JP2725406B2 - Voltage-dependent nonlinear resistor element and method of manufacturing the same - Google Patents

Voltage-dependent nonlinear resistor element and method of manufacturing the same

Info

Publication number
JP2725406B2
JP2725406B2 JP1277423A JP27742389A JP2725406B2 JP 2725406 B2 JP2725406 B2 JP 2725406B2 JP 1277423 A JP1277423 A JP 1277423A JP 27742389 A JP27742389 A JP 27742389A JP 2725406 B2 JP2725406 B2 JP 2725406B2
Authority
JP
Japan
Prior art keywords
voltage
varistor
temperature
manufacturing
resistor element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1277423A
Other languages
Japanese (ja)
Other versions
JPH03138904A (en
Inventor
巖 上野
康男 若畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1277423A priority Critical patent/JP2725406B2/en
Publication of JPH03138904A publication Critical patent/JPH03138904A/en
Application granted granted Critical
Publication of JP2725406B2 publication Critical patent/JP2725406B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Thermistors And Varistors (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、電子機器,電気機器で発生する異常電圧,
ノイズ,パルス,静電気から半導体及び回路を保護する
ところのSrTiO3を主成分とする電圧依存性非直線抵抗体
素子及びその製造方法に関するものである。
The present invention relates to an electronic device, an abnormal voltage generated in an electric device,
The present invention relates to a voltage-dependent nonlinear resistor element mainly composed of SrTiO 3 for protecting a semiconductor and a circuit from noise, pulse and static electricity, and a method for manufacturing the same.

従来の技術 従来、各種電子機器,電気機器で発生する異常電圧,
ノイズ,パルス,静電気除去のためにバリスタ特性を有
するSiCバリスタやZnO系バリスタが使用されてきた。こ
のようなバリスタの電圧−電流特性は近似的に次式のよ
うに表すことができる。
2. Description of the Related Art Conventionally, abnormal voltage generated in various electronic devices and electric devices,
SiC varistors and ZnO varistors with varistor characteristics have been used to remove noise, pulses and static electricity. The voltage-current characteristics of such a varistor can be approximately expressed by the following equation.

I=(V/C)α ここで、Iは電流、Vは電圧、Cはバリスタ固有の定
数であり、αは電圧非直線指数である。SiCバリスタの
電圧非直線指数αは2〜7程度、ZnO系バリスタではα
が50にも及ぶものがある。このようなバリスタは、比較
的高い電圧の吸収にはすぐれた性能を有しているが、誘
電率が低く、固有の静電容量が小さく応答性が遅いた
め、バリスタ電圧以下の低い電圧や周波数の高いものの
吸収に対してはほとんど効果を示さない。また、誘電損
失tanδが5〜10%と大きい。
I = (V / C) α where I is current, V is voltage, C is a varistor-specific constant, and α is a voltage non-linear index. The voltage non-linear index α of the SiC varistor is about 2 to 7;
There are as many as 50. Such a varistor has excellent performance in absorbing relatively high voltage, but has a low dielectric constant, a small inherent capacitance, and a slow response, so that a low voltage or a frequency lower than the varistor voltage is used. But has little effect on absorption. Further, the dielectric loss tan δ is as large as 5 to 10%.

一方、低電圧のノイズなどの除去には、見掛け誘電率
εが5×104程度で、誘電損失tanδが1%前後の半導体
コンデンサが利用されている。しかし、このような半導
体コンデンサは、サージなどによりある程度以上の電
圧,電流が印加されると破壊しり、コンデンサとしての
機能を果たさなくなる。そこで近年、SrTiO3を主成分と
し、バリスタ特性とコンデンサ特性の両方の機能を有す
るものが開発されてきている。
On the other hand, a semiconductor capacitor having an apparent dielectric constant 除去 of about 5 × 10 4 and a dielectric loss tan δ of about 1% is used for removing low-voltage noise and the like. However, such a semiconductor capacitor is destroyed when a voltage or current exceeding a certain level is applied due to a surge or the like, and the semiconductor capacitor does not function as a capacitor. Therefore, in recent years, a material having SrTiO 3 as a main component and having both functions of a varistor characteristic and a capacitor characteristic has been developed.

発明が解決しようとする課題 SrTiO3を主成分とする容量性バリスタは、バリスタ電
圧の温度係数が負の値を示し、このような容量性バリス
タを高温中で使用したり、長時間使用すると素子が発熱
しバリスタ電圧が低下することにより、ひどい場合には
ショートの原因となりうる。さらに、高温中や長時間使
用する場合、バリスタ電圧が低下するのを見込んで使用
するため、実効的な制限電圧が増加し、各種電子機器や
電気機器に大きな負荷がかかると言う問題点も同時に有
している。従って、SrTiO3を主成分とする容量性バリス
タにおいて、高温中や長時間使用中でのバリスタ電圧の
低下を抑えるために、バリスタ電圧の温度係数が正また
は0の値を示す必要がある。
Problems to be Solved by the Invention A capacitive varistor containing SrTiO 3 as a main component shows a negative temperature coefficient of the varistor voltage. Heat is generated and the varistor voltage is reduced, which may cause a short circuit in a severe case. In addition, when used at high temperatures or for a long time, the varistor voltage is expected to decrease, so that the effective voltage limit increases and a large load is imposed on various electronic and electrical devices. Have. Therefore, in the capacitive varistor containing SrTiO 3 as a main component, the temperature coefficient of the varistor voltage needs to show a positive or zero value in order to suppress a decrease in the varistor voltage during high temperature or long-time use.

本発明は、このような点に鑑みてなされたもので、Sr
TiO3を主成分とする電圧依存性非直線抵抗体素子及びそ
の製造方法を提供することを目的とするものである。
The present invention has been made in view of such a point, Sr
It is an object of the present invention to provide a voltage-dependent nonlinear resistor element containing TiO 3 as a main component and a method for manufacturing the same.

課題を解決するための手段 上記のような問題点を解決するために本発明は、原子
価制御により半導体化したSr,Ti原子を主成分とするペ
ロブスカイト型構造を有する酸化物に、Na2SiO3を0.2〜
5.0mol%含ませてなる電圧依存性非直線抵抗体素子を提
供するものである。さらに、SrTiO3の粉末を原料としN
b,Taなどの原子価制御剤を適量添加し、さらにNa2SiO3
を0.2〜5.0mol%添加した混合粉末を成形し、還元雰囲
気中や窒素雰囲気中で1200〜1500℃の温度範囲で焼成
し、その後、空気中で900〜1200℃の温度範囲で熱処理
を行った後に各種方法で電極を設けた電圧依存性非直線
抵抗体素子の製造方法を提供するものである。
Means for Solving the Problems In order to solve the above-mentioned problems, the present invention provides a semiconductor having a perovskite structure mainly composed of Sr and Ti atoms converted into a semiconductor by valence control, Na 2 SiO 3 to 0.2 to
An object of the present invention is to provide a voltage-dependent nonlinear resistor element containing 5.0 mol%. Further, using SrTiO 3 powder as a raw material, N
b, Ta and other valence controlling agents are added in an appropriate amount, and Na 2 SiO 3
Was mixed and molded in a reducing atmosphere or a nitrogen atmosphere in a temperature range of 1200 to 1500 ° C., and then heat-treated in air at a temperature range of 900 to 1200 ° C. An object of the present invention is to provide a method for manufacturing a voltage-dependent nonlinear resistor element provided with electrodes by various methods later.

作用 一般にSrTiO3にNb,Taなどの原子を含む原子価制御剤
を適量添加し、還元雰囲気中や窒素雰囲気中で焼成した
素子を空気中で熱処理を行い、その後、電極を設けて形
成した容量性バリスタでは、再酸化の度合が素子の表面
と内部で異なり不均一となる。その結果、表面では酸素
の濃度が多く内部では少ないといった酸素濃度勾配を持
つ。このような容量性バリスタの電子伝導メカニズムは
酸素濃度勾配が原因である非対称エネルギー障壁による
ものと考えられる。そこで、このような電子伝導メカニ
ズムを持つ容量性バリスタを高温中や長時間使用する
と、電子が熱エネルギーにより励起され、常温中では乗
り越えることが困難であったエネルギー障壁を容易に乗
り越えることが可能となり、結果としてバリスタ電圧が
低下する。さらに、このような非対称エネルギー障壁を
持つ容量性バリスタでは、バリスタ電圧に方向性(分
極)が生じ易くなる。そこで、この非対称エネルギー障
壁をなくす方法、すなわち出来上がった素子の酸素濃度
勾配を抑える方法といて、次の二つの方法が考えられ
る。まず、第1の方法としてNa2SiO3を添加し、還元雰
囲気中や窒素雰囲気中で焼成すると、Na原子がSrTiO3
結晶中に固溶し、状態的に不安定な格子歪みを生じる。
そして、この様な素子を空気中で熱処理を行うと、状態
的に安定な格子歪みを抑える方向、すなわち酸化がされ
易くなる方向に進み、結果として素子の内部においても
均一に再酸化が起こり酸素濃度勾配が抑えられると考え
られる。第2の方法として空気中での熱処理温度を900
℃以上で行なうと、第1の方法と同様に素子の内部にお
いても均一に再酸化が起こり酸素濃度勾配が抑えられる
と考えられる。従って、この様な組成や製造方法で得ら
れた容量性バリスタでは酸素濃度勾配がほとんどなく高
温中や、長時間使用してもバリスタ電圧の低下が抑えら
れることとなる。また、この時、本発明のようにNa2SiO
3の添加量を0.2〜5.0mol%の範囲に規定したのは、0.2m
ol%未満では添加効果が得られず、5.0mol%を超えると
焼結性や信頼性が低下するため容量性バリスタとしての
機能を果たさなくなるためである。なお、好ましい範囲
は、焼結性,信頼性を考えて、0.5〜2.0mol%の範囲で
ある。
Action Generally, an appropriate amount of a valence controlling agent containing atoms such as Nb and Ta is added to SrTiO 3 , and the element fired in a reducing atmosphere or a nitrogen atmosphere is subjected to a heat treatment in air, and then a capacitor formed by providing an electrode is formed. In the varistor, the degree of re-oxidation differs between the surface and the inside of the element and becomes non-uniform. As a result, the surface has an oxygen concentration gradient such that the oxygen concentration is high on the surface and low on the inside. The electron conduction mechanism of such a capacitive varistor is considered to be due to an asymmetric energy barrier caused by an oxygen concentration gradient. Therefore, when a capacitive varistor with such an electron conduction mechanism is used at high temperatures or for a long time, electrons are excited by thermal energy, and it is possible to easily overcome an energy barrier that was difficult to overcome at room temperature. As a result, the varistor voltage decreases. Further, in a capacitive varistor having such an asymmetric energy barrier, the varistor voltage is likely to be directional (polarized). Therefore, the following two methods can be considered as a method of eliminating the asymmetric energy barrier, that is, a method of suppressing the oxygen concentration gradient of the completed device. First, as a first method, when Na 2 SiO 3 is added and sintering is performed in a reducing atmosphere or a nitrogen atmosphere, Na atoms form a solid solution in the SrTiO 3 crystal, and a stateally unstable lattice strain is generated.
When such a device is subjected to a heat treatment in air, it proceeds in a direction in which the lattice distortion is stable in a state, that is, in a direction in which the device is easily oxidized. It is considered that the concentration gradient is suppressed. As a second method, the heat treatment temperature in air is 900
If performed at a temperature of not less than ° C., it is considered that reoxidation is uniformly performed inside the element as in the first method, and the oxygen concentration gradient is suppressed. Therefore, in the capacitive varistor obtained by such a composition or manufacturing method, there is almost no oxygen concentration gradient, so that the varistor voltage can be suppressed even at a high temperature or for a long time. At this time, as in the present invention, Na 2 SiO
The addition amount of ( 3 ) was specified in the range of 0.2 to 5.0 mol% because 0.2 m
If it is less than ol%, the effect of addition cannot be obtained, and if it exceeds 5.0 mol%, the sinterability and reliability are reduced, and the function as a capacitive varistor is not achieved. The preferred range is 0.5 to 2.0 mol% in consideration of sinterability and reliability.

従って、原子価制御により半導体化したSr,Ti原子を
主成分とするペロブスカイト型構造を有する容量性バリ
スタと、原子価制御により半導体化したSr,Ti原子を主
成分とするペロブスカイト型構造を有する酸化物に、Na
2SiO3を含ませてなる容量性バリスタでは、その微細構
造,電気特性が著しく異なり、互いにして全く別の組成
物と考えられる。
Therefore, a capacitive varistor having a perovskite structure mainly composed of Sr and Ti atoms converted into a semiconductor by valence control and an oxidation having a perovskite structure mainly composed of Sr and Ti atoms converted to a semiconductor by controlling valence. Things, Na
Capacitive varistors containing 2 SiO 3 have significantly different microstructures and electrical characteristics, and are considered to be completely different compositions.

実施例 以下に本発明について、実施例を挙げて具体的に説明
する。まず、原料のSrTiO3,原子価制御剤のNb2O5,バリ
スタ電圧の温度係数を改善するNa2SiO3を下記表に示す
組成比になるように秤量,混合した。これを乾燥後、自
動乳鉢で粉砕した。その後、0.5wt%ポリビニールアル
コール溶液を添加し、1時間混合し造粒した。造粒後、
1ton/cm2の圧力で12φ×1.0(mm)の円板状に成形し、
次に空気中で400℃,2時間の条件で脱バインダーを行っ
た。その後、N2:H2=10:1の還元雰囲気中で1200〜1500
℃,2時間の条件で焼成した。このようにして得られた第
1,第2図に示す焼結体1を空気中で900〜1200℃,2時間
の条件で熱処理を行い、その後、外周を残すようにし電
極2,3を形成した。
Examples Hereinafter, the present invention will be described specifically with reference to examples. First, SrTiO 3 as a raw material, Nb 2 O 5 as a valence controlling agent, and Na 2 SiO 3 for improving the temperature coefficient of varistor voltage were weighed and mixed so as to have a composition ratio shown in the following table. After drying, this was ground in an automatic mortar. Thereafter, a 0.5 wt% polyvinyl alcohol solution was added, mixed for 1 hour, and granulated. After granulation,
Formed into a 12φ × 1.0 (mm) disc with a pressure of 1ton / cm 2 ,
Next, the binder was removed in air at 400 ° C. for 2 hours. Then, in a reducing atmosphere of N 2 : H 2 = 10: 1, 1200-1500
Calcination was carried out at ℃ for 2 hours. The first obtained in this way
1. Heat treatment was performed on the sintered body 1 shown in FIG. 2 in air at 900 to 1200 ° C. for 2 hours, and thereafter, electrodes 2 and 3 were formed while leaving the outer periphery.

このようにして得られた、N2:H2=10:1の還元雰囲気
中時で1400℃,2時間の条件で焼成した焼結体を、空気中
900〜1200℃,2時間の条件で熱処理を行い、In−Ga電極
を塗布して形成した容量性バリスタの熱処理温度を900,
1000,1100,1200℃と変えた場合のバリスタ電圧の温度係
数の値を下記表に併せて示す。ここで、バリスタ電圧の
温度係数の値は測定温度20,80℃でのバリスタ電圧V
0.1mA値の変化率から以下の式より計算した まず、上記表について解説すると、試料番号1〜3は
比較例である。これらの試料ではバリスタ電圧の温度係
数が負の値となり、測定温度の上昇と共にバリスタ電圧
の値が低下し、添加剤の効果が得られるものである。こ
れに対し、その他の本発明の実施例にかかる試料番号4
〜14ではバリスタ電圧の温度係数が正または0の値とな
り、測定温度が上昇してもバリスタ電圧の値が低下せ
ず、添加剤の効果が得られるものである。
The sintered body thus obtained, which was fired at 1400 ° C. for 2 hours in a reducing atmosphere of N 2 : H 2 = 10: 1, was placed in air.
Heat treatment at 900-1200 ° C for 2 hours, heat treatment temperature of the capacitive varistor formed by applying In-Ga electrode is 900,
The values of the temperature coefficient of the varistor voltage when the temperature is changed to 1000, 1100, and 1200 ° C are also shown in the following table. Here, the value of the temperature coefficient of the varistor voltage is the varistor voltage V at the measurement temperature of 20, 80 ° C.
Calculated from the following formula from the change rate of 0.1 mA value First, when the above table is explained, sample numbers 1 to 3 are comparative examples. In these samples, the temperature coefficient of the varistor voltage becomes a negative value, and the value of the varistor voltage decreases as the measurement temperature increases, so that the effect of the additive can be obtained. On the other hand, sample No. 4 according to the other examples of the present invention
In the case of 1414, the temperature coefficient of the varistor voltage becomes positive or 0, and the value of the varistor voltage does not decrease even if the measurement temperature increases, and the effect of the additive can be obtained.

ここで、本実施例のようにNa2SiO3の添加量を0.2〜5.
0mol%の範囲に規定したのは、0.2mol%未満では添加効
果が得られず、5.0mol%を超えると焼結性や信頼性が低
下するため容量性バリスタとしての機能を果たさなくな
るためである。また、熱処理温度を900〜1200℃の範囲
に規定したのは900℃未満では素子の内部まで均一に酸
化されず酸素濃度勾配を持ちバリスタ電圧の温度係数が
負の値を示すことやバリスタ電圧に方向性が生じるため
で、1200℃を超えるとバリスタ電圧が上昇し、バリスタ
特性が優先しコンデンサ特性が低下し両特性のバランス
が崩れるために容量性バリスタとしての機能を果たさな
くなるためである。なお、本発明の実施例では、一部の
組み合わせについて示したが、他の組み合わせについて
も同様の効果があることを確認した。さらに、本発明の
実施例では、焼成を還元雰囲気中で行う場合について説
明したが、これは窒素雰囲気中で焼成を行うようにして
も良いものである。しかし、窒素雰囲気中で焼成を行っ
た場合は、半導体化が若干しにくい面があるため、還元
雰囲気中で焼成を行うより若干高温度(1400〜1500℃)
側で焼成する方が特性上は好ましいものである。
Here, the addition amount of Na 2 SiO 3 is 0.2 to 5.
The reason for defining the range of 0 mol% is that if the content is less than 0.2 mol%, the effect of addition cannot be obtained, and if the content exceeds 5.0 mol%, the sinterability and reliability are reduced, so that the function as a capacitive varistor is not achieved. . Also, the heat treatment temperature is specified in the range of 900 to 1200 ° C. If the temperature is lower than 900 ° C, it is not uniformly oxidized even to the inside of the element, the oxygen concentration gradient is exhibited, and the temperature coefficient of the varistor voltage shows a negative value. This is because directionality is generated, and when the temperature exceeds 1200 ° C., the varistor voltage increases, the varistor characteristics take precedence, the capacitor characteristics decrease, and the balance between the two characteristics is lost, so that the function as a capacitive varistor cannot be achieved. In the examples of the present invention, some combinations are shown, but it has been confirmed that other combinations have similar effects. Further, in the embodiment of the present invention, the case where the baking is performed in a reducing atmosphere has been described. However, the baking may be performed in a nitrogen atmosphere. However, when sintering is performed in a nitrogen atmosphere, there is a surface where it is difficult to turn into a semiconductor. Therefore, the temperature is slightly higher (1400 to 1500 ° C.) than when sintering is performed in a reducing atmosphere.
Baking on the side is preferable in terms of characteristics.

さらに、上記の実施例では、熱処理後の素子の両面に
In−Gaを塗布し、電極を形成し電気特性を測定したが、
Agペーストなどの導電性ペーストを印刷し、500〜900℃
の温度範囲で焼付けて、電極を形成したり、蒸着,スパ
ッタリング,メッキなどの方法を用いて電極を形成して
も良いものである。
Furthermore, in the above embodiment, both sides of the heat-treated element
In-Ga was applied, electrodes were formed, and the electrical characteristics were measured.
Print conductive paste such as Ag paste, 500 ~ 900 ℃
The electrode may be formed by baking in the temperature range described above, or may be formed by a method such as vapor deposition, sputtering, or plating.

このようにして得られた本実施例の素子は、バリスタ
電圧の温度係数が正または0の値を示し、高温中や長時
間使用してもバリスタ電圧の低下を抑えられショートや
実効的制限電圧の増加が抑えられ、さらに、バリスタ電
圧の方向正が抑えられるため温度特性,信頼性,寿命特
性が向上する。
The thus obtained device of the present embodiment has a positive or zero temperature coefficient of the varistor voltage, and can suppress a decrease in the varistor voltage even when used at a high temperature or for a long time. , The temperature characteristics, reliability and life characteristics are improved.

発明の効果 以上に示したように本発明によれば、SrTiO3を主成分
とする容量性バリスタにおいて、バリスタ電圧の温度係
数が正または0の値を示し、また、バリスタ電圧の方向
性が抑えられるため温度特性,信頼性,寿命特性が向上
すると言う効果が得られる。
Effects of the Invention As described above, according to the present invention, in a capacitive varistor containing SrTiO 3 as a main component, the temperature coefficient of the varistor voltage shows a positive or zero value, and the directionality of the varistor voltage is suppressed. Therefore, the effect of improving temperature characteristics, reliability, and life characteristics can be obtained.

従来の容量性バリスタに比べると、バリスタ電圧の温
度係数が正または0の値を示し、高温中や長時間使用し
てもバリスタ電圧の低下を抑えられショートや実効的制
限電圧の増加が抑えられ、さらに、バリスタ電圧の方向
性が抑えられるため温度特性,信頼性,寿命特性が向上
することができる。
Compared to conventional capacitive varistors, the temperature coefficient of the varistor voltage shows a positive or zero value, preventing the varistor voltage from dropping even when used at high temperatures or for a long time, and prevents short-circuits and increases in the effective limiting voltage. Further, since the directionality of the varistor voltage is suppressed, the temperature characteristics, reliability, and life characteristics can be improved.

従って、本発明によれば温度特性,信頼性,寿命特性
にすぐれたノイズ,静電気から半導体及び回路を保護す
ることができる素子を得ることができ、その実用的効果
が極めて大きいものである。
Therefore, according to the present invention, an element capable of protecting semiconductors and circuits from noise and static electricity having excellent temperature characteristics, reliability and life characteristics can be obtained, and the practical effect thereof is extremely large.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の一実施例における電圧依存性非直線抵
抗体素子を示す上面図、第2図は同素子の断面図であ
る。 1……焼結体、2,3……電極。
FIG. 1 is a top view showing a voltage-dependent nonlinear resistor element according to an embodiment of the present invention, and FIG. 2 is a sectional view of the element. 1 ... Sintered body, 2,3 ... Electrode.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】原子価制御により半導体化したSr,Ti原子
を主成分とするペロブスカイト型構造を有する酸化物
に、Na2SiO3を0.2〜5.0mol%含ませてなる電圧依存性非
直線抵抗体素子。
1. A voltage-dependent non-linear resistance comprising 0.2 to 5.0 mol% of Na 2 SiO 3 in an oxide having a perovskite structure mainly composed of Sr and Ti atoms, which is made into a semiconductor by valence control. Body element.
【請求項2】SrTiO3の粉末を原料としNb,Taなどの原子
価制御剤を適量添加し、さらにNa2SiO3を0.2〜5.0mol%
添加した混合粉末を成形し、還元雰囲気中や窒素雰囲気
中で1200〜1500℃の温度範囲で焼成し、その後、空気中
で900〜1200℃の温度範囲で熱処理を行った後に、各種
方法で電極を設けた電圧依存性非直線抵抗体素子の製造
方法。
2. A powder of SrTiO 3 is used as a raw material, and an appropriate amount of a valence controlling agent such as Nb or Ta is added. Further, Na 2 SiO 3 is added in an amount of 0.2 to 5.0 mol%.
The added mixed powder is molded, fired in a reducing atmosphere or a nitrogen atmosphere at a temperature range of 1200 to 1500 ° C., and then heat-treated in a temperature range of 900 to 1200 ° C. in an air. A method for manufacturing a voltage-dependent nonlinear resistor element provided with:
JP1277423A 1989-10-24 1989-10-24 Voltage-dependent nonlinear resistor element and method of manufacturing the same Expired - Fee Related JP2725406B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1277423A JP2725406B2 (en) 1989-10-24 1989-10-24 Voltage-dependent nonlinear resistor element and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1277423A JP2725406B2 (en) 1989-10-24 1989-10-24 Voltage-dependent nonlinear resistor element and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH03138904A JPH03138904A (en) 1991-06-13
JP2725406B2 true JP2725406B2 (en) 1998-03-11

Family

ID=17583352

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1277423A Expired - Fee Related JP2725406B2 (en) 1989-10-24 1989-10-24 Voltage-dependent nonlinear resistor element and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2725406B2 (en)

Also Published As

Publication number Publication date
JPH03138904A (en) 1991-06-13

Similar Documents

Publication Publication Date Title
JP2725406B2 (en) Voltage-dependent nonlinear resistor element and method of manufacturing the same
JP2725407B2 (en) Voltage-dependent nonlinear resistor element and method of manufacturing the same
JP2789714B2 (en) Voltage-dependent nonlinear resistor porcelain composition and method for manufacturing varistor
JP2830322B2 (en) Voltage-dependent nonlinear resistor porcelain composition and method for manufacturing varistor
JPS63312616A (en) Semiconductor porcelain composition
JP2800268B2 (en) Voltage-dependent nonlinear resistor porcelain composition and method for manufacturing varistor
JP2727693B2 (en) Voltage-dependent nonlinear resistor porcelain composition and method for manufacturing varistor
JPH04568B2 (en)
JP2830321B2 (en) Voltage-dependent nonlinear resistor porcelain composition and method for manufacturing varistor
JP2822612B2 (en) Varistor manufacturing method
JP2808777B2 (en) Varistor manufacturing method
JP2789675B2 (en) Voltage-dependent nonlinear resistor porcelain composition and method for manufacturing varistor
JPS5842219A (en) Composite function element
JP2707706B2 (en) Grain boundary insulating semiconductor ceramic capacitor and method of manufacturing the same
JP2789676B2 (en) Voltage-dependent nonlinear resistor porcelain composition and method for manufacturing varistor
JP2808778B2 (en) Varistor manufacturing method
JP2789674B2 (en) Voltage-dependent nonlinear resistor porcelain composition and method for manufacturing varistor
JP2737280B2 (en) Ceramic capacitor and method of manufacturing the same
JP2707707B2 (en) Grain boundary insulating semiconductor ceramic capacitor and method of manufacturing the same
JP2725405B2 (en) Voltage-dependent nonlinear resistor porcelain and method of manufacturing the same
JPH03138907A (en) Voltage dependent non-linear resistor element and its manufacture
JP4183100B2 (en) Voltage Nonlinear Resistor Porcelain Composition
JP2548277B2 (en) Voltage-dependent nonlinear resistor porcelain composition
JPS61271802A (en) Voltage non-linear resistor ceramic composition
JPH03138909A (en) Voltage dependent non-linear resistor element and its manufacture

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees