JP2665365B2 - 高い磁性を有する窒化鉄の製造方法 - Google Patents

高い磁性を有する窒化鉄の製造方法

Info

Publication number
JP2665365B2
JP2665365B2 JP1032793A JP3279389A JP2665365B2 JP 2665365 B2 JP2665365 B2 JP 2665365B2 JP 1032793 A JP1032793 A JP 1032793A JP 3279389 A JP3279389 A JP 3279389A JP 2665365 B2 JP2665365 B2 JP 2665365B2
Authority
JP
Japan
Prior art keywords
iron
nitrogen
thin film
implantation
iron nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1032793A
Other languages
English (en)
Other versions
JPH02212320A (ja
Inventor
公行 神野
祥一 岡本
健介 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Steel Mfg Co Ltd
Original Assignee
Mitsubishi Steel Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Steel Mfg Co Ltd filed Critical Mitsubishi Steel Mfg Co Ltd
Priority to JP1032793A priority Critical patent/JP2665365B2/ja
Publication of JPH02212320A publication Critical patent/JPH02212320A/ja
Application granted granted Critical
Publication of JP2665365B2 publication Critical patent/JP2665365B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/08Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers
    • H01F10/10Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition
    • H01F10/12Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being metals or alloys
    • H01F10/14Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being metals or alloys containing iron or nickel

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Compounds Of Iron (AREA)
  • Physical Vapour Deposition (AREA)
  • Thin Magnetic Films (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、高磁性、特に、高い飽和磁化の値を有する
窒化鉄の製造方法に係る。
[従来の技術] 高い磁性を有する窒化鉄に関する研究は、1972年「固
体物理、vol 7,No.9,3〜15頁(高橋実著)に発表されて
以来、現存する磁性材料としては最高の飽和磁化を有す
る材料として注目され、多くの研究がなされてきた。そ
の製造は、NH3とH2の混合ガス雰囲気を約500℃付近に保
持し、純鉄と反応させN2を拡散させて過飽和状態として
焼入れ、続いて300℃付近で焼鈍して針状にα″−Fe16N
2を析出させていた。しかしα″−Fe16N2は準安定相で
あるため、熱処理で単相とする事は困難であり、化学的
溶媒による抽出もほとんど不可能であった。
そこで高橋は充分に清浄に保ったベルヂャー内に99.9
99%のN2ガスを2×10-5〜7×10-3Torr満たし、鉄を蒸
発させてα″−Fe16N2の形成を試みた。この試みでも蒸
着後に得られたものは、αFe(b.c.c.)+α″Fe16N
2(b.c.t.)の二相共存であった。
その後多くの研究者が反応性スパッタ法、イオンプレ
ーティング法、粉末法、プラズマ法等を用いて、Fe16N2
の形成を試みてきたが、純粋な形で抽出するに至ってい
ない。
[発明が解決しようとする課題] 本発明は、比較的実施し易い方法によって、できるだ
け純粋なFe16N2を製造しようとするものである。
[課題を解決するための手段] 本発明は半導体に対する不純物添加法として発達して
きたイオン注入法を用いて体心正方晶(b.c.t.c=6.29
Å、c/a=1.10)のFe16N2の形成を行なった。
すなわち、本発明の構成は、下記のとおりの高い磁性
を有する窒化鉄の製造方法である。
(1)非磁性の基板上に形成されている鉄薄膜に、窒素
イオン(N+)を注入し、続いて窒素イオン(N2 +)を注
入し、所定の組成の窒化鉄とする、高い磁性を有する窒
化鉄の製造方法。
(2)非磁性基板が酸化マグネシウムの単結晶であり、
その上に形成されている鉄薄膜が、エピタキシャル成長
させた鉄単結晶である、上記(1)項記載の高い磁性を
有する窒化鉄の製造方法。
(3)窒素イオン(N+)のイオン注入工程において、鉄
薄膜の厚さ方向で表面から3/4の深さに窒素イオン濃度
が極大になるように注入し、次の窒素イオン(N2 +)の
注入は、上記窒素イオン(N+)の注入による窒素イオン
濃度と、2回目以降の窒素イオン(N2 +)の注入による
窒素イオン濃度との和が鉄薄膜中で台形分布(第1図参
照)となるように注入する、上記(1)項または(2)
項記載の高い磁性を有する窒素鉄の製造方法。
(4)窒素イオン(N+およびN2 +)の注入の結果、鉄薄
膜中の生成物が、Fe16N2およびFe16N2形成前段組成物が
主相となるようにする上記(1)項ないし(3)項の何
れかに記載の高い磁性を有する窒化鉄の製造方法。
(5)上記(3)項に記載の製造方法で製造した窒化鉄
薄膜を、熱処理することによって飽和磁化の値を増大さ
せる高い磁性を有する窒化鉄の製造方法。
近年のイオン注入法は高濃度に注入でき、添加深さを
高制度に制御でき、しかも室温で熱溶解度以上に高濃度
注入ができる特徴をもっている。
しかし単に窒素イオンを規定量鉄薄膜中に注入して
も、注入された窒素イオンは薄膜中でガウス分布をとっ
て存在するために、目的とするFe16N2は、それを形成す
るに適した窒素イオン濃度をもつ限定された領域にしか
存在しなくなり、実用材料としては好ましくない。
このような欠点を克服するために、本発明では注入窒
素イオンの種類、加速電圧、注入量を変えて複数回注入
する事により、第1図に示すように、基板(サブストレ
ート)上の鉄薄膜の厚さ方向に窒素濃度の一定の領域を
出現させることに特徴がある。
第1図において曲線1はイオン注入装置の放電部でイ
オン化された窒素イオンは、次々と加速管で連続加速さ
れ、所定の加速電圧に加圧される。続いてマスアナライ
ザー部に達した窒素イオンは、磁界強度を変化させるこ
とによりN+とN2 +に分離することができる。先ず最初にN
+を磁界により90゜に曲げ、次のQP(クオドロ・ポー
ル)部へ送り込まれ、更にディフレクター部で中性粒子
を除去するため直流電圧をかけ7゜曲げて、鉄薄膜面へ
達する。
窒素イオンが鉄薄膜中に叩き込まれると単位電荷量
(電流)が記録され、これを積分計算してイオン注入量
を知ることができる。必要注入量は形成しようとおもう
組成から必要窒素量を算出し、次にイオン注入法で得ら
れる窒素のガウス分布図(例えば第4図)と照合して、
第1図にみられるような分布曲線を計算により作る。第
1図の1、2、3の各分布曲線は表1の注入順序1、
2、3に相当し、この各曲線の積分された結果が第1図
の中に示される台形の曲線であり、この曲線の上部平坦
部の窒素濃度が所望組成のそれと一致しなくてはならな
いことは当然である。こうして分布曲線が決まれば、こ
うした曲線を鉄薄膜中に形成するのに必要な窒素イオン
の種類、加速電圧、それによる窒素イオンの平均投射飛
程(平均侵入深さ)、注入量が決定される。窒素イオン
の選択法は上述したが、平均投射飛程は加速電圧に依存
する。
MgO単結晶基板上のエピタキシャル成長させた鉄薄膜
は(100)に配向した単結晶の薄膜であり、これに注入
された窒素イオンは第2図にみる如くC軸に選択的に入
り、C軸を若干伸ばした形のb.c.t.構造か、規定のN位
置にきちんと入っていない前段階組織(マルテンサイト
組織とも呼ぶ)となる。
前述の他の種々の製造方法では窒素量の正確な制御が
できないため、Fe16N2より安定なFe4N、Fe3NやFe2Nとい
った、目的とするFe16N2より高次の窒化物ができてしま
う。
しかし本発明の製造方法は注入する窒素イオンの注入
エネルギーの他に、その種類を選択する点に特徴があ
り、鉄薄膜の底部に注入するには窒素イオン(N+)を選
ぶ。この場合窒素は炭素と殆ど似た質量を有するため、
炭素の分離を充分に行なわねばならない。
[実施例] 次に本発明の詳細を実施例で説明するが、これに限定
されるものではない。
実施例1 20mm×20mmのMgO単結晶基板上に、Ar圧0.3Pa、高周波
電力400Wで鉄の単結晶膜を形成した。膜面のX線回折か
ら(100)方位に配向されている事を確認した。次に表
1で示す条件でイオン注入を行なった。
注入後の試料を高感度試料振動型磁束計で測定した結
果を第3図に示す。
比較例としてイオン注入前の試料の飽和磁化の値
(σ)を示した。両者のσ値の比は注入後σ/注入前σ
=1.15であった。
実施例2 MgOの単結晶基板上に鉄の単結晶膜を2000Åの厚さで
形成し、これに窒素イオンを加速電圧140keV、注入量4
×1016ions/cm2(N2 +)の条件で注入した。この膜の窒
素イオンの注入状態をオージェ・デプス・プロファイリ
ングで、深さ方向に調べた結果を第4図に示す。
第4図では横軸はArガスによるスパッタ時間で示して
いるが、これは試料の厚さ方向の距離と比例している。
試料最表面は酸素の付着が認められる。深さ方向のほ
ぼ中心付近で窒素濃度が凡そ10%程度であることが判
り、この付近での鉄濃度との比較からFe16N2に相当する
ことが判る。
この試料を注入直後と、5×10-7Torrの真空中で150
℃、2時間の熱処理を行なった後のX線回折図を第5図
に示す。第5図aは窒素イオンの注入前で、第5図bは
注入後を示す。エピタキシャルに成膜されたFeの(20
0)面回折線は窒素イオンの注入によりFe16N2の強い(0
04)面反射と弱い残留Feの(200)反射に分離した。さ
らに回折強度を上げると第5図Cに示すように2θ=28
゜付近にFe16N2の(002)反射が認められ、Fe16N2の形
成を裏付けた。(004)面の反射は窒素イオン注入後に
は明瞭な回折線は認められず、熱処理後にはっきりす
る。このことは窒素イオン注入のままではFe16N2格子を
きっちりと形成していない領域も熱処理によりFe16N2
子を形成する領域へと変わることを意味する。第4図の
オージェ分析にみるようにイオン注入後の窒素の分布は
ゆるやかな勾配を示し、その局部的な領域で調べるな
ら、Fe16N2格子をきっちりと形成していない領域が存在
することも理解できる。
[発明の効果] 以上述べた如く、本発明方法によるFe16N2化合物は極
めて高い飽和磁化を有し、磁気ヘッド材料、磁気遮蔽材
料等軟質磁性材料としての広い用途が見込まれる。
【図面の簡単な説明】
第1図は、本発明の窒化鉄の薄膜中の窒素濃度の一例を
示すグラフ、 第2図は、窒素が入った鉄の結晶構造を示す模式図、 第3図は、磁場の強さと飽和磁化の値の関係を示すグラ
フ、 第4図は実施例2の窒化鉄薄膜の深さ方向の成分の濃度
分布を示すグラフ、 第5図a〜cは上記薄膜のX線回折図である。
───────────────────────────────────────────────────── フロントページの続き (72)発明者 中島 健介 新潟県見附市上新田町466―8 (56)参考文献 特開 昭61−141114(JP,A)

Claims (5)

    (57)【特許請求の範囲】
  1. 【請求項1】非磁性の基板上に形成されている鉄薄膜
    に、窒素イオン(N+)を注入し、続いて窒素イオン(N2
    +)を注入し、所定の組成の窒化鉄とすることを特徴と
    する高い磁性を有する窒化鉄の製造方法。
  2. 【請求項2】非磁性基板が酸化マグネシウムの単結晶で
    あり、その上に形成されている鉄薄膜が、エピタキシャ
    ル成長させた鉄単結晶であることを特徴とする上記請求
    項(1)記載の高い磁性を有する窒化鉄の製造方法。
  3. 【請求項3】窒素イオン(N+)のイオン注入工程におい
    て、鉄薄膜の厚さ方向で表面から3/4の深さに窒素イオ
    ン濃度が極大になるように注入し、次の窒素イオン(N2
    +)の注入は、上記窒素イオン(N+)の注入による窒素
    イオン濃度と、2回目以降の窒素イオン(N2 +)の注入
    による窒素イオン濃度との和が鉄薄膜中で台形分布(第
    1図参照)となるように注入することを特徴とする上記
    請求項(1)または(2)記載の高い磁性を有する窒素
    鉄の製造方法。
  4. 【請求項4】窒素イオン(N+およびN2 +)の注入の結
    果、鉄薄膜中の生成物が、Fe16N2およびFe16N2形成前段
    階組成物が主相となるようにすることを特徴とする上記
    請求項(1)ないし(3)の何れかに記載の高い磁性を
    有する窒化鉄の製造方法。
  5. 【請求項5】上記請求項(3)に記載の製造方法で製造
    した窒化鉄薄膜を、熱処理することによって飽和磁化の
    値を増大させることを特徴とする高い磁性を有する窒化
    鉄の製造方法。
JP1032793A 1989-02-14 1989-02-14 高い磁性を有する窒化鉄の製造方法 Expired - Fee Related JP2665365B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1032793A JP2665365B2 (ja) 1989-02-14 1989-02-14 高い磁性を有する窒化鉄の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1032793A JP2665365B2 (ja) 1989-02-14 1989-02-14 高い磁性を有する窒化鉄の製造方法

Publications (2)

Publication Number Publication Date
JPH02212320A JPH02212320A (ja) 1990-08-23
JP2665365B2 true JP2665365B2 (ja) 1997-10-22

Family

ID=12368731

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1032793A Expired - Fee Related JP2665365B2 (ja) 1989-02-14 1989-02-14 高い磁性を有する窒化鉄の製造方法

Country Status (1)

Country Link
JP (1) JP2665365B2 (ja)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996002925A1 (fr) * 1994-07-18 1996-02-01 Migaku Takahashi Couche mince magnetique et procede de fabrication
JP4000552B2 (ja) * 2000-12-27 2007-10-31 スズキ株式会社 窒化鉄薄膜の製造方法
EP2745298B1 (en) * 2011-08-17 2019-12-11 Regents of the University of Minnesota Technique and system for forming iron nitride permanent magnet
JP6082128B2 (ja) * 2013-02-07 2017-02-15 リージェンツ オブ ザ ユニバーシティ オブ ミネソタ 窒化鉄永久磁石及び窒化鉄永久磁石を形成するための技術
WO2014210027A1 (en) 2013-06-27 2014-12-31 Regents Of The University Of Minnesota Iron nitride materials and magnets including iron nitride materials
KR20160133564A (ko) 2014-03-28 2016-11-22 리전츠 오브 더 유니버시티 오브 미네소타 코팅된 나노입자들을 포함하는 질화철 자성 재료
US9994949B2 (en) 2014-06-30 2018-06-12 Regents Of The University Of Minnesota Applied magnetic field synthesis and processing of iron nitride magnetic materials
US10072356B2 (en) 2014-08-08 2018-09-11 Regents Of The University Of Minnesota Magnetic material including α″-Fe16(NxZ1-x)2 or a mixture of α″-Fe16Z2 and α″-Fe16N2, where Z includes at least one of C, B, or O
US10002694B2 (en) 2014-08-08 2018-06-19 Regents Of The University Of Minnesota Inductor including alpha″-Fe16Z2 or alpha″-Fe16(NxZ1-x)2, where Z includes at least one of C, B, or O
US10358716B2 (en) 2014-08-08 2019-07-23 Regents Of The University Of Minnesota Forming iron nitride hard magnetic materials using chemical vapor deposition or liquid phase epitaxy
US10573439B2 (en) 2014-08-08 2020-02-25 Regents Of The University Of Minnesota Multilayer iron nitride hard magnetic materials
JP6763542B2 (ja) * 2016-11-22 2020-09-30 住友電気工業株式会社 窒化鉄材及び窒化鉄材の製造方法
CN115491644B (zh) * 2022-08-03 2024-04-09 浙江大学 一种高性能SmFe基永磁薄膜材料的高通量制备方法

Also Published As

Publication number Publication date
JPH02212320A (ja) 1990-08-23

Similar Documents

Publication Publication Date Title
JP2665365B2 (ja) 高い磁性を有する窒化鉄の製造方法
Scorzelli A study of phase stability in invar Fe--Ni alloys obtained by non-conventional methods
Metzger et al. Magnetism of α ″‐Fe16N2
Utsushikawa et al. The saturation magnetization of Fe N films prepared by nitriding treatment in N2 plasma
Umeda et al. Magnetic properties of iron nitride thin films with high corrosion-resistance
Jiang et al. The thermostability of the Fe16N2 phase deposited on a GaAs substrate by ion-beam-assisted deposition
Kita et al. Synthesis of CuO films using mass‐separated, low‐energy O+ ion beams
Shinno et al. Synthesis of α ″-Fe16N2 iron nitride by means of nitrogen-ion implantation into iron thin films
US20220148771A1 (en) Metastable single-crystal rare earth magnet fine powder and method for producing same
Paul et al. Effects of Gases on the Properties of Vapor‐Deposited Ni‐Fe Films
Sung et al. Modification of magnetic properties of epitaxial Co/Cu multilayers by 1 MeV C+ irradiation
Dinhut et al. Spin orientation in Fe and Fe-Co thin films
WO2022176842A1 (ja) FeNi規則合金構造体およびその製造方法
Tang et al. Intrinsic and hard magnetic properties of rapidly quenched NdFe10Mo2Nx ribbons
JP2016207678A (ja) Sm−Fe−N系磁石
Fernando et al. Photoemission studies of Co‐and Fe‐based compounds with the ThMn12 structure
JP2752179B2 (ja) 垂直磁気記録媒体及びその製造方法
Guibin et al. Formation of nanometer magnetic iron nitride film by IBED
Woods et al. Electronic structure of Sm2Fe17N x compounds
Li The calculated electronic and magnetic structure of martensite iron nitrides
JPH11288812A (ja) 高保磁力R−Fe−B系薄膜磁石及びその製造方法
Verheyden et al. Determination of size and interface hyperfine field of Co nanosized precipitates in Ag by Mössbauer spectroscopy
Tsubakino et al. Formation of Fe16N2 in iron sheet by an ion implantation method
Reuther Conversion electron Moessbauer spectroscopy of nitrogen and phosphorus implanted iron
Zheng et al. Crystal structures and magnetic properties of Fe–N thin films deposited by dc magnetron sputtering

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees