JP2646027B2 - Molding material - Google Patents

Molding material

Info

Publication number
JP2646027B2
JP2646027B2 JP21437289A JP21437289A JP2646027B2 JP 2646027 B2 JP2646027 B2 JP 2646027B2 JP 21437289 A JP21437289 A JP 21437289A JP 21437289 A JP21437289 A JP 21437289A JP 2646027 B2 JP2646027 B2 JP 2646027B2
Authority
JP
Japan
Prior art keywords
molding material
fiber
molding
fibrous reinforcing
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21437289A
Other languages
Japanese (ja)
Other versions
JPH02167704A (en
Inventor
友人 木場
敏行 中倉
英男 坂井
操 益田
智 岸
千明 丸子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=26520282&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2646027(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP21437289A priority Critical patent/JP2646027B2/en
Publication of JPH02167704A publication Critical patent/JPH02167704A/en
Application granted granted Critical
Publication of JP2646027B2 publication Critical patent/JP2646027B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Processes Of Treating Macromolecular Substances (AREA)
  • Reinforced Plastic Materials (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は成形材料に関し、詳しくは射出成形、押出成
形、圧縮成形等に使用され、成形時の分散性が良好であ
って、繊維の破断が少なく、機械強度が大幅に向上した
成形品を提供し得る成形材料に関する。
Description: TECHNICAL FIELD The present invention relates to a molding material, and more particularly, it is used for injection molding, extrusion molding, compression molding, etc., and has good dispersibility at the time of molding and fiber breakage. The present invention relates to a molding material which can provide a molded article having a small amount of mechanical strength and greatly improved mechanical strength.

〔従来の技術〕[Conventional technology]

従来、繊維によって強化された熱可塑性樹脂組成物を
製造する方法としては、熱可塑性樹脂に例えば3mm程度
の長さのガラス繊維をドライブレンドしてドライブレン
ド物を作り、これを押出機で混練・造粒等してペレット
にする方法が知られている。
Conventionally, as a method for producing a thermoplastic resin composition reinforced by fibers, a dry blend is prepared by dry blending a glass fiber having a length of, for example, about 3 mm with a thermoplastic resin, and this is kneaded with an extruder. A method for forming pellets by granulation or the like is known.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

しかし、このような従来の製法では、ドライブレンド
物を押出機で混練する方法であるため、ガラス繊維がブ
リッジング、マッティング化する傾向がある。このため
繊維の分散性が不十分となり、又繊維の折損が起り、約
0.3mm長に中央部をもつ正規分布した長さで不規則に配
列する等、補強効果が減少するという課題があった。
However, in such a conventional production method, since the dry blend is kneaded with an extruder, the glass fibers tend to be bridging and matting. As a result, the dispersibility of the fiber becomes insufficient, and the fiber breaks.
There is a problem that the reinforcing effect is reduced, for example, irregular arrangement with a normal distribution length having a central portion at a length of 0.3 mm.

また従来、ガラス繊維の充填率は一般に30重量%が上
限とされていたが、近年では機械的強度の向上等を目的
として、ガラス繊維の充填率の高い成形材料の開発が試
みられている。しかし混練時の繊維の分散が困難である
ため、ガラス繊維の充填率が30重量%以上の高充填率の
成形材料を得ることができないという課題があった。
Conventionally, the upper limit of the glass fiber filling rate is generally 30% by weight, but in recent years, for the purpose of improving mechanical strength and the like, development of a molding material having a high glass fiber filling rate has been attempted. However, since it is difficult to disperse the fibers at the time of kneading, there is a problem that a molding material having a high filling rate of 30% by weight or more of a glass fiber cannot be obtained.

一方、前記課題を解決する為、ガラス繊維等を熱可塑
性樹脂で被覆する方法が提案されている。例えば、特公
昭49−41105号には以下の方法が記載されている。即
ち、ガラス繊維等の繊維束をダイス穿孔内に通す一方、
押出機で溶融した熱可塑性樹脂を上記ダイス穿孔内に導
き前記繊維束を被覆する。次いで冷却後、一定長に切断
して円筒状の成形材料を得る方法である。しかしなが
ら、このようにして得た成形材料も、成形前のペレット
中の繊維長はペレット長と同じであり、長繊維を保持し
ているものの、繊維の高充填化に伴い、成形時繊維の分
散性不良を起すという課題があった。また、押出機内の
供給ゾーンにおいてバレルとスクリューとの間の剪断に
より大部分の繊維が破断を生じ、結局得られる成形品中
の平均繊維長は約0.5mmとなり繊維の補強効果が十分発
揮できない課題があった。
On the other hand, in order to solve the above-mentioned problems, a method of coating glass fiber or the like with a thermoplastic resin has been proposed. For example, Japanese Patent Publication No. 49-41105 describes the following method. That is, while passing a fiber bundle such as glass fiber into the die perforation,
The thermoplastic resin melted by an extruder is guided into the perforations of the dies to cover the fiber bundle. Then, after cooling, it is cut into a certain length to obtain a cylindrical molding material. However, the molding material obtained in this manner also has the same fiber length in the pellets before molding as the pellet length. There was a problem of causing poor sex. In addition, most of the fibers are broken by shearing between the barrel and the screw in the supply zone in the extruder, and the average fiber length in the resulting molded product is about 0.5 mm, and the fiber reinforcing effect cannot be sufficiently exerted. was there.

そこで、本発明の目的は、繊維補強材を高濃度に充填
しているにも拘らず、成形時の繊維分散性が良好であ
り、繊維の折損や破断が少なく、機械強度、特に衝撃強
度が大幅に向上した成形品が得られる成形材料を提供す
ることにある。
Therefore, an object of the present invention is that despite the fact that the fiber reinforcement is filled in a high concentration, the fiber dispersibility at the time of molding is good, the breakage or breakage of the fiber is small, and the mechanical strength, especially the impact strength is low. An object of the present invention is to provide a molding material from which a significantly improved molded product can be obtained.

〔課題を解決するための手段〕[Means for solving the problem]

本発明者は上記課題を解決すべく鋭意検討した結果、
成形時に押出機内で発生する繊維分散不良、あるいは繊
維破断の課題は成形材料の比表面積と密接な関係にあ
り、またこの比表面積を一定以上とすることにより、前
記押出機の供給ゾーンにおいて成形材料中の熱可塑性樹
脂が短時間で溶融状態となり、このため成形材料中に繊
維を高濃度に充填しているにも拘らず前記課題が解消さ
れることを見出した。
As a result of intensive studies to solve the above problems, the present inventor has found that
The problem of poor fiber dispersion or fiber breakage occurring in the extruder during molding is closely related to the specific surface area of the molding material, and by setting this specific surface area to a certain value or more, the molding material is supplied in the supply zone of the extruder. The present inventors have found that the above-mentioned problems can be solved despite the fact that the thermoplastic resin in the inside becomes molten in a short time and the fibers are filled in the molding material at a high concentration.

即ち、本発明に係る成形材料は、単繊維(フィラメン
ト)から構成される繊維状補強材が熱可塑性樹脂によっ
て被覆され、且つ該熱可塑性樹脂が繊維状補強材中に含
浸されている構成の板状体を得、前記繊維状補強材が充
填されている該板状体を切断して得られる成形材料にお
いて、 (i)該成形材料に対する繊維状補強材の充填率が50重
量%以上90重量%以下、 (ii)該繊維状補強材の長さが1〜30mm、 (iii)該板状体の少なくとも一辺が1mm以下、 (iv)該成形材料の比表面積が20cm2/g以上であること
を特徴とする。
That is, the molding material according to the present invention is a plate having a structure in which a fibrous reinforcing material composed of a single fiber (filament) is coated with a thermoplastic resin, and the thermoplastic resin is impregnated in the fibrous reinforcing material. A molding material obtained by cutting the plate-like body filled with the fibrous reinforcing material, wherein (i) the filling rate of the fibrous reinforcing material with respect to the molding material is 50% by weight or more and 90% by weight % Or less, (ii) the length of the fibrous reinforcing material is 1 to 30 mm, (iii) at least one side of the plate-like body is 1 mm or less, and (iv) the specific surface area of the molding material is 20 cm 2 / g or more. It is characterized by the following.

始めに、本発明の成形材料の一例を第1図に基き説明
する。同図において、20は成形材料、21は熱可塑性樹
脂、22は単繊維である。
First, an example of the molding material of the present invention will be described with reference to FIG. In the figure, 20 is a molding material, 21 is a thermoplastic resin, and 22 is a single fiber.

Lは成形材料の長さ、即ち繊維長であり、1.0〜30mm
である。1.0mm未満では繊維長が短く十分な補強効果が
得られず、逆に30mmを越えるとホッパー内でブリッジ化
等を引き起こし成形が困難となるので好ましくない。
L is the length of the molding material, that is, the fiber length, 1.0 to 30 mm
It is. If it is less than 1.0 mm, the fiber length is short, and a sufficient reinforcing effect cannot be obtained. Conversely, if it exceeds 30 mm, bridging or the like is caused in the hopper and molding becomes difficult, which is not preferable.

次式は比表面積を求める式である。 The following equation is an equation for calculating the specific surface area.

式中 L:成形材料の長さ(cm) W:成形材料の幅(cm) H:成形材料の厚さ(cm) P:成形材料の比重(g/cm3) なお、幅と厚さの内、少なくとも一方を1.0mm以下、
好ましくは0.5mm未満とすることは比表面積を大きく設
定する上で好ましい。
In the formula, L: length of molding material (cm) W: width of molding material (cm) H: thickness of molding material (cm) P: specific gravity of molding material (g / cm 3 ) Of which, at least one is 1.0mm or less,
Preferably, it is less than 0.5 mm in order to set a large specific surface area.

本発明において、比表面積は20cm2/g以上、好ましく
は30cm2/g、より好ましくは40cm2/g以上である。比表面
積が20cm2/g未満では射出成形や押出成形等の成形時
に、押出機内において成形材料中の熱可塑性樹脂が溶融
状態となる迄に長時間を要し、押出機供給ゾーンにおい
て、繊維分散不良、繊維破断等の問題が起こり好ましく
ない。
In the present invention, the specific surface area is at least 20 cm 2 / g, preferably at least 30 cm 2 / g, more preferably at least 40 cm 2 / g. When the specific surface area is less than 20 cm 2 / g, it takes a long time for the thermoplastic resin in the molding material to be in a molten state in the extruder during molding such as injection molding or extrusion molding. Problems such as defects and fiber breakage occur, which is not preferable.

尚、厚さHに関してはホッパー内分級、取扱い性の面
からは0.1mm以上に設定することが好ましい。
The thickness H is preferably set to 0.1 mm or more from the viewpoint of classification in the hopper and handling.

本発明に用いる繊維状補強材の種類としては、E−ガ
ラス、S−ガラス等のガラス繊維、ポリアクリルニトリ
ル系、ピッチ系、レーヨン系等の炭素繊維、デュポン社
の「ケブラー」(商標)に代表される芳香族ポリアミド
繊維、日本カーボン社の「ニカロン」(商標)等の炭化
ケイ素繊維、金属繊維等が挙げられる。これらの繊維状
補強材は、単独或いは組合わせて用いることができる。
Examples of the type of the fibrous reinforcing material used in the present invention include glass fibers such as E-glass and S-glass, carbon fibers such as polyacrylonitrile, pitch and rayon, and “Kevlar” (trademark) manufactured by DuPont. Typical examples include aromatic polyamide fibers, silicon carbide fibers such as "Nicalon" (trademark) of Nippon Carbon Co., Ltd., and metal fibers. These fibrous reinforcing materials can be used alone or in combination.

本発明において繊維径は繊維の種類によっても異なる
が、例えばガラス繊維の場合、通常5〜25μmである
が、機械特性の面からは細い方が好ましい。また繊維状
補強材を表面処理することは熱可塑性樹脂との接着性の
面から好ましく、例えばガラス繊維の場合、シラン系、
チタネート系カップリング剤で処理することは特に好ま
しい。
In the present invention, the fiber diameter varies depending on the type of the fiber. For example, in the case of glass fiber, the diameter is usually 5 to 25 μm. Surface treatment of the fibrous reinforcing material is preferable from the viewpoint of adhesiveness with a thermoplastic resin. For example, in the case of glass fiber, a silane-based
Treating with a titanate-based coupling agent is particularly preferred.

本発明に用いる熱可塑性樹脂としては、特に制限はな
く、用途に応じて選択すればよい。例えば、ポリプロピ
レン、スチレンアクリロニトリル共重合体、ポリスチレ
ン、アクリロニトリル・ブタジエン・スチレン共重合体
(メチルメタクリレート・ブタジエン・スチレン、メチ
ルメタクリレート・アクリルニトリル・ブタジエン・ス
チレン、アクリロニトリル・ブタジエン・α−メチルス
チレン・スチレン共重合体を含む)、ポリフェニレンエ
ーテル(変性ポリフェニレンオキサイドを含む)、ポリ
エチレン、ポリオキシメチレン、ポリカーボネート、ポ
リアミド、ポリメチルメタクリレート、ポリ塩化ビニ
ル、ポリエチレンテレフタレート、ポリブチレンテレフ
タレート、ポリフェニレンスルフィド、ポリスルフォ
ン、ポリエーテルスルフォン、ポリエーテルエーテルケ
トン、ポリエーテルケトン、ポリイミド、ポリエーテル
イミド等が挙げられる。
The thermoplastic resin used in the present invention is not particularly limited, and may be selected according to the application. For example, polypropylene, styrene acrylonitrile copolymer, polystyrene, acrylonitrile / butadiene / styrene copolymer (methyl methacrylate / butadiene / styrene, methyl methacrylate / acrylonitrile / butadiene / styrene, acrylonitrile / butadiene / α-methylstyrene / styrene copolymer) Coalesce), polyphenylene ether (including modified polyphenylene oxide), polyethylene, polyoxymethylene, polycarbonate, polyamide, polymethyl methacrylate, polyvinyl chloride, polyethylene terephthalate, polybutylene terephthalate, polyphenylene sulfide, polysulfone, polyether sulfone, Polyether ether ketone, polyether ketone, polyimide, polyether ether De, and the like.

本発明において成形材料中の繊維状補強材の充填率
は、50重量%以上90重量%以下である。50重量%未満で
は本発明の効果である繊維の高充填化と特徴が発揮でき
ず、また後述するマスターバッチとして用いる場合経済
性の面からみても好ましくない。一方90重量%を越える
と単繊維の表面を熱可塑性樹脂で十分被覆することがで
きず好ましくない。
In the present invention, the filling rate of the fibrous reinforcing material in the molding material is from 50% by weight to 90% by weight. If the amount is less than 50% by weight, the effect of the present invention such as high filling of fibers and the characteristics cannot be exhibited, and when it is used as a master batch described later, it is not preferable from the viewpoint of economy. On the other hand, if it exceeds 90% by weight, the surface of the single fiber cannot be sufficiently covered with the thermoplastic resin, which is not preferable.

本発明に係る成形材料は、単繊維(フィラメント)か
ら構成される繊維状補強材が熱可塑性樹脂によって被覆
され、且つ該熱可塑性樹脂が繊維状補強材中に含浸され
ている構成の板状体を得、前記繊維状補強材が充填され
ている該板状体を一定長に切断することにより得られ
る。
The molding material according to the present invention is a plate-like body having a configuration in which a fibrous reinforcing material composed of a single fiber (filament) is coated with a thermoplastic resin, and the thermoplastic resin is impregnated in the fibrous reinforcing material. Is obtained by cutting the plate-like body filled with the fibrous reinforcing material into a predetermined length.

本発明においては、前記繊維状補強材を構成単位であ
る単繊維(フィラメント)の90%以上の表面が、前記熱
可塑性樹脂で被覆されている成形材料を得ることが好ま
しい。
In the present invention, it is preferable to obtain a molding material in which the surface of at least 90% of a single fiber (filament) constituting the fibrous reinforcing material is a constituent unit is covered with the thermoplastic resin.

本発明において、繊維状補強材中に熱可塑性樹脂を含
浸して繊維の構成単位である単繊維(フィラメント)の
表面を熱可塑性樹脂で被覆する方法は、特に限定されな
い。例えば、溶融状態の熱可塑性樹脂を繊維状補強材に
含浸させる溶融含浸法、粉末状の熱可塑性樹脂を空気中
に浮遊、または水などの液体中に懸濁させた状態で含浸
させる流動床法が挙げられる。
In the present invention, the method of impregnating a fibrous reinforcing material with a thermoplastic resin to coat the surface of a single fiber (filament), which is a structural unit of the fiber, with the thermoplastic resin is not particularly limited. For example, a melt impregnation method in which a fibrous reinforcing material is impregnated with a molten thermoplastic resin, a fluidized bed method in which a powdery thermoplastic resin is suspended in air or impregnated in a state of being suspended in a liquid such as water. Is mentioned.

溶融含浸法の代表的な例は特開昭61−229534号、同61
−229535号、同61−229536号及び特願昭61−216253号に
開示されている。
Representative examples of the melt impregnation method are described in JP-A-61-229534 and JP-A-61-229534.
No. 229535, No. 61-229536 and Japanese Patent Application No. 61-216253.

本発明で採用可能な溶融含浸法の一例を第3図に基き
説明する。
An example of the melt impregnation method that can be employed in the present invention will be described with reference to FIG.

複数のボビン1から引き出された長繊維のロービング
2を、整列器3で一方向に整列させた後、張力調整ロー
ル4,5,6を通過させて繊維シート7とする。なお本発明
においては一方向に整列させた繊維シート以外に、多方
向連続繊維を用いることもできる。
After the rovings 2 of long fibers drawn from the plurality of bobbins 1 are aligned in one direction by the aligner 3, they are passed through the tension adjusting rolls 4, 5, and 6 to form the fiber sheet 7. In the present invention, multidirectional continuous fibers can be used in addition to the fiber sheets aligned in one direction.

一方、押出機(図示せず)で加熱溶融した樹脂をダイ
8を経由して、加熱ロール9で加熱される下ベルト10の
表面に塗布する。上ベルト12は加熱ロール11で加熱され
る。
On the other hand, a resin heated and melted by an extruder (not shown) is applied to the surface of a lower belt 10 heated by a heating roll 9 via a die 8. The upper belt 12 is heated by the heating roll 11.

次いで、前記シート7は、下ベルト10と上ベルト12の
間に挾まれた状態で、含浸ロール13の間を、張力をかけ
られながら、通過する。
Next, the sheet 7 passes between the impregnating rolls 13 while being tensioned, while being sandwiched between the lower belt 10 and the upper belt 12.

このようにして得られた連続繊維/熱可塑性樹脂の複
合体14は、そのまま或いは必要により所望の厚みになる
ように必要枚数を積層・熱圧した後、所望の幅に繊維と
平行にスリッタ17でスリットした後、所望の長さに繊維
と直角方向に切断機18で切断することにより、角形状の
成形材料20を得ることができる。なお第3図において、
15,16は引取用ロールである。
The continuous fiber / thermoplastic resin composite 14 thus obtained is laminated or hot-pressed as it is or, if necessary, so as to have a desired thickness. Then, by cutting the fiber into a desired length in a direction perpendicular to the fiber with a cutting machine 18, a square shaped molding material 20 can be obtained. In FIG. 3,
15 and 16 are take-up rolls.

上記積層・熱圧する方法としては、例えば当該複合体
14の表面を熱可塑性樹脂の軟化点以上に加熱後積層する
か、或いは積層後加熱炉内で当該樹脂の軟化点以上に加
熱する。次いで当該複合体14を冷ニップロール間を通過
させる等して加圧下に当該樹脂の固化温度以下まで冷却
する。
As the method of laminating and hot pressing, for example, the composite
The surface of No. 14 is heated to a temperature higher than the softening point of the thermoplastic resin and then laminated, or is heated in a heating furnace after the lamination to a temperature higher than the softening point of the resin. Next, the composite 14 is cooled to a temperature below the solidification temperature of the resin under pressure, for example, by passing the composite between cold nip rolls.

このようにして得られた成形材料は、そのまま、或い
は所望の繊維充填率になるように繊維未強化熱可塑性樹
脂とドライブレンドすることにより、所謂マスターバッ
チとして用いることにより、射出成形、押出成形に供せ
られる。なお当該成形材料は、上記射出成形、押出成形
以外に、例えば圧縮成形にも適用できる。この圧縮成形
に適用する場合においても、成形材料の形状が板状体、
即ち鱗片状であるから金型との密着が良い。また比表面
積が大きいため、材料中の樹脂溶融時間が早く、従来法
と比較して短時間に成形ができる。この場合従来の成形
材料が通常円筒状であるのに対し、当該材料は鱗片状で
あり、金型上での位置設定が容易であるという副次的効
果がある。
The molding material thus obtained is used as it is or as a so-called master batch by dry blending with a fiber-reinforced thermoplastic resin so as to have a desired fiber filling ratio, so that injection molding and extrusion molding can be performed. Offered. The molding material can be applied to, for example, compression molding in addition to the injection molding and extrusion molding. Even when applied to this compression molding, the shape of the molding material is a plate,
That is, since it has a scale shape, it has good adhesion to the mold. In addition, since the specific surface area is large, the melting time of the resin in the material is short, and molding can be performed in a shorter time than in the conventional method. In this case, while the conventional molding material is usually in a cylindrical shape, the material is in the form of a scale and has a secondary effect that the position setting on the mold is easy.

〔実施例〕〔Example〕

以下、本発明の実施例について説明するが、本発明の
範囲がこれらの実施例によって制限的に解されるもので
はない。
Hereinafter, examples of the present invention will be described, but the scope of the present invention is not limited to these examples.

実施例1 第3図に示す装置を用い、ポリプロピレンとガラス繊
維から、次のようにして成形材料を得た。
Example 1 Using the apparatus shown in FIG. 3, a molding material was obtained from polypropylene and glass fiber as follows.

100本のボビン1から引き出されたガラス繊維(繊維
径13μm、収束本数1600本)のロービング2 100本を、
整列器3で一方向に整列させた後、張力調整ロール4,5,
6を通過させて200mm幅の繊維シート7とした。
100 rovings of glass fiber (fiber diameter 13 μm, convergence number 1600) pulled out from 100 bobbins 1
After aligning in one direction by aligner 3, tension adjusting rolls 4, 5,
6 to form a fiber sheet 7 having a width of 200 mm.

一方、押出機(図示せず)で210℃に加熱溶融したポ
リプロピレンをダイ8を経由して、下ベルト用ロール9
(ここでは3本)で220℃に加熱された下ベルト10の表
面に145μmの厚みで塗布した。次いで前記シートを、
下ベルトと、上ベルト用ロール11(ここでは3本)で22
0℃に加熱された上ベルト12に挾んだ状態で、220℃に加
熱された径240mmの含浸ロール13(ここでは3本)の間
を、150kgの張力をかけながら50cm/分の速度で通過させ
た。このようにして得られたガラス繊維ポリプロピレン
複合体14は100℃まで冷却された後、引取用ロール15,16
で引き取った後、スリッタ17で幅5mm間隔でスリットし
た後、切断機18で長さ3mmに切断して厚み0.24mm、ガラ
ス繊維充填率70重量%の成形材料を得た。
On the other hand, the polypropylene heated and melted at 210 ° C. by an extruder (not shown) is passed through a die 8 to a lower belt roll 9.
The coating was applied to the surface of the lower belt 10 heated to 220 ° C. (three in this case) with a thickness of 145 μm. Then the sheet is
22 with lower belt and upper belt roll 11 (3 in this case)
While sandwiching the upper belt 12 heated to 0 ° C., the impregnated rolls 13 (here, three rolls) having a diameter of 240 mm heated to 220 ° C. are applied at a speed of 50 cm / min while applying a tension of 150 kg. Let it pass. The glass fiber-polypropylene composite 14 thus obtained is cooled to 100 ° C.,
After slitting with a slitter 17, slits were made at intervals of 5 mm, and then cut by a cutter 18 into a length of 3 mm to obtain a molding material having a thickness of 0.24 mm and a glass fiber filling rate of 70% by weight.

得られた成形材料の比表面積を求めたところ58cm2/g
であった。
When the specific surface area of the obtained molding material was calculated, 58 cm 2 / g
Met.

次いで当該成形材料57重量部と繊維末強化ポリプロピ
レン樹脂43重量部をドライブレンド後、射出成形機を用
いてガラス繊維充填率40重量%の試験片を作成した。
Next, 57 parts by weight of the molding material and 43 parts by weight of fiber-reinforced polypropylene resin were dry-blended, and then a test piece having a glass fiber filling rate of 40% by weight was prepared using an injection molding machine.

試験片の断面を走査型電子顕微鏡で観察したが、繊維
の分散性は良好であり、また、ブロッキング化等の現像
は見られなかった。
When the cross section of the test piece was observed with a scanning electron microscope, the dispersibility of the fiber was good and no development such as blocking was observed.

また、当該試験片を用いてアイゾット衝撃強度、繊維
長を測定した。結果を表1に示すが、繊維長分布の中央
部が約1.6mmと従来技術品と比較して射出成形時の繊維
の折損が少なく、アイゾット衝撃強度が約2倍となっ
た。
In addition, Izod impact strength and fiber length were measured using the test piece. The results are shown in Table 1. The center of the fiber length distribution was about 1.6 mm, and the fiber breakage during injection molding was smaller than that of the prior art product, and the Izod impact strength was about twice.

比較例1 直径3mm、長さ300mmの穿孔を有するクロスヘッドダイ
内に押出機で溶融したポリプロピレンを供給した。一
方、実施例1で用いたガラス繊維9本を上記穿孔内に通
し、220℃に加熱されたクロスヘッド内を通過させなが
ら溶融ポリプロピレンと接触させて繊維を樹脂で被覆し
た。
Comparative Example 1 A polypropylene melted by an extruder was fed into a crosshead die having a hole having a diameter of 3 mm and a length of 300 mm. On the other hand, nine glass fibers used in Example 1 were passed through the perforations, and were passed through a crosshead heated to 220 ° C. and were brought into contact with molten polypropylene to coat the fibers with a resin.

次いで100℃以下に冷却して引き取った後、長さ3mmに
切断して、直径3mm、ガラス繊維充填率50重量%の円柱
状を有する成形材料を得た。得られた成形材料の比表面
積を求めたところ16cm2/gであった。
Next, after cooling to 100 ° C. or lower, the product was cut into a length of 3 mm, and a cylindrical molding material having a diameter of 3 mm and a glass fiber filling rate of 50% by weight was obtained. When the specific surface area of the obtained molding material was determined, it was 16 cm 2 / g.

次いで得られた成形材料を表1に示すようにドライブ
レンド後、実施例1で用いた射出成形機によってガラス
繊維充填率40重量%の試験片を作成した。試験片の断面
を走査型電子顕微鏡で観察したが、繊維の分散性が不十
分であり、またブロッキング化の現象が観察された。
Next, the obtained molding material was dry-blended as shown in Table 1, and a test piece having a glass fiber filling rate of 40% by weight was prepared by the injection molding machine used in Example 1. When the cross section of the test piece was observed with a scanning electron microscope, the dispersibility of the fibers was insufficient and the phenomenon of blocking was observed.

また、当該試験片を用いてアイゾット衝撃強度、繊維
長を測定した。結果を表1に示すが、繊維長分布の中央
部が約0.6mmと実施例1と比較して射出成形時の繊維折
損が激しく、その結果アイゾット衝撃強度も大きく低下
した。
In addition, Izod impact strength and fiber length were measured using the test piece. The results are shown in Table 1. As shown in Table 1, the center of the fiber length distribution was about 0.6 mm, and the fiber breakage during injection molding was more severe than that in Example 1. As a result, the Izod impact strength was greatly reduced.

比較例2 実施例1と同様に処理して得たガラス繊維複合体14を
5枚重ね、200℃の加熱ロール1対の間を通過させて50k
g/cmの線圧で熱圧した後、実施例1と同様に処理して長
さ3mm、厚み1.20mm、幅5mm、ガラス充填率70重量%の成
形材料を得た。当該成形材料の比表面積は17cm2/gであ
った。
Comparative Example 2 Five glass fiber composites 14 obtained by treating in the same manner as in Example 1 were stacked, and passed through a pair of 200 ° C. heating rolls for 50 k.
After hot pressing with a linear pressure of g / cm, the same treatment as in Example 1 was performed to obtain a molding material having a length of 3 mm, a thickness of 1.20 mm, a width of 5 mm and a glass filling rate of 70% by weight. The specific surface area of the molding material was 17 cm 2 / g.

次いで実施例1と同様にドライブレンドした後、射出
成形してガラス繊維充填率40重量%の試験片を作成し
た。
Then, after dry-blending in the same manner as in Example 1, injection molding was performed to prepare a test piece having a glass fiber filling rate of 40% by weight.

この試験片の断面を走査型電子顕微鏡で観察したが、
繊維がかなりブロッキング化しており、分散不良であっ
た。
The cross section of this test piece was observed with a scanning electron microscope.
The fibers were considerably blocked and poorly dispersed.

また、当該試験片を用いてアイゾット衝撃強度、繊維
長を測定した。結果を表1に示すが、繊維長分布の中央
部が約0.7mmと成形時の折損が激しく、アイゾット衝撃
強度も低下した。
In addition, Izod impact strength and fiber length were measured using the test piece. The results are shown in Table 1. The center of the fiber length distribution was about 0.7 mm, which was severely broken during molding, and the Izod impact strength was also reduced.

実施例2〜4 実施例1において、表1に示す繊維、樹脂に代えて、
実施例1と同様にして複合体を得た。
Examples 2 to 4 In Example 1, instead of the fibers and resins shown in Table 1,
A composite was obtained in the same manner as in Example 1.

次いで、幅5mmにスリットした後、表1に示す長さに
切断して成形材料を得た。次いで表1に示す割合で繊維
末強化樹脂とドライブレンド後、射出成形して試験片を
得た。
Next, after slitting to a width of 5 mm, the material was cut to a length shown in Table 1 to obtain a molding material. Next, after dry blending with the fiber powder reinforced resin at the ratios shown in Table 1, injection molding was performed to obtain test pieces.

試験片の断面を走査型電子顕微鏡で観察したが、繊維
の分散性は良好であり、またブロッキング化の現象は見
られなかった。
When the cross section of the test piece was observed with a scanning electron microscope, the dispersibility of the fiber was good, and no phenomenon of blocking was observed.

この試験片について、繊維長、アイゾット衝撃強度を
実施例1と同様にして測定した。結果を表1に示す。
For this test piece, the fiber length and Izod impact strength were measured in the same manner as in Example 1. Table 1 shows the results.

実施例5〜10 実施例1において、表2に示す繊維、樹脂に代えて、
実施例1と同様にして複合体を得た。
Examples 5 to 10 In Example 1, instead of the fibers and resins shown in Table 2,
A composite was obtained in the same manner as in Example 1.

次いで、幅5mmにスリットした後、表2に示す長さに
切断して成形材料を得た。次いで表2に示す割合で繊維
末強化樹脂とドライブレンド後、射出成形して試験片を
得た。
Next, after slitting to a width of 5 mm, the material was cut to a length shown in Table 2 to obtain a molding material. Next, after dry blending with the fiber powder reinforced resin at the ratio shown in Table 2, injection molding was performed to obtain a test piece.

試験片の断面を走査型電子顕微鏡で観察したが、繊維
の分散性は良好であり、またブロッキング化等の現象は
見られなかった。
When the cross section of the test piece was observed with a scanning electron microscope, the dispersibility of the fiber was good and no phenomenon such as blocking was observed.

この試験片について、繊維長、アイゾット衝撃強度を
実施例1と同様にして測定したところ、実施例1と同様
な結果が得られた。
When the fiber length and Izod impact strength of this test piece were measured in the same manner as in Example 1, the same results as in Example 1 were obtained.

実施例11 実施例9で得た成形材料を、PEEKとドライブレンドし
て繊維充填率が30%になるように調整した。このドライ
ブレンド物を通常の押出成形機を用いて、直径30mmφの
丸棒の試験片を得た。
Example 11 The molding material obtained in Example 9 was dry-blended with PEEK to adjust the fiber filling rate to 30%. Using a dry extruder, a test piece of a round bar having a diameter of 30 mmφ was obtained from this dry blend.

この試験片の断面を走査型電子顕微鏡で観察したが、
繊維の分散性は良好であり、またブロッキング化等の現
象は見られなかった。
The cross section of this test piece was observed with a scanning electron microscope.
The dispersibility of the fiber was good, and no phenomenon such as blocking was observed.

実施例12 離型剤(FREKOTE44;米国FREKOTE Inc.製)を塗布した
第4図に示す雌金型30内に実施例1で得た成形材料20を
300gを均一に置いた後、上記離型剤を塗布した雄金型31
をセットした。次いで300℃に加熱した加熱炉内に上記
金型を金型温度温度が230℃になる迄放置した後、素早
く常温の加圧板を有する圧縮成形機内に移し、50Kg/cm2
の圧力で20分間加熱して、300×300×2.0mmの成形品を
得た。
Example 12 The molding material 20 obtained in Example 1 was placed in a female mold 30 shown in FIG. 4 to which a release agent (FREKOTE44; manufactured by FREKOTE Inc., USA) was applied.
After placing 300g uniformly, the male mold 31 coated with the above release agent
Was set. Next, after leaving the mold in a heating furnace heated to 300 ° C. until the mold temperature reached 230 ° C., the mold was quickly transferred to a compression molding machine having a normal-temperature pressing plate, and 50 kg / cm 2.
For 20 minutes to obtain a molded product of 300 × 300 × 2.0 mm.

成形品の表面を肉眼で観察したが、繊維が表面に浮き
出ることもなく、良好に繊維が分散しており、良好な表
面光沢を有していた。
The surface of the molded article was observed with the naked eye, but the fibers were not dispersed on the surface, the fibers were well dispersed, and the surface had good surface gloss.

〔発明の効果〕 本発明によれば、繊維状補強材を高濃度に充填してい
るにも拘らず、成形時の繊維分散製が良好であり、繊維
の折損や破断が少なく、機械強度、特に衝撃強度が大幅
に向上した成形品が得られる成形材料を提供することが
できる。
[Effects of the Invention] According to the present invention, despite the fact that the fibrous reinforcing material is filled at a high concentration, the fiber dispersion during molding is good, the fiber breakage or breakage is small, the mechanical strength, In particular, it is possible to provide a molding material from which a molded article having significantly improved impact strength can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の成形材料の構造の一例を示す斜視図、
第2図は成形材料の部分拡大図、第3図は本発明の成形
材料を製造する装置の一例を示す概略図、第4図は本発
明が適用される圧縮成形用の金型の一例を示す斜視図で
ある。 20:成形材料 21:熱可塑性樹脂 22:単繊維 30:雌金型 31:雄金型
FIG. 1 is a perspective view showing an example of the structure of the molding material of the present invention,
FIG. 2 is a partially enlarged view of the molding material, FIG. 3 is a schematic diagram showing an example of an apparatus for producing the molding material of the present invention, and FIG. 4 is an example of a compression molding die to which the present invention is applied. FIG. 20: Molding material 21: Thermoplastic resin 22: Single fiber 30: Female mold 31: Male mold

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B29K 309:08 (72)発明者 丸子 千明 神奈川県鎌倉市大船3―11―4 (56)参考文献 特開 平1−214408(JP,A)──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code Agency reference number FI Technical indication B29K 309: 08 (72) Inventor Chiaki Maruko 3-11-4 Ofuna, Kamakura City, Kanagawa Prefecture (56) Reference Document JP-A-1-214408 (JP, A)

Claims (10)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】単繊維(フィラメント)から構成される繊
維状補強材が熱可塑性樹脂によって被覆され、且つ該熱
可塑性樹脂が繊維状補強材中に含浸されている構成の板
状体を得、前記繊維状補強材が充填されている該板状体
を切断して得られる成形材料において、 (i)該成形材料に対する繊維状補強材の充填率が50重
量%以上90重量%以下、 (ii)該繊維状補強材の長さが1〜3mm、 (iii)該板状体の少なくとも一辺が1mm以下、 (iv)該成形材料の比表面積が20cm2/g以上であること
を特徴とする成形材料。
A fibrous reinforcing material composed of a single fiber (filament) is coated with a thermoplastic resin, and a plate-like body having a configuration in which the thermoplastic resin is impregnated in the fibrous reinforcing material is obtained. In a molding material obtained by cutting the plate-like body filled with the fibrous reinforcing material, (i) a filling rate of the fibrous reinforcing material with respect to the molding material is 50% by weight or more and 90% by weight or less; ) The length of the fibrous reinforcing material is 1 to 3 mm, (iii) at least one side of the plate-like body is 1 mm or less, and (iv) the specific surface area of the molding material is 20 cm 2 / g or more. Molding material.
【請求項2】繊維状補強材がガラス繊維であることを特
徴とする請求項1記載の成形材料。
2. The molding material according to claim 1, wherein the fibrous reinforcing material is glass fiber.
【請求項3】繊維状補強材が炭素繊維であることを特徴
とする請求項1記載の成形材料。
3. The molding material according to claim 1, wherein the fibrous reinforcing material is carbon fiber.
【請求項4】繊維状補強材の充填率が60重量%以上90重
量%以下であることを特徴とする請求項1、2又は3記
載の成形材料。
4. The molding material according to claim 1, wherein the filling rate of the fibrous reinforcing material is 60% by weight or more and 90% by weight or less.
【請求項5】繊維状補強材の充填率が70重量%以上90重
量%以下であることを特徴とする請求項4記載の成形材
料。
5. The molding material according to claim 4, wherein the filling rate of the fibrous reinforcing material is 70% by weight or more and 90% by weight or less.
【請求項6】板状体の少なくとも一辺が0.5mm未満であ
ることを特徴とする請求項1,2,3,4又は5記載の成形材
料。
6. The molding material according to claim 1, wherein at least one side of the plate is less than 0.5 mm.
【請求項7】成形材料の比表面積が30cm2/g以上である
ことを特徴とする請求項1,2,3,4,5又は6記載の成形材
料。
7. The molding material according to claim 1, wherein the specific surface area of the molding material is 30 cm 2 / g or more.
【請求項8】成形材料の比表面積が40cm2/g以上である
ことを特徴とする請求項7記載の成形材料。
8. The molding material according to claim 7, wherein the specific surface area of the molding material is 40 cm 2 / g or more.
【請求項9】成形材料が射出成形に用いられることを特
徴とする請求項1、2、3、4、5、6、7又は8記載
の成形材料。
9. The molding material according to claim 1, wherein the molding material is used for injection molding.
【請求項10】成形材料が押出成形に用いられることを
特徴とする請求項1、2、3、4、5、6、7又は8記
載の成形材料。
10. The molding material according to claim 1, wherein the molding material is used for extrusion molding.
JP21437289A 1988-09-20 1989-08-21 Molding material Expired - Fee Related JP2646027B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21437289A JP2646027B2 (en) 1988-09-20 1989-08-21 Molding material

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP63-237261 1988-09-20
JP23726188 1988-09-20
JP21437289A JP2646027B2 (en) 1988-09-20 1989-08-21 Molding material

Publications (2)

Publication Number Publication Date
JPH02167704A JPH02167704A (en) 1990-06-28
JP2646027B2 true JP2646027B2 (en) 1997-08-25

Family

ID=26520282

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21437289A Expired - Fee Related JP2646027B2 (en) 1988-09-20 1989-08-21 Molding material

Country Status (1)

Country Link
JP (1) JP2646027B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006097006A (en) * 2004-08-31 2006-04-13 Showa Denko Kk Method for producing electrically conductive resin composition and application thereof
DE502004010774D1 (en) * 2004-10-08 2010-04-01 Sgl Carbon Se POLYMER-LINKED FIBER LAYERS

Also Published As

Publication number Publication date
JPH02167704A (en) 1990-06-28

Similar Documents

Publication Publication Date Title
JP2569380B2 (en) Fiber reinforced molded product
KR920001646B1 (en) Maruko chiaki
EP2716433B1 (en) Method for manufacturing compact with sustained isotropy
US9353231B2 (en) Composite base material
EP3638726B1 (en) Method of producing a carbon fiber reinforced molding compound
JPS6337694B2 (en)
EP3195995B1 (en) Production method for fiber-reinforced thermoplastic resin composite material
JP5608818B2 (en) Carbon fiber composite material, molded product using the same, and production method thereof
JP2646027B2 (en) Molding material
JP2829323B2 (en) Equipment for manufacturing fiber-reinforced resin molding materials
JP2623282B2 (en) Molding material
JPH10264152A (en) Manufacture of fiber reinforced resin pellet
JP2646028B2 (en) Molding materials and mixtures thereof
JP2646029B2 (en) Molding materials and mixtures thereof
JPH0550434A (en) Continuous preparation of rod-shaped fiber-reinforced resin material and apparatus thereof
JP3234262B2 (en) Method for producing fiber-reinforced thermoplastic resin structure
JPH03179035A (en) Molding material and its mixture
JPS61229536A (en) Method and apparatus for producing fiber-reinforced resin sheet
JPH08309748A (en) Molding material
JPH03179034A (en) Molding material and its mixture
JPS58211415A (en) Manufacture of resin molding material
JPH03179033A (en) Molding material and its mixture
JPH03179032A (en) Molding material and its mixture
WO1992011986A1 (en) Method and device for continuously forming rod-like fiber-reinforced resin material
JP2717831B2 (en) Injection molding material

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees