP2671928B2 (en) 1988-08-11 1988-08-11 Multi-function element

Publications (2)

Publication Number Publication Date
JPH0249404A JPH0249404A (en) 1990-02-19
JP2671928B2 true JP2671928B2 (en) 1997-11-05

Family

ID=16440737

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63201417A Expired - Fee Related JP2671928B2 (en) 1988-08-11 1988-08-11 Multi-function element

Country Status (1)

Country Link
JP (1) JP2671928B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56169316A (en) * 1980-05-30 1981-12-26 Matsushita Electric Ind Co Ltd Composition functional element and method of producing same
JPS5727001A (en) * 1980-07-25 1982-02-13 Tdk Electronics Co Ltd Voltage nonlinear resistance element
JPS61271802A (en) * 1985-05-28 1986-12-02 石塚電子株式会社 Voltage non-linear resistor ceramic composition
JPS62282413A (en) * 1986-05-30 1987-12-08 松下電器産業株式会社 Porcelain compound for voltage nonlinear resistance unit

Also Published As

Publication number Publication date
JPH0249404A (en) 1990-02-19

Similar Documents

Publication Publication Date Title
US4781859A (en) Voltage-dependent non-linear resistance ceramic composition
JPS634339B2 (en)
EP0153412B1 (en) Voltage-dependent, non-linear resistor porcelain composition
JP2671928B2 (en) Multi-function element
EP0137044B1 (en) Composition of porcelain for voltage-dependent, non-linear resistor
JP2789714B2 (en) Voltage-dependent nonlinear resistor porcelain composition and method for manufacturing varistor
JP2633330B2 (en) Method for manufacturing composite functional element
JP2830322B2 (en) Voltage-dependent nonlinear resistor porcelain composition and method for manufacturing varistor
JP2800268B2 (en) Voltage-dependent nonlinear resistor porcelain composition and method for manufacturing varistor
JP2727693B2 (en) Voltage-dependent nonlinear resistor porcelain composition and method for manufacturing varistor
JP2808775B2 (en) Varistor manufacturing method
JP2830321B2 (en) Voltage-dependent nonlinear resistor porcelain composition and method for manufacturing varistor
JP2808777B2 (en) Varistor manufacturing method
JP2789675B2 (en) Voltage-dependent nonlinear resistor porcelain composition and method for manufacturing varistor
JP2822612B2 (en) Varistor manufacturing method
JP2789674B2 (en) Voltage-dependent nonlinear resistor porcelain composition and method for manufacturing varistor
JP2808778B2 (en) Varistor manufacturing method
JP2789676B2 (en) Voltage-dependent nonlinear resistor porcelain composition and method for manufacturing varistor
JP2555790B2 (en) Porcelain composition and method for producing the same
JPH038765A (en) Production of voltage-dependent nonlinear resistor porcelain composition and varistor
JPH0248465A (en) Barium titanate-based semiconductor porcelain
JP2725406B2 (en) Voltage-dependent nonlinear resistor element and method of manufacturing the same
JPH0425684B2 (en)
JPH0380322B2 (en)
JPS61271802A (en) Voltage non-linear resistor ceramic composition

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees