JPS58211415A - Manufacture of resin molding material - Google Patents

Manufacture of resin molding material

Info

Publication number
JPS58211415A
JPS58211415A JP57094678A JP9467882A JPS58211415A JP S58211415 A JPS58211415 A JP S58211415A JP 57094678 A JP57094678 A JP 57094678A JP 9467882 A JP9467882 A JP 9467882A JP S58211415 A JPS58211415 A JP S58211415A
Authority
JP
Japan
Prior art keywords
sheet
resin
fiber
molding material
fiber content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57094678A
Other languages
Japanese (ja)
Inventor
Yusuke Matsushita
雄介 松下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP57094678A priority Critical patent/JPS58211415A/en
Publication of JPS58211415A publication Critical patent/JPS58211415A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain molding material with high fiber content by a method wherein composite sheet integrally fixed continuous unidirectionally reinforced fiber aggregate sheet with thermoplastic resin sheet so as to realize to have a desired fiber content is slitted and then past through a heating die and, after being cooled and solidified, cut into pieces with a predetermined length. CONSTITUTION:The continuous unidirectionally reinforced fiber aggregate sheet 1 is sticked to the resin sheets supplied from resin sheet rolls 4 by means of a pair of nip rolls in order to obtain the composite sheet 6. In this case, the ratio of said aggregate sheet to said resin sheet is 70-30:30-70. Next, said composite sheet is slitted by means of a slitter 7 into slit sheets, which are past through the through hole of the heating die 8 in order to melt the resin and shaped into a desired figure with the solidification by cooling and then cut with a cutter 9. In such a manner as described above, the molding material with high fiber content is obtained.

Description

【発明の詳細な説明】 本発明は、強化繊維含有率が高くて繊維長及びその配列
方向を任意に変えうる繊維強化熱可塑性樹脂成形用材料
を連続的にかつ生産性よく製造する方法に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for continuously and efficiently producing a fiber-reinforced thermoplastic resin molding material that has a high content of reinforcing fibers and can arbitrarily change the fiber length and direction of arrangement thereof. It is.

従来熱可塑性樹脂は工業用途等へのエンシュアリングマ
テリアルとして好ましい特性を有しているが、耐熱性、
収縮率、剛性などの点で不十分な場合もあり、このよう
な使用目的に対して欠点となる熱可塑性樹脂の性能をカ
バーするために、炭素繊維、ガラス繊維、アラミド繊維
などの強化材によって改質し、機械的特性、耐熱性、成
形収縮率等が著しく向上した繊維強化熱可塑性樹脂とし
てエンジニアリングプラスチックの一部門を形成するま
でに発展してきている。
Conventionally, thermoplastic resins have favorable properties as ensuring materials for industrial applications, etc., but they lack heat resistance,
In order to compensate for the disadvantages of thermoplastic resins, which may be insufficient in terms of shrinkage rate, rigidity, etc., for such purposes, reinforcing materials such as carbon fibers, glass fibers, and aramid fibers are used. It has evolved to the point where it has become a category of engineering plastics as a modified fiber-reinforced thermoplastic resin with significantly improved mechanical properties, heat resistance, mold shrinkage rate, etc.

繊維強化熱可塑性樹脂成形用材料の一つの形態として例
えばペレットがあるが、その主な製造方法としては(1
)樹脂と強化短繊維とを押出機により混練し、ダイスか
ら押出したストランドを冷却固化層、切断してペレット
化する方法、″(2)樹脂を含浸させた強化繊維のロー
ビングをカントした繊維含有率の高いペレットと非強化
ベレットとを混合したブレンドベレットとを押出機によ
り溶融混練し、ダイスから押出したストランドを冷却固
化層、切断してペレット化する方法などがあるがこれら
の方法はいずれも押出機のダイスから熱溶融したストラ
ンドを引取りながら、冷却固化してペレット状にカット
する方法であり、か又る方法では強化繊維含有率を高く
すると、溶融状態のストランド切れや形状不良が発生し
易(なり、歩留低下や成形不良なペレットの発生等の原
因となる。これは溶融した粘性のある樹脂がストランド
の形態保持性に効果があり、かつ引取張力に対しても延
展性を有するために、ストランド切れ防止の働きをして
いるからであり、強化繊維含有率が高くなり、樹脂含有
率がある水準以下になると、前記の異常が発生すること
になる。このために成形材料のエンジニアリングマテリ
アルとしての要求性能に対応して繊維含有率を高めて性
能の向上を図ることは、前記の製造工程におけるトラブ
ルの故に難しく、現状では繊維含有率30〜40重量%
が限度とされている。また製造プロセスにおいても、前
者の場合繊維カット、樹脂と繊維のブレンド、押出機混
線、ダイス押出、冷却固化。
For example, pellets are one form of fiber-reinforced thermoplastic resin molding material, and the main manufacturing method is (1)
) A method in which resin and reinforcing short fibers are kneaded in an extruder, the strands extruded from a die are cooled and solidified, and then cut into pellets, ``(2) Fiber containing canted rovings of reinforcing fibers impregnated with resin. There are methods such as melt-kneading blended pellets, which are a mixture of high-strength pellets and non-reinforced pellets, using an extruder, extruding the strands from a die into a cooling solidification layer, and cutting the strands into pellets. This is a method in which hot molten strands are taken from the die of an extruder, cooled and solidified, and then cut into pellets.In the Kamata method, when the reinforcing fiber content is increased, the molten strands break or become defective. This is because the molten viscous resin is effective in retaining the shape of the strand, and also has good ductility under the tension. This is because the reinforcing fiber content increases and the resin content falls below a certain level, causing the above-mentioned abnormality.For this reason, the molding material It is difficult to improve performance by increasing the fiber content to meet the required performance as an engineering material due to the troubles in the manufacturing process, and currently the fiber content is 30 to 40% by weight.
is considered to be the limit. In addition, in the manufacturing process, in the case of the former, fiber cutting, blending of resin and fiber, extruder mixing, die extrusion, and cooling solidification are performed.

ペレットのカットの6エ程であり、后者の場合は、繊維
の樹脂含浸、繊維カット、樹脂含浸ペレットと非強化ペ
レットのブレンド、押出機混練、ダイス押出、冷却固化
、ペレットカットの8工程であり、両者とも非連続工程
のうえに工程数も多く、コスト高につながることになる
There are 6 steps of pellet cutting, and in the latter case, 8 steps of resin impregnation of fibers, fiber cutting, blending of resin-impregnated pellets and non-reinforced pellets, extruder kneading, die extrusion, cooling solidification, and pellet cutting. However, both involve discontinuous processes and a large number of processes, leading to high costs.

本発明はか匁る問題点を解決しようとするものであり、
繊維含有率の高いペレット等の成形用材料を連続的にか
つ高生産性で製造する方法に関するものである。
The present invention attempts to solve the following problems,
The present invention relates to a method for continuously and highly productively producing molding materials such as pellets with a high fiber content.

その要旨は一方向のシート状連続強化繊維集合体と、熱
可塑性樹脂シートとを所望の繊維含有率に固着一体化し
た複合シートをスリンター等によって所定の巾にスリッ
ト状物、次いで該樹脂の融点あるいは軟化点以上に加熱
したダイスに該スリット状物を通過させ、冷却固化して
ダイスの穴形状に賦型した棒状物をカッターによって所
定の長さにカントして繊維強化成形用材料を得るもので
あり、製造プロセスは固着のための樹脂含浸等の前処理
、繊維と樹脂の固着。
The gist is that a composite sheet in which a unidirectional sheet-like continuous reinforcing fiber aggregate and a thermoplastic resin sheet are fixed and integrated to a desired fiber content is slit into a predetermined width using a slinter, etc., and then the melting point of the resin is Alternatively, a fiber-reinforced molding material is obtained by passing the slit-like material through a die heated above the softening point, cooling and solidifying the rod-like material, which is shaped into the hole shape of the die and cut into a predetermined length with a cutter. The manufacturing process involves pretreatment such as resin impregnation for fixation, and fixation of the fiber and resin.

スリット、ダイス賦型、冷却固化、カットの連続した6
エ程である。
Continuous 6 steps of slitting, die forming, cooling solidification, and cutting
It's about E.

このようにして得られた該成形材料は射出成形、押出し
成形あるいは圧縮成形などの成形方法によって高性能の
複合成形物を提供することが可能であり、車輌関係の構
造部材あるいは工作機械部品など多方面に亘って適用し
うるものである。
The molding material obtained in this way can be used to provide high-performance composite molded products by molding methods such as injection molding, extrusion molding, or compression molding, and can be used for a variety of purposes such as vehicle-related structural members and machine tool parts. It can be applied in many areas.

本発明に用いられる樹脂としては、ポリエチレン、ポリ
プロピレン等のポリオレフィン類。
The resin used in the present invention includes polyolefins such as polyethylene and polypropylene.

ポリエチレンテレフタレート、ポリブチレンテレフタレ
ート等の飽和ポリエステル類、ナイロン66、ナイロン
6、ナイロン12等のポリアミ)” m 脂、ポリビス
フェノールAカーボネート等のポリカーボネート類、ポ
リスルホン、ポリエーテルスルホン等のポリスルホン系
af!、ホlJフェニレンサルファイド、ホlJエーテ
ルエーテルケトンなどがあり、これらの樹脂の分子構造
的あるいは結晶構造的改質タイプも適用可能である。
Saturated polyesters such as polyethylene terephthalate and polybutylene terephthalate, polyamides such as nylon 66, nylon 6 and nylon 12), polycarbonates such as polybisphenol A carbonate, polysulfones such as polysulfone and polyethersulfone, Examples include lJ phenylene sulfide and holJ ether ether ketone, and molecular or crystal structure modified types of these resins are also applicable.

次に強化繊維集合体と樹脂シートを固着一体化する方法
としては、 (1)樹脂溶液に含浸した強化繊維を固着する方法 (2)溶剤単独液に含浸した強化繊維を熱可塑性フィル
ム等に溶着する方法 (3)ホットメルト樹脂液に強化繊維を含浸し固着する
方法 (4)溶融状の樹脂シートに強化繊維を固着する方法 (5)強化繊維を加熱して樹脂シートに固着する方法な
どがある。固着一体化の形態には樹脂シートの片面に強
化繊維を固着する場合と、樹脂シートの間に該繊維を固
着する場合がある。
Next, methods for fixing and integrating the reinforcing fiber aggregate and the resin sheet are as follows: (1) Fixing the reinforcing fibers impregnated in a resin solution (2) Welding the reinforcing fibers impregnated in a solvent alone to a thermoplastic film, etc. (3) Method of impregnating reinforcing fibers in hot melt resin liquid and fixing them. (4) Method of fixing reinforcing fibers to a molten resin sheet. (5) Method of fixing reinforcing fibers to a resin sheet by heating. be. There are two types of fixation and integration: reinforcing fibers are fixed to one side of a resin sheet, and reinforcing fibers are fixed between resin sheets.

以下図面に従って本発明の方法を詳細に説明 ・する。The method of the present invention will be explained in detail below with reference to the drawings.

第1図は本発明の方法を実施する場合の装置の一例の概
略図を示すものである。
FIG. 1 shows a schematic diagram of an example of an apparatus for carrying out the method of the present invention.

はy一方向に平行で互に接したシート状強化繊維集合体
(1)を一定速度で回転する繊維供給口−ル対(2)に
通せしめたあと、溶剤によって溶解した樹脂液の入った
浸漬槽(3)に浸漬して樹脂を含浸せしめる。樹脂を含
浸した該集合体を樹脂シートロール(4)から供給する
樹脂シートにニップロール対(5)によってニップし貼
着させて固着一体化した複合シート(6)となる。次い
で該複合シートをスリッター(7)によって連続的にス
リット状物となし、引続き通過孔を有する加熱したダイ
ス(8)に該スリット状物を1本づつ通して、樹脂を溶
融せしめ冷却固化によって所望の断面形状に賦型したあ
と、カンタ−(9)でカットした成形材料をホンパー(
1のに供給する連続装置である。
The sheet-shaped reinforcing fiber aggregate (1), which is parallel to the y direction and in contact with each other, is passed through the fiber supply port pair (2) that rotates at a constant speed, and then the resin liquid dissolved in the solvent is poured It is immersed in a dipping tank (3) to be impregnated with resin. The resin-impregnated aggregate is nipped and adhered to a resin sheet supplied from a resin sheet roll (4) by a pair of nip rolls (5) to form a composite sheet (6) that is fixed and integrated. Next, the composite sheet is continuously formed into slits using a slitter (7), and the slits are then passed one by one through a heated die (8) having passage holes to melt the resin and solidify it as desired. After shaping into the cross-sectional shape of
It is a continuous device that supplies 1.

以上に説明した如(、本発明によれば、強化繊維集合体
と樹脂シートの供給率によって繊維含有率を任意に調節
可能であり、従来の製造方法の如き繊維含有率の制限を
受けることなく、高い繊維含有率を有する成形材料をエ
ンジニアリングマテリアルの要求性能に対応して供給す
ることができる。
As explained above (according to the present invention, the fiber content can be arbitrarily adjusted by changing the supply rate of the reinforcing fiber aggregate and the resin sheet, and is not subject to restrictions on the fiber content as in conventional manufacturing methods). , it is possible to supply molding materials with high fiber content that meet the required performance of engineering materials.

以下実施例により本発明を具体的に説明する。The present invention will be specifically explained below using Examples.

実施例1 共重合ナイロンをメタノール50重量%とトリクロルエ
チレン50重量%の混合溶剤に溶解して樹脂濃度3重量
%の溶液を調整し、この溶液に炭素繊維(フィラメント
数10,000本)のはy平行に配列したシート状炭素
繊維集合体を含浸したあとナイロン66フィルム(厚み
0.05m)に貼着せしめて固着一体化した複合シート
をスリッターによって、rl] 5 ranのスリット
状物にスリットした。引続き該スリット状物を円形孔(
直径1.5mm)を有する270℃に加熱したダイスに
通して樹脂を溶融せしめ、冷風によって冷却固化したの
ち、カッターによって長さ6謔の円形断面を有する成形
材料にカットした。
Example 1 A solution with a resin concentration of 3% by weight was prepared by dissolving copolymerized nylon in a mixed solvent of 50% by weight of methanol and 50% by weight of trichlorethylene, and carbon fibers (10,000 filaments) were added to this solution. The composite sheet, which was impregnated with sheet-like carbon fiber aggregates arranged in parallel to each other and then adhered and integrated with a nylon 66 film (thickness 0.05 m), was slit into slit-like objects of RL] 5 ran using a slitter. . Subsequently, the slit-like material is inserted into a circular hole (
The resin was melted by passing it through a die heated to 270° C. and having a diameter of 1.5 mm, cooled and solidified by cold air, and then cut into a molding material having a circular cross section with a length of 6 cm using a cutter.

か(して得たペレット状材料の繊維含有率は60重量%
であり、この材料を金型に充填して温度280℃、圧カ
フ Kg / cλで5分間プレスして約2■厚の成形
板を得た。
(The fiber content of the pellet-like material obtained is 60% by weight.
This material was filled into a mold and pressed at a temperature of 280° C. and a pressure cuff of Kg/cλ for 5 minutes to obtain a molded plate with a thickness of approximately 2 mm.

次に上記と同様な方法にて厚み0.2mmのナイロン6
6フィルムを使用して得たペレット状材料(繊維含有率
30重量%)と従来の方法による炭素繊維強化ナイロン
66ペレット(繊維含有率30重量%)を上記と同条件
にて成形板を得た。
Next, in the same manner as above, nylon 6 with a thickness of 0.2 mm was
Molded plates were obtained under the same conditions as above using pellet-like material obtained using 66 film (fiber content 30% by weight) and carbon fiber reinforced nylon 66 pellets (fiber content 30% by weight) obtained by the conventional method. .

以上の3種類の平板の特性は表−1の通りである繊維含
有率60重量%成形物の物性は、他に比較して著しく増
大している。
The properties of the above three types of flat plates are shown in Table 1.The physical properties of the molded product with a fiber content of 60% by weight are significantly increased compared to the others.

表−1Table-1

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の方法を実施する場合の装置の一例を側
面図で示すものであり、図中(1)はシート状強化繊維
集合体、(2)は繊維供給ロール対、(3)は浸漬槽、
(4)樹脂シートロール1本もしくは対、(5)は貼着
ロール対、(6)は複合シート調りはスリッター、(8
)はダイス、(9)はカッター、(10)はホッパーを
示す。 特許出願人 三菱レイヨン株式会社 代理人弁理士   1)村 武 敏 第1図 手続補正書(方式) 昭和57年10月り日 特許庁長官 若 杉 和 夫 殿 1 事件の表示 昭和57年特許願第94678号 3 補正をする者 事件との関係  特許出願人 東京都中央区京橋二丁目3番19号 (603)三菱レイヨン株式会社 取締役社長  金 澤 脩 三 4代理人 東京都港区虎ノ門二丁目8番1号 昭和57年9月9日 6、補正の対象 ロン66フイルムを使用して得たペレット状材料(繊維
含有率30蓋量%)と従来の方法による炭素繊維強化ナ
イロン66ペレット(繊維含有率30重量%)を上記と
同条件にて成形板を得た。 以上の3種類の平板の特性は表−1の通りである繊維含
有率60重量%成形物の物性は、他に比較して著しく増
大している。 表−1 4、図面の簡単な説明
FIG. 1 shows a side view of an example of an apparatus for implementing the method of the present invention, in which (1) is a sheet-like reinforcing fiber aggregate, (2) is a pair of fiber supply rolls, and (3) is a sheet-like reinforcing fiber aggregate. is a dipping tank,
(4) One or a pair of resin sheet rolls, (5) a pair of adhesive rolls, (6) a slitter for composite sheeting, (8
) indicates a die, (9) a cutter, and (10) a hopper. Patent applicant Patent attorney representing Mitsubishi Rayon Co., Ltd. 1) Taketoshi Mura Diagram 1 Procedural amendment (formality) October 1980 Commissioner of the Japan Patent Office Kazuo Wakasugi 1 Indication of the case 1988 Patent application no. 94678 No. 3 Relationship with the person making the amendment Patent applicant 2-3-19 Kyobashi, Chuo-ku, Tokyo (603) Osamu Kanazawa, President and CEO of Mitsubishi Rayon Co., Ltd. 34 Agent 2-8 Toranomon, Minato-ku, Tokyo No. 1, September 9, 1980, 6, pellet-like material obtained using ron 66 film (fiber content 30%) and carbon fiber reinforced nylon 66 pellets (fiber content %) obtained by the conventional method. A molded plate was obtained under the same conditions as above. The properties of the above three types of flat plates are shown in Table 1.The physical properties of the molded product with a fiber content of 60% by weight are significantly increased compared to the others. Table-1 4. Brief explanation of the drawings

Claims (1)

【特許請求の範囲】[Claims] 一方向のシート状連続繊維集合体と熱可塑性樹脂シート
とを重量比で前者が70−30 、後者力30−70の
割合にて、固着一体化せしめて、複合シートを形成し、
該複合シートを所定巾のスリット状となし、該スリット
状物を前記熱可塑性樹脂の融点ないしは、軟化点以上の
温度に加熱し、かつ所望の断面形状をしたダイスを通過
させて、棒状物を形成し、該棒状物を所定の長さにカッ
トすることを特徴とする繊維強化熱可塑性樹脂成形用材
料の製造方法。
A unidirectional sheet-like continuous fiber aggregate and a thermoplastic resin sheet are fixed and integrated at a weight ratio of 70-30 for the former and 30-70 for the latter to form a composite sheet,
The composite sheet is formed into a slit of a predetermined width, the slit is heated to a temperature higher than the melting point or softening point of the thermoplastic resin, and passed through a die having a desired cross-sectional shape to form a rod. 1. A method for producing a fiber-reinforced thermoplastic resin molding material, which comprises forming a rod-like material and cutting the rod-like material into a predetermined length.
JP57094678A 1982-06-04 1982-06-04 Manufacture of resin molding material Pending JPS58211415A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57094678A JPS58211415A (en) 1982-06-04 1982-06-04 Manufacture of resin molding material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57094678A JPS58211415A (en) 1982-06-04 1982-06-04 Manufacture of resin molding material

Publications (1)

Publication Number Publication Date
JPS58211415A true JPS58211415A (en) 1983-12-08

Family

ID=14116871

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57094678A Pending JPS58211415A (en) 1982-06-04 1982-06-04 Manufacture of resin molding material

Country Status (1)

Country Link
JP (1) JPS58211415A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0284439A (en) * 1988-01-21 1990-03-26 Gentex Corp Method and device for manufacture of friction material
EP0376472A2 (en) * 1988-11-24 1990-07-04 Toray Industries, Inc. Thermoplastic composite plate material and products molded from the same
US5529652A (en) * 1987-07-11 1996-06-25 Kabushiki Kaisha Kobe Seiko Sho Method of manufacturing continuous fiber-reinforced thermoplastic prepregs
FR2770802A1 (en) * 1997-11-13 1999-05-14 Duqueine PROCESS FOR MOLDING A COMPOSITE PART, COMPOSITE STRUCTURE EMPLOYED IN THIS PROCESS AND HANDLE OBTAINED ACCORDING TO THIS PROCESS
US20130309435A1 (en) * 2012-05-15 2013-11-21 Hexcel Corporation Over-molding of load-bearing composite structures

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5529652A (en) * 1987-07-11 1996-06-25 Kabushiki Kaisha Kobe Seiko Sho Method of manufacturing continuous fiber-reinforced thermoplastic prepregs
JPH0284439A (en) * 1988-01-21 1990-03-26 Gentex Corp Method and device for manufacture of friction material
EP0376472A2 (en) * 1988-11-24 1990-07-04 Toray Industries, Inc. Thermoplastic composite plate material and products molded from the same
FR2770802A1 (en) * 1997-11-13 1999-05-14 Duqueine PROCESS FOR MOLDING A COMPOSITE PART, COMPOSITE STRUCTURE EMPLOYED IN THIS PROCESS AND HANDLE OBTAINED ACCORDING TO THIS PROCESS
EP0916477A1 (en) * 1997-11-13 1999-05-19 Gilles Duqueine Method for moulding a composite object, composite structure used in said process and apparatus for obtaining such composite structure
WO1999025540A1 (en) * 1997-11-13 1999-05-27 Gilles Duqueine Method for moulding a composite part, composite structure used in said method and device for obtaining said composite structure
US20130309435A1 (en) * 2012-05-15 2013-11-21 Hexcel Corporation Over-molding of load-bearing composite structures
US9393745B2 (en) * 2012-05-15 2016-07-19 Hexcel Corporation Over-molding of load-bearing composite structures

Similar Documents

Publication Publication Date Title
US5529652A (en) Method of manufacturing continuous fiber-reinforced thermoplastic prepregs
JP2569380B2 (en) Fiber reinforced molded product
US5114516A (en) Method for pultruding fiber-reinforced, thermoplastic stock
JP3221749B2 (en) Manufacturing method of composite products
EP0653280B1 (en) Method for producing a fiber reinforced thermoplastic resin foamed product
KR920001646B1 (en) Maruko chiaki
JP5969714B2 (en) Assembly of molding material for injection molding, extrusion molding, or pultrusion molding, carbon fiber reinforced thermoplastic resin pellet, molded body, and method of manufacturing injection molded body
KR960014548B1 (en) Method for molding a liquid crystal resin sheet and molding apparatus thereof
JP2013203941A (en) Carbon fiber prepreg, carbon fiber prepreg tape, carbon fiber-reinforced composite material and automobile part that uses the carbon fiber-reinforced composite material
JPH0371258B2 (en)
JP5059259B2 (en) Long fiber pellet and method and apparatus for producing long fiber pellet
JPS58211415A (en) Manufacture of resin molding material
EP0170245B1 (en) Pellets of fibre-reinforced compositions and methods for producing such pellets
JPH0825200B2 (en) FRTP continuous prepreg manufacturing method and manufacturing apparatus
WO2023115768A1 (en) Continuous fiber-reinforced thermoplastic helmet shell material and preparation method therefor
EP0847845A1 (en) Thermoformable sheets having core layer with unmatted, oriented fibers and fiber-free cap layer
JP7198454B2 (en) Method for producing molding of fiber-reinforced thermoplastic resin
JP2646029B2 (en) Molding materials and mixtures thereof
JP2646027B2 (en) Molding material
JPH1016103A (en) Manufacture of composite material and mat-like composite material
JPH06246740A (en) Granule of fiber-reinforced thermoplastic resin
JP2646028B2 (en) Molding materials and mixtures thereof
WO2022215606A1 (en) Method for producing composite molded article
JPS6260609A (en) Manufacture and molding method of resin coated long fiber bundle
JP5958360B2 (en) Manufacturing method of FRP sheet