JP2006097006A - Method for producing electrically conductive resin composition and application thereof - Google Patents

Method for producing electrically conductive resin composition and application thereof Download PDF

Info

Publication number
JP2006097006A
JP2006097006A JP2005249811A JP2005249811A JP2006097006A JP 2006097006 A JP2006097006 A JP 2006097006A JP 2005249811 A JP2005249811 A JP 2005249811A JP 2005249811 A JP2005249811 A JP 2005249811A JP 2006097006 A JP2006097006 A JP 2006097006A
Authority
JP
Japan
Prior art keywords
carbon fiber
resin composition
conductive resin
vapor
grown carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005249811A
Other languages
Japanese (ja)
Inventor
Takeshi Nagao
勇志 長尾
Tatsuyuki Yamamoto
竜之 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2005249811A priority Critical patent/JP2006097006A/en
Publication of JP2006097006A publication Critical patent/JP2006097006A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To obtain an electrically conductive plastic with an electrically conductive filler dispersed in a polymer, higher in electrical conductivity with the compounding amount of the filler equal to those for conventional such plastics, or having electrical conductivity equivalent to or higher than those of conventional such plastics in a small compounding amount of the filler, or to obtain resin compositions presenting stable electrical conductivity with slight decline in physical properties by various molding processes. <P>SOLUTION: Methods for producing an electrically conductive resin composition are provided, being characterized by comprising blending a molten matrix resin with carbon fiber produced by vapor-phase method with a fiber diameter of 2-500 nm. Preferably, the melt blending is carried out so as to suppress the breakage of the carbon fiber to 20% or less. In the case of conducting the melt blending using a co-rotating twin-screw extruder, the carbon fiber is side-fed, whereas in the case of conducting the melt blending using a batch-type pressure kneader, the carbon fiber is charged after the resin is fully melted. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、導電性フィラーとして気相法炭素繊維を含む導電性樹脂組成物の製造方法に関する。さらに詳しく言えば、気相法炭素繊維の配合量が従来と同等でも、従来のものより優れた導電性を示す樹脂組成物、あるいは気相法炭素繊維の配合量が従来より少なくても、従来のものと同等もしくはそれ以上の導電性を示す樹脂組成物の製造方法及びその方法より得られる組成物の用途に関する。   The present invention relates to a method for producing a conductive resin composition containing vapor grown carbon fiber as a conductive filler. More specifically, even if the compounding amount of the vapor grown carbon fiber is equivalent to the conventional one, even if the resin composition showing the conductivity superior to the conventional one, or the compounding amount of the vapor grown carbon fiber is less than the conventional one, The present invention relates to a method for producing a resin composition exhibiting electrical conductivity equivalent to or higher than that of the above and the use of the composition obtained by the method.

従来、電気絶縁性である熱可塑性樹脂に導電性フィラーを混合し、導電性や帯電防止性などの特性を付与することは古くから行われており、そのために各種導電性フィラーが用いられている。一般に使用される導電性フィラーとしては、カーボンブラック、黒鉛、気相法炭素繊維、炭素繊維等のグラファイト構造を有する炭素材料、金属繊維、金属粉末、金属箔等の金属材料、および金属酸化物、金属をコーティングした無機フィラーなどが挙げられる。   Conventionally, it has been practiced for a long time to mix a conductive filler with an electrically insulating thermoplastic resin to impart properties such as conductivity and antistatic properties, and various conductive fillers have been used for that purpose. . Commonly used conductive fillers include carbon materials having a graphite structure such as carbon black, graphite, vapor grown carbon fiber, carbon fiber, metal materials such as metal fiber, metal powder, metal foil, and metal oxides, Examples include inorganic fillers coated with metals.

これらの中で導電性以外に、環境安定性(耐食性等)、金属粉による電気障害および摺動性(成形加工時の成形機のスクリューの摩耗等)等の問題が少ないとされる炭素系導電性フィラーを使用する試みがなされており、その使用領域は拡大する傾向を見せている。特に、少量の導電性フィラーの混合で高い導電性を得るためには、導電性フィラーの微細化、アスペクト比の増加、比表面積の増加などが有効であることが明らかになってきており、繊維状フィラーの繊維径を小さくし比表面積を大きくしたり(特許文献1等)、比表面積の非常に大きなカーボンブラックや中空炭素フィブリル(カーボンナノチューブ)を使用することが行われている。   Among these, carbon-based conductivity is considered to have few problems such as environmental stability (corrosion resistance, etc.), electrical failure due to metal powder, and slidability (such as wear of the screw of the molding machine during molding). Attempts have been made to use functional fillers, and the range of use has been expanding. In particular, in order to obtain high conductivity by mixing a small amount of conductive filler, it has become clear that refinement of conductive filler, increase in aspect ratio, increase in specific surface area, etc. are effective. In some cases, the fiber diameter of the fibrous filler is reduced to increase the specific surface area (Patent Document 1 or the like), or carbon black or hollow carbon fibrils (carbon nanotubes) having a very large specific surface area are used.

しかしながら、カーボンブラックやカーボンナノチューブは、比表面積が非常に大きい(カーボンブラックの比表面積:800m2/g、カーボンナノチューブの比表面積:250m2/g)。すなわち、単位質量当りの凝集エネルギーが大きいので、溶融樹脂中での凝集力が大きくなり、溶融樹脂中で均一に分散させるためには、高せん断力が必要となる。したがって、カーボンナノチューブの破断が生じたり、分散が凝集を伴ったものとなるため、これらの炭素材料を用いて安定した導電性を得ることは非常に難しい。 However, carbon black and carbon nanotube have a very large specific surface area (specific surface area of carbon black: 800 m 2 / g, specific surface area of carbon nanotube: 250 m 2 / g). That is, since the cohesive energy per unit mass is large, the cohesive force in the molten resin is increased, and a high shear force is required for uniform dispersion in the molten resin. Therefore, the carbon nanotubes are broken or the dispersion is accompanied by agglomeration, and it is very difficult to obtain stable conductivity using these carbon materials.

特許第2641712号明細書Japanese Patent No. 2641712

本発明の目的は、導電性フィラーの極少量の添加で安定した導電性ネットワークを形成すること、詳しくは、導電性フィラーをポリマー中に分散させた導電性プラスチックにおいて、従来と同一の配合量でより導電性に優れたプラスチックを得ることまたは少ない配合量で同等もしくはそれ以上の導電性を有する導電性プラスチックを得ること、及び各成形法で物性低下が少なく、安定した導電性を示す組成物を得ることにある。   An object of the present invention is to form a stable conductive network by adding a very small amount of conductive filler. Specifically, in a conductive plastic in which a conductive filler is dispersed in a polymer, the same blending amount as before is used. To obtain a plastic having superior conductivity or to obtain a conductive plastic having the same or higher conductivity with a small blending amount, and a composition exhibiting stable conductivity with little deterioration in physical properties by each molding method There is to get.

本発明者らは、気相法炭素繊維の少量添加で安定した導電性ネットワークを形成するために、繊維の破断を極力抑え、繊維の分散を良好にする溶融混練法について鋭意検討した結果、溶融樹脂中に特定の気相法炭素繊維を投入することにより、気相法炭素繊維の凝集塊がなく、良好に分散が行われることを見出し、本発明を完成した。
すなわち、本発明は、以下に示す導電性樹脂組成物の製造方法及びその方法より得られた組成物の用途を提供するものである。
In order to form a stable conductive network by adding a small amount of vapor-grown carbon fiber, the present inventors have made extensive studies on a melt-kneading method that suppresses fiber breakage as much as possible and improves fiber dispersion. It has been found that by introducing a specific vapor grown carbon fiber into the resin, there is no aggregate of vapor grown carbon fiber and the dispersion is carried out satisfactorily, and the present invention has been completed.
That is, this invention provides the use of the manufacturing method of the conductive resin composition shown below, and the composition obtained from the method.

[1]溶融状態にあるマトリックス樹脂に、繊維径が2〜500nmの気相法炭素繊維をその破断を20%以下に抑えて混合することを特徴とする導電性樹脂組成物の製造方法。
[2]気相法炭素繊維のアスペクト比が10〜500である前記1に記載の導電性樹脂組成物の製造方法。
[3]気相法炭素繊維の平均繊維径が10〜200nmである前記1に記載の導電性樹脂組成物の製造方法。
[4]気相法炭素繊維の配合量が1〜70質量%である前記1〜3のいずれかに記載の導電性樹脂組成物の製造方法。
[5]マトリックス樹脂が、熱可塑性樹脂及び熱硬化性樹脂の少なくとも1種である前記1〜4のいずれかに記載の導電性樹脂組成物の製造方法。
[6]溶融混合における気相法炭素繊維の破断を15%以下に抑える前記1〜5のいずれかに記載の導電性樹脂組成物の製造方法。
[7]電子顕微鏡による観察で気相法炭素繊維の凝集塊が生じないように溶融混合する前記1〜6のいずれかに記載の導電性樹脂組成物の製造方法。
[8]溶融混合が同方向2軸押出機により行われ、気相法炭素繊維がサイドフィードされる前記1〜7のいずれかに記載の導電性樹脂組成物の製造方法。
[9]溶融混合がバッチ式加圧ニーダーにより行われ、マトリックス樹脂を溶融させた後、気相法炭素繊維を投入する前記1〜7のいずれかに記載の導電性樹脂組成物の製造方法。
[10]前記1〜9のいずれかに記載の方法により得られた導電性樹脂組成物を用いた合成樹脂成形体。
[11]前記1〜9のいずれかに記載の方法により得られた導電性樹脂組成物を用いた電気・電子部品用容器。
[1] A process for producing a conductive resin composition, comprising mixing a matrix resin in a molten state with vapor grown carbon fiber having a fiber diameter of 2 to 500 nm while suppressing breakage to 20% or less.
[2] The method for producing a conductive resin composition as described in 1 above, wherein the aspect ratio of vapor grown carbon fiber is 10 to 500.
[3] The method for producing a conductive resin composition as described in 1 above, wherein the vapor-grown carbon fiber has an average fiber diameter of 10 to 200 nm.
[4] The method for producing a conductive resin composition according to any one of the above items 1 to 3, wherein the compounding amount of the vapor grown carbon fiber is 1 to 70% by mass.
[5] The method for producing a conductive resin composition according to any one of 1 to 4, wherein the matrix resin is at least one of a thermoplastic resin and a thermosetting resin.
[6] The method for producing a conductive resin composition according to any one of 1 to 5 above, wherein the fracture of vapor grown carbon fiber in melt mixing is suppressed to 15% or less.
[7] The method for producing a conductive resin composition according to any one of the above 1 to 6, wherein melt-mixing is performed so that aggregates of vapor-grown carbon fibers are not generated by observation with an electron microscope.
[8] The method for producing a conductive resin composition according to any one of 1 to 7, wherein the melt mixing is performed by a twin-screw extruder in the same direction, and the vapor grown carbon fiber is side-fed.
[9] The method for producing a conductive resin composition according to any one of 1 to 7, wherein the melt mixing is performed by a batch-type pressure kneader, the matrix resin is melted, and then the vapor grown carbon fiber is added.
[10] A synthetic resin molded article using the conductive resin composition obtained by the method according to any one of 1 to 9 above.
[11] A container for electrical / electronic parts using the conductive resin composition obtained by the method according to any one of 1 to 9 above.

カーボンナノチューブはその凝集力が大きいため、高せん断力による混練が必要であり、そのため繊維の破断や凝集を伴った分散が生じて安定的な導電性を得ることが困難であったが、本発明は、溶融状態にあるマトリックス樹脂中に特定の気相法炭素繊維を投入することにより、気相法炭素繊維をできるだけ少ない添加量でマトリックス樹脂中に均一に分散させ、安定した導電性ネットワークを形成したものであり、産業の利用価値は極めて高い。   Since carbon nanotubes have a high cohesive force, kneading with a high shearing force is necessary. Therefore, it has been difficult to obtain stable conductivity due to fiber breakage and dispersion accompanying aggregation. By introducing specific vapor grown carbon fiber into the matrix resin in the molten state, the vapor grown carbon fiber is uniformly dispersed in the matrix resin with the smallest possible addition amount to form a stable conductive network. The industrial utility value is extremely high.

本発明の導電性樹脂組成物の製造方法によれば、成形品からの炭素フィラーの脱離が少なく、樹脂本来が有する衝撃特性を損なわず、高い導電性、耐摺動性、高い熱伝導性、高い強度、高い弾性率、成形時の高い流動性、及び成形品の表面平滑性を有する導電性樹脂組成物を得ることができる。   According to the method for producing a conductive resin composition of the present invention, there is little detachment of the carbon filler from the molded product, the impact characteristics inherent in the resin are not impaired, high conductivity, sliding resistance, and high thermal conductivity. A conductive resin composition having high strength, high elastic modulus, high fluidity during molding, and surface smoothness of the molded product can be obtained.

また、この導電性樹脂組成物から得られる成形品は機械的強度、塗装性、熱安定性、衝撃強度に優れ、かつ導電性、帯電防止性に優れているので、電気電子部品の搬送、電気電子分野の包装用部品やOA機器用部品、静電塗装用の自動車部品など、多くの分野に適用できる。   In addition, the molded product obtained from this conductive resin composition has excellent mechanical strength, paintability, thermal stability, impact strength, and excellent conductivity and antistatic properties. It can be applied to many fields such as electronic packaging parts, OA equipment parts, and automotive parts for electrostatic coating.

本発明に係る導電性樹脂組成物は、溶融状態にあるマトリックス樹脂に、繊維径が2〜500nm、好ましくは3〜200nmの気相法炭素繊維を混合することにより製造することができる。溶融状態にあるマトリックス樹脂に気相法炭素繊維を添加混合することにより、気相法炭素繊維が樹脂中に良好に分散して導電性ネットワークを形成する。   The conductive resin composition according to the present invention can be produced by mixing vapor grown carbon fibers having a fiber diameter of 2 to 500 nm, preferably 3 to 200 nm, with a matrix resin in a molten state. By adding and mixing the vapor grown carbon fiber to the matrix resin in a molten state, the vapor grown carbon fiber is well dispersed in the resin to form a conductive network.

混合は、気相法炭素繊維の破断が極力抑えられるように行うことが好ましい。具体的には、気相法炭素繊維の破断率を20%以下に抑えることが好ましく、15%以下が更に好ましく、10%以下が特に好ましい。破断率は、混合・混練の前後での炭素繊維のアスペクト比(例えば電子顕微鏡SEM観察により測定)を比較することで評価する。   The mixing is preferably performed so that breakage of the vapor grown carbon fiber is suppressed as much as possible. Specifically, the fracture rate of vapor grown carbon fiber is preferably suppressed to 20% or less, more preferably 15% or less, and particularly preferably 10% or less. The breaking rate is evaluated by comparing the aspect ratios of carbon fibers before and after mixing / kneading (for example, measured by observation with an electron microscope SEM).

一般に、熱可塑性樹脂または熱硬化性樹脂に無機フィラーを溶融混練する場合、凝集した無機フィラーに高せん断を加え、無機フィラーを破壊し、微細化して、溶融樹脂中へ無機フィラーを均一に分散させる。高せん断力を発生させる混練機としては、石臼機構を利用したものや、同方向2軸押出機でスクリューエレメント中に高せん断のかかるニーディングディスクを導入したものが数多く使用されている。しかし、このような混練機を使用すると、混練工程中において気相法炭素繊維を破断してしまう。また、せん断力の弱い単軸押出機の場合は、繊維の破断は抑えられるが、繊維の分散が均一にならない。   In general, when an inorganic filler is melt-kneaded into a thermoplastic resin or a thermosetting resin, high shear is applied to the aggregated inorganic filler, the inorganic filler is broken and refined, and the inorganic filler is uniformly dispersed in the molten resin. . As a kneading machine that generates a high shearing force, a machine using a stone mortar mechanism or a machine in which a kneading disk with high shear is introduced into a screw element using a twin screw extruder is used. However, when such a kneader is used, the vapor grown carbon fiber is broken during the kneading step. Further, in the case of a single screw extruder having a weak shearing force, fiber breakage can be suppressed, but fiber dispersion is not uniform.

これに対して、本発明では、混練機によりマトリックス樹脂を溶融させ、その後、溶融樹脂表面に気相法炭素繊維を均一に供給しながら、分散混合及び分配混合し、これにより繊維の破断を抑えつつ、炭素繊維を樹脂中に均一に分散させることができる。混練機としては、繊維の破断を抑えながら均一な分散をはかるために、ニーディングディスクを使用しない同方向2軸押出機、高せん断力がかからず時間をかけて分散させることのできるバッチ式等の加圧ニーダー、特殊なミキシングエレメントを備えた単軸押出機などを使用することができる。   On the other hand, in the present invention, the matrix resin is melted by a kneader, and thereafter, the vapor-grown carbon fiber is uniformly supplied to the surface of the molten resin, and dispersed and distributed and mixed, thereby suppressing fiber breakage. Meanwhile, the carbon fibers can be uniformly dispersed in the resin. As a kneader, in order to achieve uniform dispersion while suppressing fiber breakage, the same-direction twin-screw extruder that does not use a kneading disk, batch type that can be dispersed over time without high shearing force. For example, a pressure kneader such as a single screw extruder equipped with a special mixing element can be used.

同方向2軸押出機を用いる場合は、例えば、樹脂はホッパーから投入し十分溶融した状態にある箇所において、気相法炭素繊維をサイドフィードすることができる。加圧ニーダーを用いる場合は、例えば、予め樹脂をニーダーに入れ十分に溶融した状態にした後、気相法炭素繊維を投入することができる。   When using the same-direction biaxial extruder, for example, the vapor-grown carbon fiber can be side-fed at a location where the resin is introduced from a hopper and is sufficiently melted. In the case of using a pressure kneader, for example, after the resin is previously put in the kneader and sufficiently melted, the vapor grown carbon fiber can be introduced.

溶融状態にないマトリックス樹脂と気相法炭素繊維を混合し、その後樹脂を溶融させて混練した場合には、炭素繊維の樹脂中への分散を行うためには高せん断が必要になる。高せん断をかけると、繊維の破断が生じるため良好な導電性ネットワークが形成されない。   When a matrix resin that is not in a molten state and vapor-grown carbon fiber are mixed and then the resin is melted and kneaded, high shear is required to disperse the carbon fiber in the resin. When high shear is applied, the fiber breaks and a good conductive network is not formed.

本発明で使用する気相法炭素繊維は、嵩比重が0.01〜0.1g/cm3程度のふわふわした状態のものの場合、空気を巻き込みやすいため、通常の単軸押出機や同方向2軸押出機では脱気が難しく、混練機内への導入には困難を伴う。このような場合には、添加導入が容易に行え、かつ繊維の破断を極力抑える混練機として、バッチ式の加圧ニーダーが好ましい。バッチ式加圧ニーダーで混練したものは、固化するまえに単軸押出機に投入して、ペレット化することができる。また、空気を多く含んだ気相法炭素繊維を脱気でき、かつ大量導入が可能な押出機として、例えば往復動単軸スクリュー押出機(コペリオン・ブス社製コ・ニーダー)が使用できる。 The vapor grown carbon fiber used in the present invention has a bulk specific gravity of about 0.01 to 0.1 g / cm 3, so that it is easy to entrain air. Deaeration is difficult with a shaft extruder, and introduction into a kneader is difficult. In such a case, a batch-type pressure kneader is preferable as a kneader in which addition can be easily introduced and fiber breakage is minimized. The material kneaded by the batch type pressure kneader can be put into a single screw extruder and pelletized before solidification. Further, as an extruder capable of degassing vapor-grown carbon fiber containing a large amount of air and capable of introducing a large amount thereof, for example, a reciprocating single-screw extruder (Co-kneader manufactured by Coperion Bus) can be used.

本発明で使用する気相法炭素繊維は、繊維径が2〜500nm、好ましくは3〜200nmである。
また、以下の物性値を有するものが好ましい。
・アスペクト比:10〜500、好ましくは50〜300。一般にはアスペクト比が大きいときは耐衝撃性が大きくなる。アスペクト比が500を超えると繊維同士の絡み合いがおきて導電性の低下、成形時の流動性の低下、さらには耐衝撃性の低下がおきる場合もある。また、アスペクト比が10未満になると、樹脂に配合した場合、導電性が十分に向上しない。
・比表面積:2〜1000m2/g、好ましくは5〜500m2/g、さらに好ましくは10〜250m2/g。
The vapor grown carbon fiber used in the present invention has a fiber diameter of 2 to 500 nm, preferably 3 to 200 nm.
Moreover, what has the following physical-property values is preferable.
Aspect ratio: 10 to 500, preferably 50 to 300. Generally, when the aspect ratio is large, the impact resistance is increased. If the aspect ratio exceeds 500, the fibers may be entangled with each other, resulting in a decrease in conductivity, a decrease in fluidity during molding, and a decrease in impact resistance. On the other hand, when the aspect ratio is less than 10, the conductivity is not sufficiently improved when blended with a resin.
Specific surface area: 2 to 1000 m 2 / g, preferably 5 to 500 m 2 / g, more preferably 10 to 250 m 2 / g.

本発明で用いる気相法炭素繊維は、不活性ガス、かつ高温雰囲気下に、触媒となる鉄と共にガス化された有機化合物を吹き込むことにより製造することができる(特開平7−150419号公報等)。   The vapor grown carbon fiber used in the present invention can be produced by blowing an organic compound gasified with iron as a catalyst in an inert gas and a high temperature atmosphere (Japanese Patent Laid-Open No. 7-150419, etc.). ).

気相法炭素繊維は、製造したままでも、または例えば製造したものを800〜1500℃で熱処理したものでも、あるいは例えば製造したものを2000〜3000℃で黒鉛化処理したもののいずれもが使用可能である。   The vapor-grown carbon fiber can be used as it is produced, for example, what is produced is heat-treated at 800 to 1500 ° C., or what is produced is graphitized at 2000 to 3000 ° C., for example. is there.

気相法炭素繊維を樹脂中に均一に分散するためには、溶融樹脂に対する炭素繊維の濡れ性も重要であり、溶融樹脂と気相法炭素繊維の界面に相当する面積を増すことが不可欠である。濡れ性を向上させる方法としては、例えば、気相法炭素繊維の表面を酸化処理する方法がある。   In order to uniformly disperse the vapor grown carbon fiber in the resin, the wettability of the carbon fiber to the molten resin is also important, and it is essential to increase the area corresponding to the interface between the molten resin and the vapor grown carbon fiber. is there. As a method for improving wettability, for example, there is a method of oxidizing the surface of vapor grown carbon fiber.

本発明においては、ポリマー(マトリックス樹脂)として熱硬化性樹脂および熱可塑性樹脂のどちらも使用することができ、特に制限はない。好ましいマトリックス樹脂は、成形加工時の粘度が低い樹脂であり、具体的には、エンジニアリングプラスチック、スーパーエンジニアリングプラスチック、低分子量プラスチック、熱硬化性樹脂等である。また、高分子量プラスチックでも、成形加工温度を上昇させることが可能な場合は粘度を下げることができるので、好適に使用できる。   In the present invention, both a thermosetting resin and a thermoplastic resin can be used as the polymer (matrix resin), and there is no particular limitation. A preferable matrix resin is a resin having a low viscosity at the time of molding, and specifically, an engineering plastic, a super engineering plastic, a low molecular weight plastic, a thermosetting resin, and the like. Even high molecular weight plastics can be suitably used because the viscosity can be lowered when the molding temperature can be raised.

熱可塑性樹脂としては、成形分野で使用される樹脂であれば特に制限はなく、例えば、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリトリメチレンテレフタレート(PTT)、ポリエチレンナフタレート(PEN)、液晶ポリエステル(LCP)等のポリエステルや、ポリエチレン(PE)、ポリプロピレン(PP)、ポリブテンー1(PB−1)、ポリブチレン等のポリオレフィンや、スチレン系樹脂の他、ポリオキシメチレン(POM)、ポリアミド(PA)、ポリカーボネート(PC),ポリメチレメタクリレート(PMMA)、ポリ塩化ビニル(PVC)、ポリフェニレンエーテル(PPE)、ポリフェニレンスルフィド(PPS)、ポリイミド(PI)、ポリアミドイミド(PAI)、ポリエーテルイミド(PEI)、ポリスルフォン(PSU)、ポリエーテルスルフォン、ポリケトン(PK)、ポリエーテルケトン(PEK)、ポリエーテルエーテルケトン(PEEK)、ポリエーテルケトンケトン(PEKK)、ポリアリレート(PAR)、ポリエーテルニトリル(PEN)、フェノール(ノボラック型など)フェノキシ樹脂、ポリテトラフルオロエチレン(PTFE)などのフッ素系樹脂、更にポリスチレン系、ポリオレフィン系、ポリウレタン系、ポリエステル系、ポリアミド系、ポリブタジエン系、ポリイソプレン系、フッ素系等の熱可塑性エラストマー等やこれらの共重合体、変性体、および2種類以上ブレンドした樹脂でもよい。   The thermoplastic resin is not particularly limited as long as it is a resin used in the molding field. For example, polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polytrimethylene terephthalate (PTT), polyethylene naphthalate (PEN) , Polyesters such as liquid crystal polyester (LCP), polyolefins such as polyethylene (PE), polypropylene (PP), polybutene 1 (PB-1), polybutylene, styrene resins, polyoxymethylene (POM), polyamide ( PA), polycarbonate (PC), polymethylmethacrylate (PMMA), polyvinyl chloride (PVC), polyphenylene ether (PPE), polyphenylene sulfide (PPS), polyimide (PI), polyamideimide (PAI), poly Etherimide (PEI), polysulfone (PSU), polyethersulfone, polyketone (PK), polyetherketone (PEK), polyetheretherketone (PEEK), polyetherketoneketone (PEKK), polyarylate (PAR), Fluorine resins such as polyether nitrile (PEN), phenol (novolak type, etc.) phenoxy resin, polytetrafluoroethylene (PTFE), polystyrene, polyolefin, polyurethane, polyester, polyamide, polybutadiene, polyisoprene It may be a thermoplastic elastomer such as a fluorine-based resin or a fluorine-based resin, a copolymer, a modified material thereof, or a resin obtained by blending two or more types.

また、耐衝撃性を更に向上させるために、上記熱可塑性樹脂にその他のエラストマーもしくはゴム成分を添加してもよい。エラストマーとしては、EPRやEPDMのようなオレフィン系エラストマー、スチレンとブタジエンの共重合体から成るSBR等のスチレン系エラストマー、シリコン系エラストマー、ニトリル系エラストマー、ブタジエン系エラストマー、ウレタン系エラストマー、ナイロン系エラストマー、エステル系エラストマー、フッ素系エラストマー、天然ゴムおよびそれらのエラストマーに反応部位(二重結合、無水カルボキシル基等)を導入した変性物などが挙げられる。   In order to further improve the impact resistance, other elastomers or rubber components may be added to the thermoplastic resin. Examples of elastomers include olefin elastomers such as EPR and EPDM, styrene elastomers such as SBR made of a copolymer of styrene and butadiene, silicon elastomers, nitrile elastomers, butadiene elastomers, urethane elastomers, nylon elastomers, Examples include ester-based elastomers, fluorine-based elastomers, natural rubber, and modified products in which reactive sites (double bonds, anhydrous carboxyl groups, etc.) are introduced into these elastomers.

熱硬化性樹脂としては、成形分野で使用される樹脂であれば特に制限はなく、例えば、不飽和ポリエステル、ビニルエステル、エポキシ、フェノール(レゾール型)、ユリア・メラミン、ポリイミド等や、これらの共重合体、変性体、及び2種類以上ブレンドした樹脂などを使用することができる。また、耐衝撃性を更に向上させるために、上記熱硬化性樹脂にエラストマーもしくはゴム成分を添加してもよい。   The thermosetting resin is not particularly limited as long as it is a resin used in the molding field. For example, unsaturated polyester, vinyl ester, epoxy, phenol (resole type), urea melamine, polyimide, Polymers, modified products, blended resins of two or more types, and the like can be used. In order to further improve the impact resistance, an elastomer or a rubber component may be added to the thermosetting resin.

気相法炭素繊維の含有量は、導電性樹脂組成物中の1〜70質量%、好ましくは3〜60質量%、より好ましくは3〜50質量%である。   The content of vapor grown carbon fiber is 1 to 70% by mass, preferably 3 to 60% by mass, and more preferably 3 to 50% by mass in the conductive resin composition.

本発明の導電性樹脂組成物の製造法においては、本発明の目的、効果を損なわない範囲で、他の各種樹脂添加剤を配合することができる。樹脂添加剤としては、例えば、着色剤、可塑剤、滑剤、熱安定剤、光安定剤、紫外線吸収剤、充填剤、発泡剤、難燃剤、防錆剤などが挙げられる。これらの各種樹脂添加剤は、本発明に係る導電性樹脂組成物を調製する際の最終工程で配合するのが好ましい。   In the method for producing the conductive resin composition of the present invention, other various resin additives can be blended within a range that does not impair the object and effect of the present invention. Examples of the resin additive include a colorant, a plasticizer, a lubricant, a heat stabilizer, a light stabilizer, an ultraviolet absorber, a filler, a foaming agent, a flame retardant, and a rust inhibitor. These various resin additives are preferably blended in the final step when the conductive resin composition according to the present invention is prepared.

本発明の方法により得られる導電性樹脂組成物の体積固有抵抗は、1012〜10-3Ω・cm、好ましくは1010〜10-2Ω・cmである。 The volume resistivity of the conductive resin composition obtained by the method of the present invention is 10 12 to 10 −3 Ω · cm, preferably 10 10 to 10 −2 Ω · cm.

本発明で得られる導電性樹脂組成物は、耐衝撃性とともに導電性や帯電防止性が要求される製品、例えばOA機器、電子機器、導電性包装用部品、帯電防止性包装用部品、静電塗装が適用される自動車部品などの製造用の成形材料として好適に使用できる。これら製品は、従来から知られている導電性樹脂組成物の成形法により製造することができる。成形法としては、例えば、射出成形法、中空成形法、押出成形法、シート成形法、熱成形法、回転成形法、積層成形法、トランスファー成形法などが挙げられる。   The conductive resin composition obtained in the present invention is a product that requires impact resistance and conductivity and antistatic properties, such as OA equipment, electronic equipment, conductive packaging parts, antistatic packaging parts, electrostatic It can be suitably used as a molding material for production of automobile parts to which coating is applied. These products can be produced by a conventionally known molding method for conductive resin compositions. Examples of the molding method include an injection molding method, a hollow molding method, an extrusion molding method, a sheet molding method, a thermoforming method, a rotational molding method, a laminate molding method, and a transfer molding method.

以下に本発明を実施例によって、詳しく説明するが、本発明はこれらの範囲に限定されるものではない。   EXAMPLES The present invention will be described in detail below with reference to examples, but the present invention is not limited to these ranges.

実施例1〜6、比較例1〜6
実施例および比較例の配合を表1及び表2に示す。配合表にしたがって、樹脂および導電性フィラーを溶融混練し、その混練物を射出成形して体積固有抵抗測定用の平板を作成した。
使用した樹脂、導電性フィラー、混練条件、成形条件、評価方法の詳細を以下に示す。各実施例及び比較例の体積固有抵抗、繊維の凝集塊の有無および繊維の破断率を表1及び2に併せて示す。
Examples 1-6, Comparative Examples 1-6
Tables 1 and 2 show the formulations of Examples and Comparative Examples. According to the recipe, the resin and the conductive filler were melt-kneaded, and the kneaded product was injection molded to prepare a flat plate for measuring volume resistivity.
Details of the used resin, conductive filler, kneading conditions, molding conditions, and evaluation method are shown below. Tables 1 and 2 show the volume resistivity, the presence / absence of fiber agglomerates, and the fiber breaking rate of each Example and Comparative Example.

[混練方法]
イ)同方向2軸押出機
池貝製同方向2軸押出機(PCM30;ニーディングディスク無し)を使用し、L/D:30、混練温度:280℃で、条件(i)または条件(ii)により気相法炭素繊維を導入した。
(i)樹脂を溶融させた後、気相法炭素繊維をサイドフィードした。
(ii)樹脂ペレットと気相法炭素繊維をホッパーから一括投入した。
[Kneading method]
B) Same-direction twin screw extruder Using Ikegai same-direction twin screw extruder (PCM30; without kneading disc), L / D: 30, kneading temperature: 280 ° C, condition (i) or condition (ii) Vapor grown carbon fiber was introduced.
(I) After melting the resin, the vapor grown carbon fiber was side fed.
(Ii) Resin pellets and vapor-grown carbon fiber were put together from the hopper.

ロ)ラボプラストミル(バッチ式加圧ニーダー)
東洋精機(株)製ラボプラストミル(容量100cm3)のニーダーを使用し、回転数:80rpm、混練温度:280℃で、条件(i)または条件(ii)により気相法炭素繊維を導入した。
(i)樹脂を完全に溶融させた後、気相法炭素繊維を導入し、10分間混練した。
(ii)樹脂ペレットと気相法炭素繊維をホッパーから一括投入し、20分間混練した。
B) Laboplast mill (batch pressure kneader)
Using a Kneader of Toyo Seiki Co., Ltd.'s Laboplast Mill (capacity 100 cm 3 ), the vapor grown carbon fiber was introduced according to the condition (i) or condition (ii) at a rotation speed of 80 rpm and a kneading temperature of 280 ° C. .
(I) After completely melting the resin, vapor grown carbon fiber was introduced and kneaded for 10 minutes.
(Ii) Resin pellets and vapor-grown carbon fiber were put together from a hopper and kneaded for 20 minutes.

[成形方法]
住友重機(株)製サイキャップ型締力75トン射出成形機を使用して、成形温度280℃、金型温度130℃にて、平板(100×100×2mm厚)を成形した。
[Molding method]
A flat plate (100 × 100 × 2 mm thick) was molded at a molding temperature of 280 ° C. and a mold temperature of 130 ° C. using a 75-ton injection molding machine manufactured by Sumitomo Heavy Industries, Ltd.

[気相法炭素繊維]
イ)VGCF(登録商標):昭和電工製気相法炭素繊維(平均繊維径:150nm、平均繊維長:10μm)を使用した。
ロ)VGCF−S:昭和電工製気相法炭素繊維(平均繊維径:100nm、平均繊維長:11μm)を使用した。
ハ)VGNF(登録商標):昭和電工製気相法炭素繊維(平均繊維径:80nm、平均繊維長:10μm)を使用した。
ニ)VGNT(登録商標):昭和電工製気相法炭素繊維(平均繊維径:20nm、平均繊維長:10μm)を使用した。
[Vapor grown carbon fiber]
A) VGCF (registered trademark): Showa Denko gas phase carbon fiber (average fiber diameter: 150 nm, average fiber length: 10 μm) was used.
B) VGCF-S: Showa Denko vapor phase carbon fiber (average fiber diameter: 100 nm, average fiber length: 11 μm) was used.
C) VGNF (registered trademark): Gas phase carbon fiber (average fiber diameter: 80 nm, average fiber length: 10 μm) manufactured by Showa Denko was used.
D) VGNT (registered trademark): Gas phase carbon fiber (average fiber diameter: 20 nm, average fiber length: 10 μm) manufactured by Showa Denko was used.

[使用した合成樹脂]
熱可塑性樹脂
ポリカーボネート樹脂(PC):帝人化成(株)製パンライトL−1225L。
[Synthetic resin used]
Thermoplastic resin Polycarbonate resin (PC): Panlite L-1225L manufactured by Teijin Chemicals Ltd.

[評価物性の測定方法]
イ)体積固有抵抗:JIS K7194に準拠し、四探針法により測定した。
ロ)炭素繊維の凝集塊:同方向2軸押出機を用いた場合は混練時のストランドの破断面を電子顕微鏡(SEM)観察を2000倍で行うことにより、ラボプラストミルを用いた場合は溶融混練した樹脂複合塊を280℃で溶融プレスし、その破断面の観察を行うことにより、繊維の凝集した塊の有無について以下の基準により評価した。
凝集塊のサイズ(長径)
0.5μm未満 ○
0.5〜5μm未満 △
5μm以上 ×
ハ)炭素繊維の破断率(%):以下の式により求めた。
炭素繊維の破断率(%)={1−(組成物成形品の炭素繊維のアスペクト比/混合・混
練する前の炭素繊維のアスペクト比)}×100
ここで、アスペクト比は、電子顕微鏡(SEM)観察により測定し、算出した。
[Measurement method of evaluation properties]
A) Volume resistivity: Measured by the four-probe method according to JIS K7194.
B) Carbon fiber agglomerates: When a twin screw extruder is used in the same direction, the broken surface of the strands during kneading is observed with an electron microscope (SEM) at a magnification of 2000, and melted when a lab plast mill is used. The kneaded resin composite lump was melt-pressed at 280 ° C., and the fracture surface was observed, whereby the presence or absence of agglomerated fibers was evaluated according to the following criteria.
Agglomerate size (major axis)
Less than 0.5μm ○
Less than 0.5-5μm △
5μm or more ×
C) Carbon fiber breaking rate (%): It was determined by the following formula.
Carbon fiber breaking rate (%) = {1− (aspect ratio of carbon fiber of composition molded product / aspect ratio of carbon fiber before mixing and kneading)} × 100
Here, the aspect ratio was measured and calculated by observation with an electron microscope (SEM).

Figure 2006097006
Figure 2006097006

Figure 2006097006
Figure 2006097006

Claims (11)

溶融状態にあるマトリックス樹脂に、繊維径が2〜500nmの気相法炭素繊維をその破断を20%以下に抑えて混合することを特徴とする導電性樹脂組成物の製造方法。   A method for producing a conductive resin composition, comprising mixing a matrix resin in a molten state with vapor grown carbon fiber having a fiber diameter of 2 to 500 nm with a breakage of 20% or less. 気相法炭素繊維のアスペクト比が10〜500である請求項1に記載の導電性樹脂組成物の製造方法。   The method for producing a conductive resin composition according to claim 1, wherein the vapor-grown carbon fiber has an aspect ratio of 10 to 500. 気相法炭素繊維の平均繊維径が10〜200nmである請求項1に記載の導電性樹脂組成物の製造方法。   The method for producing a conductive resin composition according to claim 1, wherein the vapor-grown carbon fiber has an average fiber diameter of 10 to 200 nm. 気相法炭素繊維の配合量が1〜70質量%である請求項1〜3のいずれかに記載の導電性樹脂組成物の製造方法。   The manufacturing method of the conductive resin composition in any one of Claims 1-3 whose compounding quantity of vapor-grown carbon fiber is 1-70 mass%. マトリックス樹脂が、熱可塑性樹脂及び熱硬化性樹脂の少なくとも1種である請求項1〜4のいずれかに記載の導電性樹脂組成物の製造方法。   The method for producing a conductive resin composition according to claim 1, wherein the matrix resin is at least one of a thermoplastic resin and a thermosetting resin. 溶融混合における気相法炭素繊維の破断を15%以下に抑える請求項1〜5のいずれかに記載の導電性樹脂組成物の製造方法。   The manufacturing method of the conductive resin composition in any one of Claims 1-5 which suppresses the fracture | rupture of the vapor grown carbon fiber in melt mixing to 15% or less. 電子顕微鏡による観察で気相法炭素繊維の凝集塊が生じないように溶融混合する請求項1〜6のいずれかに記載の導電性樹脂組成物の製造方法。   The manufacturing method of the conductive resin composition in any one of Claims 1-6 melt-mixed so that the aggregate of a vapor-grown carbon fiber may not arise by observation with an electron microscope. 溶融混合が同方向2軸押出機により行われ、気相法炭素繊維がサイドフィードされる請求項1〜7のいずれかに記載の導電性樹脂組成物の製造方法。   The method for producing a conductive resin composition according to any one of claims 1 to 7, wherein the melt mixing is performed by a twin-screw extruder in the same direction, and the vapor grown carbon fiber is side-fed. 溶融混合がバッチ式加圧ニーダーにより行われ、マトリックス樹脂を溶融させた後、気相法炭素繊維を投入する請求項1〜7のいずれかに記載の導電性樹脂組成物の製造方法。   The method for producing a conductive resin composition according to any one of claims 1 to 7, wherein the melt-mixing is performed by a batch-type pressure kneader and the matrix resin is melted, and then vapor-grown carbon fiber is introduced. 請求項1〜9のいずれかに記載の方法により得られた導電性樹脂組成物を用いた合成樹脂成形体。   A synthetic resin molded article using the conductive resin composition obtained by the method according to claim 1. 請求項1〜9のいずれかに記載の方法により得られた導電性樹脂組成物を用いた電気・電子部品用容器。   The container for electrical / electronic components using the conductive resin composition obtained by the method in any one of Claims 1-9.
JP2005249811A 2004-08-31 2005-08-30 Method for producing electrically conductive resin composition and application thereof Pending JP2006097006A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005249811A JP2006097006A (en) 2004-08-31 2005-08-30 Method for producing electrically conductive resin composition and application thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004252543 2004-08-31
JP2005249811A JP2006097006A (en) 2004-08-31 2005-08-30 Method for producing electrically conductive resin composition and application thereof

Publications (1)

Publication Number Publication Date
JP2006097006A true JP2006097006A (en) 2006-04-13

Family

ID=36237115

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005249811A Pending JP2006097006A (en) 2004-08-31 2005-08-30 Method for producing electrically conductive resin composition and application thereof

Country Status (1)

Country Link
JP (1) JP2006097006A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006193649A (en) * 2005-01-14 2006-07-27 Takiron Co Ltd Carbon fiber-containing resin molded product
JP2006225648A (en) * 2005-01-21 2006-08-31 Showa Denko Kk Conductive resin composition, its production method and use
JP2007217633A (en) * 2006-02-20 2007-08-30 Prime Polymer:Kk Molded product and its production process
JP2007297496A (en) * 2006-04-28 2007-11-15 Nissin Kogyo Co Ltd Carbon fiber composite material
WO2008001708A1 (en) * 2006-06-26 2008-01-03 Polyplastics Co., Ltd. Liquid-crystalline resin composition
JP2008027854A (en) * 2006-07-25 2008-02-07 Nissin Kogyo Co Ltd Electron emitting material and its manufacturing method, base material in which electron emitting material is formed, and electron emitting device
JP2008260187A (en) * 2007-04-11 2008-10-30 Yamato Esuron Kk Conductive resin laminated sheet and non-electrified resin container
WO2008133299A1 (en) * 2007-04-24 2008-11-06 National Institute Of Advanced Industrial Science And Technology Resin complex containing carbon nanotube, and method for production thereof
JP2011084844A (en) * 2009-10-16 2011-04-28 Nissin Kogyo Co Ltd Carbon nanofiber, carbon nanofiber assembly, method for producing carbon nanofiber, method for producing carbon fiber composite material, and carbon fiber composite material
CN104403175A (en) * 2014-11-28 2015-03-11 东莞市迪彩塑胶五金有限公司 Permanently anti-static polyolefin master batch and preparation method thereof
US9000085B2 (en) 2006-04-28 2015-04-07 Nissin Kogyo Co., Ltd. Carbon fiber composite resin material and method of producing the same
WO2019181828A1 (en) 2018-03-20 2019-09-26 大日精化工業株式会社 Electrically conductive resin composition and method for producing same
JP2019173036A (en) * 2014-07-23 2019-10-10 日信工業株式会社 Thermoplastic resin composition

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02167704A (en) * 1988-09-20 1990-06-28 Mitsui Toatsu Chem Inc Molding material
JPH05222210A (en) * 1992-02-13 1993-08-31 Mitsubishi Petrochem Co Ltd Production of propylene-based resin molding
JPH06178385A (en) * 1992-12-10 1994-06-24 Nippon Petrochem Co Ltd Electroacoustic converter
JP2004107534A (en) * 2002-09-19 2004-04-08 Rikogaku Shinkokai Carbon fiber-containing composite member
JP2004143241A (en) * 2002-10-23 2004-05-20 Asahi Kasei Chemicals Corp Thermoplastic resin composition
JP2004143236A (en) * 2002-10-23 2004-05-20 Asahi Kasei Chemicals Corp Conductive resin composition
JP2004221071A (en) * 2002-12-26 2004-08-05 Showa Denko Kk Carbonaceous material for conductive composition and its usage
JP2005325345A (en) * 2004-04-15 2005-11-24 Showa Denko Kk Composite material composition and its manufacturing method
JP2006028313A (en) * 2004-07-14 2006-02-02 Mitsubishi Corp Carbon fiber-reinforced thermoplastic resin compound and method for producing the same
JP2006097005A (en) * 2004-08-31 2006-04-13 Showa Denko Kk Electrically conductive resin composition and method for producing the same

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02167704A (en) * 1988-09-20 1990-06-28 Mitsui Toatsu Chem Inc Molding material
JPH05222210A (en) * 1992-02-13 1993-08-31 Mitsubishi Petrochem Co Ltd Production of propylene-based resin molding
JPH06178385A (en) * 1992-12-10 1994-06-24 Nippon Petrochem Co Ltd Electroacoustic converter
JP2004107534A (en) * 2002-09-19 2004-04-08 Rikogaku Shinkokai Carbon fiber-containing composite member
JP2004143241A (en) * 2002-10-23 2004-05-20 Asahi Kasei Chemicals Corp Thermoplastic resin composition
JP2004143236A (en) * 2002-10-23 2004-05-20 Asahi Kasei Chemicals Corp Conductive resin composition
JP2004221071A (en) * 2002-12-26 2004-08-05 Showa Denko Kk Carbonaceous material for conductive composition and its usage
JP2005325345A (en) * 2004-04-15 2005-11-24 Showa Denko Kk Composite material composition and its manufacturing method
JP2006028313A (en) * 2004-07-14 2006-02-02 Mitsubishi Corp Carbon fiber-reinforced thermoplastic resin compound and method for producing the same
JP2006097005A (en) * 2004-08-31 2006-04-13 Showa Denko Kk Electrically conductive resin composition and method for producing the same

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006193649A (en) * 2005-01-14 2006-07-27 Takiron Co Ltd Carbon fiber-containing resin molded product
JP2006225648A (en) * 2005-01-21 2006-08-31 Showa Denko Kk Conductive resin composition, its production method and use
JP2007217633A (en) * 2006-02-20 2007-08-30 Prime Polymer:Kk Molded product and its production process
US8329293B2 (en) 2006-04-28 2012-12-11 Nissin Kogyo Co., Ltd. Carbon fiber composite material
JP2007297496A (en) * 2006-04-28 2007-11-15 Nissin Kogyo Co Ltd Carbon fiber composite material
US9000085B2 (en) 2006-04-28 2015-04-07 Nissin Kogyo Co., Ltd. Carbon fiber composite resin material and method of producing the same
WO2008001708A1 (en) * 2006-06-26 2008-01-03 Polyplastics Co., Ltd. Liquid-crystalline resin composition
JP2008027854A (en) * 2006-07-25 2008-02-07 Nissin Kogyo Co Ltd Electron emitting material and its manufacturing method, base material in which electron emitting material is formed, and electron emitting device
JP4651638B2 (en) * 2007-04-11 2011-03-16 ヤマトエスロン株式会社 Conductive resin laminate sheet and uncharged resin container
JP2008260187A (en) * 2007-04-11 2008-10-30 Yamato Esuron Kk Conductive resin laminated sheet and non-electrified resin container
JPWO2008133299A1 (en) * 2007-04-24 2010-07-29 独立行政法人産業技術総合研究所 Carbon nanotube-containing resin composite and method for producing the same
US8231965B2 (en) 2007-04-24 2012-07-31 National Institute Of Advanced Industrial Science And Technology Resin complex containing carbon nanotube and method for production thereof
WO2008133299A1 (en) * 2007-04-24 2008-11-06 National Institute Of Advanced Industrial Science And Technology Resin complex containing carbon nanotube, and method for production thereof
JP5590598B2 (en) * 2007-04-24 2014-09-17 独立行政法人産業技術総合研究所 Carbon nanotube-containing resin composite and method for producing the same
JP2011084844A (en) * 2009-10-16 2011-04-28 Nissin Kogyo Co Ltd Carbon nanofiber, carbon nanofiber assembly, method for producing carbon nanofiber, method for producing carbon fiber composite material, and carbon fiber composite material
JP2019173036A (en) * 2014-07-23 2019-10-10 日信工業株式会社 Thermoplastic resin composition
CN104403175A (en) * 2014-11-28 2015-03-11 东莞市迪彩塑胶五金有限公司 Permanently anti-static polyolefin master batch and preparation method thereof
WO2019181828A1 (en) 2018-03-20 2019-09-26 大日精化工業株式会社 Electrically conductive resin composition and method for producing same
KR20200130397A (en) 2018-03-20 2020-11-18 다이니치 세이카 고교 가부시키가이샤 Conductive resin composition and manufacturing method thereof
US11749421B2 (en) 2018-03-20 2023-09-05 Dainichiseika Color & Chemicals Mfg. Co., Ltd. Electrically conductive resin composition and method for producing same

Similar Documents

Publication Publication Date Title
JP2006097006A (en) Method for producing electrically conductive resin composition and application thereof
EP1735376B1 (en) Method of producing a conductive resin composition
JP2006089710A (en) Carbon-based conductive filler and composition thereof
KR101802545B1 (en) Thermoplastic and/or elastomeric composite material containing carbon nanotubes and graphenes
Chen et al. Study on polycarbonate/multi-walled carbon nanotubes composite produced by melt processing
US8048341B2 (en) Nanocarbon-reinforced polymer composite and method of making
KR101309738B1 (en) Polymer/conductive filler composite with high electrical conductivity and the preparation method thereof
JP6386114B2 (en) Method for producing conductive resin composition
JP5333723B2 (en) Rubber composition
JP4937523B2 (en) COMPOSITE COMPOSITION AND PROCESS FOR PRODUCING THE SAME
JP2003012939A (en) Carbon-containing resin composition, molding material and molded product
KR101183016B1 (en) Carbon Nanotube-polymer Nanocomposite Improved In Electrical Conductivity And Preparation Method Thereof
Zhan et al. Electrical, thermal, and mechanical properties of polyarylene ether nitriles/graphite nanosheets nanocomposites prepared by masterbatch route
WO2013111862A1 (en) Method for producing master batch for conductive resin, and master batch
JP6527010B2 (en) Thermally conductive resin molding and method for producing the same
US20080075953A1 (en) Electrically Conductive Composites with Resin and Vgcf, Production Process, and Use Thereof
CN106633778A (en) High-content glass fiber reinforced antistatic PC composite material and preparation method thereof
KR101164287B1 (en) Carbon Nanotube-polymer Nanocomposite Improved In Electrical Conductivity And Preparation Method Thereof
Mohsenzadeh et al. Synergetic impacts of two rigid nano‐scale inclusions on the mechanical and thermal performance of POM/carbon black/CaCO3 ternary nanocomposite systems
JP2015117253A (en) Conductive resin composition master batch
JP2005325346A (en) Sliding material composition and its manufacturing method
JP3450897B2 (en) Conductive resin masterbatch pellets and conductive thermoplastic resin products
JP4070707B2 (en) Fluororesin composition
JP2006097005A (en) Electrically conductive resin composition and method for producing the same
KR100829513B1 (en) Carbon nanotube reinforced thermotropic liquid crystal polymer nanocomposite and preparation method thereof

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070705

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080514

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110610

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110614

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120525

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130111