JP2005325346A - Sliding material composition and its manufacturing method - Google Patents

Sliding material composition and its manufacturing method Download PDF

Info

Publication number
JP2005325346A
JP2005325346A JP2005116549A JP2005116549A JP2005325346A JP 2005325346 A JP2005325346 A JP 2005325346A JP 2005116549 A JP2005116549 A JP 2005116549A JP 2005116549 A JP2005116549 A JP 2005116549A JP 2005325346 A JP2005325346 A JP 2005325346A
Authority
JP
Japan
Prior art keywords
material composition
sliding material
carbon fiber
manufacturing
sliding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005116549A
Other languages
Japanese (ja)
Inventor
Takeshi Nagao
勇志 長尾
Tatsuyuki Yamamoto
竜之 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2005116549A priority Critical patent/JP2005325346A/en
Publication of JP2005325346A publication Critical patent/JP2005325346A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a sliding material composition which bears a high temperature and a high load, has a small friction coefficient, hardly wears, rapidly dissipates generated heat, and does not damage a mating member even when it has a soft material quality, and its manufacturing method. <P>SOLUTION: The manufacturing method of the sliding material composition comprises kneading a thermoplastic resin and a carbon fiber obtained by the vapor phase method having a fiber diameter of 50-200 nm, an aspect ratio of 40-1,000, a peak intensity ratio of a peak at 1,360 cm<SP>-1</SP>to a peak at 1,580 cm<SP>-1</SP>(I<SB>0</SB>=I<SB>1,360</SB>/I<SB>1,580</SB>) in the Raman scattering spectrum of 0.1-1 and a bulk specific gravity of 0.01-0.1 so that the composite material composition contains 10-70 mass% of the carbon fiber obtained by the vapor phase method without a high shear force while holding the breakage ratio of the carbon fiber to at most 20%. The manufacturing method of the shearing material molded product comprises molding the sliding material composition at a mold temperature higher by 20-40°C than the temperature at the time of injection molding where the excellent article ratio is at least 95% with a cooling time of 5 sec. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、摺動材組成物に関し、さらに詳しくは、合成樹脂に、特定の気相法炭素繊維を充填してなる摩擦摩耗特性(耐高荷重性、低摩擦係数、耐摩耗性、高熱伝導性)に優れ、さらに、耐熱性、力学的特性に優れた摺動材組成物に関するものである。   TECHNICAL FIELD The present invention relates to a sliding material composition, and more specifically, friction wear characteristics (high load resistance, low friction coefficient, wear resistance, high thermal conductivity) obtained by filling a specific resin with a specific vapor grown carbon fiber. In addition, the present invention relates to a sliding material composition excellent in heat resistance and mechanical properties.

プラスチック製摺動部材は、電気・電子分野における機構部品および自動車分野においても用途分野が拡大される傾向にあり、有望視されている。しかしながら、プラスチック材料は、摺動部材に要求される特性である自己潤滑性を有している反面、金属材料と比較して限界PV値[摺動部材が一定の荷重P(kg/cm2)において、ある周速度V(cm/sec)以上になったとき、融けたり、焼き付いたりする負荷の限界値(PとVとの積)をいう。]や熱伝導性が低く、熱の蓄積が避けられないため、剛性等の機械的性質に劣る。したがって、軸受け等の摺動部材としてのプラスチック材料は、強度、剛性等の力学的特性のみならず、動摩擦係数が小さく、摩耗量が少なく、限界PV値が高く、しかも、相手材料を傷めないという摺動性を備えた材料であることが望ましい。 Plastic sliding members are promising because their application fields tend to be expanded in mechanical parts in the electric / electronic field and in the automobile field. However, the plastic material has a self-lubricating property which is a characteristic required for the sliding member, but the limit PV value [the sliding member has a constant load P (kg / cm 2 ) as compared with the metal material. , The limit value (the product of P and V) of the load that melts or seizes when a peripheral speed V (cm / sec) or more is reached. ] And thermal conductivity is low and heat accumulation is inevitable, so that the mechanical properties such as rigidity are inferior. Therefore, a plastic material as a sliding member such as a bearing not only has mechanical properties such as strength and rigidity, but also has a small coefficient of dynamic friction, a small amount of wear, a high limit PV value, and does not damage the mating material. A material having slidability is desirable.

主として、力学的特性の向上を目的として、炭素繊維樹脂複合材が多く使用され、航空・宇宙、自動車、スポーツ、工業材料等、広い分野で使用されてきている。これらの繊維充填材として用いられている炭素繊維は、主にアクリル系繊維あるいはピッチ系繊維を焼成したものである。このような炭素繊維を使用した複合材は、力学的特性、耐熱性は優れるものの、耐摩耗性は不満足であるため、各種工業用の摺動部材として使用したときは、使用寿命が短く、実用に供しても必ずしも望ましい結果が得られていない。更に、一般に摺動部材の相手材は鋼が一般的であるが、今後、アルミニウム等の軽量化素材が使われる傾向にある。炭素繊維複合摺動部材は、軟質であるアルミニウムはもちろんのこと、硬質の鋼であっても損傷するので、この様な炭素繊維は摺動部材としては不適当である。   Carbon fiber resin composite materials are often used mainly for the purpose of improving mechanical properties, and have been used in a wide range of fields such as aerospace, automobiles, sports, and industrial materials. The carbon fibers used as these fiber fillers are mainly baked acrylic fibers or pitch fibers. Although composite materials using such carbon fibers have excellent mechanical properties and heat resistance, they are unsatisfactory in wear resistance, so when used as sliding members for various industries, their service life is short and practical. However, desirable results are not always obtained. Furthermore, steel is generally used as the counterpart material for the sliding member, but in the future, lighter materials such as aluminum will tend to be used. Since the carbon fiber composite sliding member is damaged not only by the soft aluminum but also by the hard steel, such a carbon fiber is not suitable as the sliding member.

一方、気相法炭素繊維または気相法炭素繊維を熱処理によりグラファイト化させたものを合成樹脂に混合して得られる摺動材の提案がある(例えば特許文献1参照)が、これは耐摩耗性のみを改善したものであり、上記摺動材に要求される耐荷重性、耐熱性に対しては充分とはいえない。
気相法炭素繊維または気相法炭素繊維を熱処理によりグラファイト化させたものを2硫化モリブデン微粉末とともに合成樹脂中に分散させて得られる摺動部材が提案(例えば特許文献2参照)されているが、これは、合成樹脂を用いることから高温での使用や、腐食性流体の存在下または高荷重条件下での使用には適さず、しかも2硫化モリブデンを含有することで、酸素リッチ条件下ではモリブデンの酸化が起こり、摩擦係数の増大も起こり得る。
On the other hand, there is a proposal of a sliding material obtained by mixing vapor-grown carbon fiber or vapor-grown carbon fiber graphitized by heat treatment with synthetic resin (see, for example, Patent Document 1). This is an improvement only in the properties, and it cannot be said that the load resistance and heat resistance required for the sliding material are sufficient.
There has been proposed a sliding member obtained by dispersing vapor-grown carbon fiber or vapor-grown carbon fiber graphitized by heat treatment in a synthetic resin together with molybdenum disulfide fine powder (see, for example, Patent Document 2). However, since it uses a synthetic resin, it is not suitable for use at high temperatures, in the presence of corrosive fluids or under high load conditions, and by containing molybdenum disulfide, Then, oxidation of molybdenum occurs, and the friction coefficient may increase.

また、気相法炭素繊維、2硫化モリブデン、グラファイト、PTFEなどを主材であるポリアミド樹脂またはポリイミド樹脂に混合して摺動材とし、摩擦係数を増大させず、摩耗を減少させるベアリング材が提案(例えば特許文献3参照)されているが、この場合においても、上記の場合と同様に使用条件が限定される。
更に摺動部材で、表面層に摺動性が良好なカーボンナノチューブを含有する複合材が、内層に耐熱性素材よりなる多層構造の摺動部材の提案(特許文献4参照。)がある。性能的には満足するが、高価なカーボンナノチューブを使用しており、製造方法も非常に手間が掛かり、経済性などに問題がある。
Also proposed is a bearing material that mixes vapor-grown carbon fiber, molybdenum disulfide, graphite, PTFE, etc. with polyamide resin or polyimide resin, which is the main material, and makes it a sliding material, which does not increase the friction coefficient and reduces wear. (For example, refer to Patent Document 3). However, in this case as well, the use conditions are limited as in the above case.
Further, there is a proposal of a sliding member having a multilayer structure in which a composite material containing a carbon nanotube having a good sliding property on a surface layer is formed of a heat-resistant material in an inner layer (see Patent Document 4). Although satisfactory in terms of performance, expensive carbon nanotubes are used, the manufacturing method is very troublesome, and there is a problem in economy and the like.

特開平3−38327号公報JP-A-3-38327 特開平4−11693号公報Japanese Patent Laid-Open No. 4-11893 特開平5−59387号公報JP-A-5-59387 特開2003−239977号公報JP 2003-239777 A

この発明は、上記に鑑みなされたものであり、高温高荷重に耐え、摩擦係数が小さく、摩耗しにくく、かつ熱伝導性が良好であるので、発生する熱を速やかに放出することができ、さらに、相手材が例えばアルミニウムであっても、アルミニウムを損傷させなく、性能を長期間保持することができる摺動材組成物およびその製造方法を提供することを目的とする。   This invention has been made in view of the above, and can withstand high temperature and high load, has a small friction coefficient, is not easily worn, and has good thermal conductivity, so that the generated heat can be quickly released, Furthermore, even if a counterpart material is aluminum, for example, it aims at providing the sliding material composition which can hold | maintain performance for a long time without damaging aluminum, and its manufacturing method.

本発明は、前記課題を解決するため、本発明者は鋭意検討した結果、特定の気相法炭素繊維を導入し、その導入時に繊維の破断を極力抑えることにより、従来不可能であった、複合材料の性能に達することを見出し、本発明に達した。   In order to solve the above-mentioned problems, the present inventor has intensively studied, and as a result, introduced a specific vapor grown carbon fiber, which was impossible in the past by suppressing the breakage of the fiber as much as possible. It has been found that the performance of the composite material is reached and the present invention has been reached.

即ち、
[1]マトリックス合成樹脂と、繊維径:50〜200nm、アスペクト比:40〜1000、ラマン散乱スペクトルの1580cm-1及び1360cm-1のピーク強度比(I0=I1360/I1580):0.1〜1の気相法炭素繊維を混練した、ASTM D 648 大荷重の熱変形温度が160℃以上、且つであることを特徴とする摺動材組成物、
[2]気相法炭素繊維を10質量%〜70質量%配合した上記[1]に記載の摺動材組成物、
[3]熱伝導率が1W/mK以上である上記[1]または[2]に記載の摺動材組成物、
[4]曲げ弾性率が4000MPa以上である上記[1]〜[3]のいずれかに記載の摺動材組成物、
That is,
[1] and the matrix synthetic resin, fiber diameter: 50 to 200 nm, aspect ratio: 40 to 1000, 1580 cm -1 and peak intensity ratio of 1360 cm -1 of the Raman scattering spectrum (I 0 = I 1360 / I 1580): 0. A sliding material composition, wherein the heat distortion temperature of ASTM D 648 heavy load is 160 ° C. or higher, and kneaded 1-1 gas phase grown carbon fiber,
[2] The sliding material composition according to [1], wherein 10 mass% to 70 mass% of vapor grown carbon fiber is blended,
[3] The sliding material composition according to the above [1] or [2], wherein the thermal conductivity is 1 W / mK or more,
[4] The sliding material composition according to any one of [1] to [3], wherein the flexural modulus is 4000 MPa or more,

[5]熱可塑性樹脂と繊維径:50〜200nm、アスペクト比:40〜1000、ラマン散乱スペクトルの1580cm-1及び1360cm-1のピーク強度比(I0=I1360/I1580):0.1〜1、嵩比重:0.01〜0.1の気相法炭素繊維を、炭素繊維の破断率を20%以下に抑え、高せん断力をかけないで混練を行うことを特徴とする摺動材組成物の製造方法、
[6]熱可塑性樹脂と気相法炭素繊維を混練する際に、複合材組成物中に気相法炭素繊維を10質量%〜70質量%を配合した上記[5]に記載の摺動材組成物の製造方法、
[7]熱可塑性樹脂と気相法炭素繊維を混練するに際し、炭素繊維の破断率を20%以下に抑え、加圧ニーダーで溶融混練した後、単軸押出機で、または往復動単軸スクリュー押出機でペレット化する上記[5]または[6]に記載の摺動材組成物の製造方法、
[5] The thermoplastic resin and fiber diameter: 50 to 200 nm, aspect ratio: 40 to 1000, 1580 cm -1 and peak intensity ratio of 1360 cm -1 of the Raman scattering spectrum (I 0 = I 1360 / I 1580): 0.1 Sliding characterized by kneading a vapor grown carbon fiber having a bulk density of 0.01 to 0.1 with a breaking rate of the carbon fiber of 20% or less and without applying a high shearing force. Manufacturing method of the material composition,
[6] The sliding material according to [5], wherein 10% by mass to 70% by mass of the vapor-grown carbon fiber is blended in the composite material when the thermoplastic resin and vapor-grown carbon fiber are kneaded. Production method of the composition,
[7] When kneading the thermoplastic resin and the vapor grown carbon fiber, the fracture rate of the carbon fiber is suppressed to 20% or less, melted and kneaded with a pressure kneader, and then a single screw extruder or a reciprocating single screw The method for producing a sliding material composition according to the above [5] or [6], which is pelletized with an extruder,

[8]上記[5]〜[7]のいずれかに記載の摺動材組成物の製造方法によって製造された摺動材組成物を、金型温度を冷却時間が5秒で良品率が95%以上となる射出成形時の温度より20℃〜40℃高温度で成形することを特徴とする摺動材成形体の製造方法、
[9]上記[5]〜[7]のいずれかに記載の摺動材組成物の製造方法によって製造された樹脂組成物を用いた摺動合成樹脂成形体、及び
[10]上記[5]〜[7]のいずれかに記載の摺動材組成物の製造法によって製造された樹脂組成物を用いた無潤滑摺動材、を開発することにより上記の課題を解決した。
[8] A sliding material composition produced by the method for producing a sliding material composition according to any one of [5] to [7], wherein the mold temperature is 5 seconds and the non-defective product ratio is 95. %, A method for producing a sliding material molded body characterized by molding at a temperature 20 ° C to 40 ° C higher than the temperature during injection molding,
[9] A sliding synthetic resin molded article using the resin composition produced by the method for producing a sliding material composition according to any one of [5] to [7], and [10] [5] above The above-mentioned problems have been solved by developing a non-lubricated sliding material using a resin composition produced by the method for producing a sliding material composition according to any one of [7].

本発明は、アスペクト比の高い(アスペクト比40以上)気相法炭素繊維を合成樹脂に配合して、溶融混練する場合、アスペクト比の低下を極力抑え、高充填することにより、高温高荷重に耐え、摩擦係数が小さく、摩耗しにくく、かつ熱伝導性が良好であるので、発生する熱を速やかに放出することができ、さらに、相手材がアルミニウムであっても、アルミニウムを損傷させることなく、性能を長期間保持することができる摺動材組成物を達成したものであり、その産業上の利用価値は極めて大きい。   In the present invention, when vapor-grown carbon fiber having a high aspect ratio (an aspect ratio of 40 or more) is blended in a synthetic resin and melt-kneaded, the reduction of the aspect ratio is suppressed as much as possible, and high filling is achieved by high filling. Withstands, has a small coefficient of friction, is hard to wear, and has good thermal conductivity, it can quickly release the generated heat, and even if the counterpart material is aluminum, it does not damage the aluminum The present invention has achieved a sliding material composition capable of maintaining performance for a long period of time, and its industrial utility value is extremely large.

本発明にかかる摺動材組成物は、樹脂本来が有する流動性を損なうことなく、この組成物から得られた摺動部材は、力学的特性、耐熱性、熱伝導性に優れ、摺動性に関しては、摩擦係数および摩耗量ともに小さく、限界PV値は非常に大きい。そのため、自動車、電気・電子分野等の摺動部材として広範な用途に使用できる。   The sliding material composition according to the present invention does not impair the fluidity inherent in the resin, and the sliding member obtained from this composition has excellent mechanical properties, heat resistance, and thermal conductivity, and is slidable. With regard to, both the coefficient of friction and the amount of wear are small, and the limit PV value is very large. Therefore, it can be used for a wide range of applications as a sliding member in automobiles, electrical / electronic fields and the like.

本発明で用いる気相法炭素繊維は、例えば不活性ガス、かつ高温雰囲気下に、触媒となる鉄と共にガス化された有機化合物を吹き込むことにより製造することができる(例えば特開平7−150419号公報等を参照)。
気相法炭素繊維は、生成したままでも、例えば生成したものを800〜1500℃で熱処理したものでも、例えば生成したものを2000〜3000℃で黒鉛化処理したもののいずれもが使用可能である。
The vapor grown carbon fiber used in the present invention can be produced, for example, by blowing an organic compound gasified together with iron serving as a catalyst into an inert gas and a high temperature atmosphere (for example, JP-A-7-150419). (See the official gazette).
The vapor grown carbon fiber can be used as it is produced, for example, one produced by heat treatment at 800-1500 ° C., or one produced by graphitization at 2000-3000 ° C., for example.

繊維の断面は完全な円に限らず、楕円や多角化のものを含む。さらに繊維表面には熱分解炭素が析出してできた炭素質物質の存在したものであってもよい。気相法炭素繊維の製造後、2000℃以上の温度で熱処理を行うことでさらに結晶化度を上げ、導電性を増すことができる。   The cross section of the fiber is not limited to a perfect circle, but includes an ellipse or a diversified one. Further, a carbonaceous material formed by depositing pyrolytic carbon may be present on the fiber surface. After the vapor grown carbon fiber is manufactured, the crystallinity can be further increased and the conductivity can be increased by performing a heat treatment at a temperature of 2000 ° C. or higher.

本発明で使用する気相法炭素繊維は、以下の物性値を有するものが好ましい。
(イ) 繊維径:50〜200nm、好ましくは80〜180nm。
(ロ) アスペクト比:40〜1000、好ましくは45〜800。
(ハ) BET比表面積:5〜100m2/g、好ましくは10〜50m2/g。
(ニ) ラマン散乱スペクトルの1580cm-1及び1360cm-1のピーク強度比(I0=I1360/I1580):0.1〜2、好ましくは0.1〜1.5。
The vapor grown carbon fiber used in the present invention preferably has the following physical property values.
(A) Fiber diameter: 50 to 200 nm, preferably 80 to 180 nm.
(B) Aspect ratio: 40 to 1000, preferably 45 to 800.
(C) BET specific surface area: 5 to 100 m 2 / g, preferably 10 to 50 m 2 / g.
(D) Peak intensity ratio (I 0 = I 1360 / I 1580 ) of 1580 cm −1 and 1360 cm −1 of the Raman scattering spectrum: 0.1 to 2, preferably 0.1 to 1.5.

上記の物性値は、本願発明と重要な関係にある。即ち
(イ)(ハ)、繊維径と比表面積は反比例の関係にあるが同様な効果がある。繊維径が50nmより小さく、または比表面積が100m2/g以上の場合は、炭素フィラーの凝集エネルギーが大きく、マトリックス樹脂中に炭素フィラーを均一分散を達成することが難しいが、上記の範囲では均一分散を達成できる。一方繊維径200nm以上、比表面積5m2/g以下では、アルミ材に対する摺動特性が悪化する。
(ロ)アスペクト比が40以下であると、耐熱性(熱変形温度)が向上せず、摩擦の発熱により成形品表面が融解してしまい、限界PV値を上げることができない。
(ニ)ラマンスペクトル比は、2以上になると、固体潤滑性を示すグラファイト構造が少なくなり、摺動特性が悪化する。
なる影響がある。
The above physical property values have an important relationship with the present invention. That is, (i) (c), although the fiber diameter and the specific surface area are in an inversely proportional relationship, the same effect is obtained. When the fiber diameter is smaller than 50 nm or the specific surface area is 100 m 2 / g or more, the cohesive energy of the carbon filler is large, and it is difficult to achieve uniform dispersion of the carbon filler in the matrix resin. Dispersion can be achieved. On the other hand, when the fiber diameter is 200 nm or more and the specific surface area is 5 m 2 / g or less, the sliding characteristics with respect to the aluminum material deteriorate.
(B) When the aspect ratio is 40 or less, the heat resistance (thermal deformation temperature) is not improved, and the surface of the molded product is melted due to heat generated by friction, so that the limit PV value cannot be increased.
(D) When the Raman spectrum ratio is 2 or more, the graphite structure exhibiting solid lubricity decreases and the sliding characteristics deteriorate.
There will be an impact.

本発明に使用する合成樹脂としては、所望の耐熱性、熱伝導性、力学的特性と満足するのであれば使用可能である。具体的には、エンジニアリングプラスチックス、スーパーエンジニアリングプラスチックス、熱硬化性樹脂等である。   The synthetic resin used in the present invention can be used if it satisfies the desired heat resistance, thermal conductivity, and mechanical properties. Specifically, engineering plastics, super engineering plastics, thermosetting resins, and the like.

かかる熱可塑性樹脂としては、上記の条件を満足し、且つ成形分野で使用される樹脂であれば特に制限はなく、例えば、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリトリメチレンテレフタレート(PTT)、ポリエチレンナフタレート(PEN)、液晶ポリエステル(LCP)等のポリエステルや、ポリプロピレン(PP)等のポリオレフィンや、シンジオタクティックポリスチレン樹脂の他、ポリオキシメチレン(POM)、ポリアミド(PA)、ポリカーボネート(PC)、ポリフェニレンエーテル(PPE)、ポリフェニレンスルフィド(PPS)、ポリイミド(PI)、ポリアミドイミド(PAI)、ポリエーテルイミド(PEI)、ポリスルフォン(PSU)、ポリエーテルスルフォン、ポリケトン(PK)、ポリエーテルケトン(PEK)、ポリエーテルエーテルケトン(PEEK)、ポリエーテルケトンケトン(PEKK)、ポリアリレート(PAR)、ポリエーテルニトリル(PEN)、ポリテトラフルオロエチレン(PTFE)などのフッ素系樹脂、更にこれらの共重合体、変性体、および2種類以上ブレンドした樹脂であってもよい。
また、更に耐衝撃性向上のために、上記熱可塑性樹脂にその他のエラストマーもしくはゴム成分を添加した樹脂であってもよい。
The thermoplastic resin is not particularly limited as long as it satisfies the above conditions and is used in the molding field. For example, polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polytrimethylene terephthalate ( Polyester such as PTT), polyethylene naphthalate (PEN), liquid crystal polyester (LCP), polyolefin such as polypropylene (PP), syndiotactic polystyrene resin, polyoxymethylene (POM), polyamide (PA), polycarbonate (PC), polyphenylene ether (PPE), polyphenylene sulfide (PPS), polyimide (PI), polyamideimide (PAI), polyetherimide (PEI), polysulfone (PSU), polyethersulfone Polyketone (PK), Polyetherketone (PEK), Polyetheretherketone (PEEK), Polyetherketoneketone (PEKK), Polyarylate (PAR), Polyethernitrile (PEN), Polytetrafluoroethylene (PTFE), etc. Fluorine-based resins, copolymers, modified products thereof, and resins obtained by blending two or more types may also be used.
Further, in order to further improve impact resistance, a resin obtained by adding another elastomer or a rubber component to the thermoplastic resin may be used.

また、かかる熱硬化性樹脂としては、成形分野で使用される樹脂であれば特に制限はなく、例えば、不飽和ポリエステル樹脂、ビニルエステル樹脂、エポキシ樹脂、フェノール(レゾール型)樹脂、ユリア・メラミン樹脂、ポリイミド樹脂等や、これらの共重合体、変性体、および、2種類以上ブレンドした樹脂などを使用することができる。また、更に耐衝撃性向上のために、上記熱硬化性樹脂にエラストマーもしくはゴム成分を添加した樹脂であってもよい。
気相法炭素繊維の含有量は、摺動材組成物に対して気相法炭素繊維含有量が10〜70質量%、好ましくは、12〜60質量%、より好ましくは15〜50質量%(図1参照)である。
The thermosetting resin is not particularly limited as long as it is a resin used in the molding field. For example, unsaturated polyester resin, vinyl ester resin, epoxy resin, phenol (resole type) resin, urea melamine resin. Polyimide resins and the like, copolymers thereof, modified products, resins blended in two or more, and the like can be used. Further, in order to further improve the impact resistance, a resin obtained by adding an elastomer or a rubber component to the thermosetting resin may be used.
The content of the vapor grown carbon fiber is 10 to 70% by mass, preferably 12 to 60% by mass, more preferably 15 to 50% by mass (based on the sliding material composition). FIG. 1).

本発明に係る摺動材組成物には、本発明の目的、効果を損なわない範囲で、他の各種樹脂添加剤を配合することができる。配合できる樹脂添加剤としては、例えば、着色剤、可塑剤、滑剤、熱安定剤、光安定剤、紫外線吸収剤、充填剤、発泡剤、難燃剤、防錆剤などが挙げられる。これらの各種樹脂添加剤は、本発明に係る導電性プラスチックを調整する際の最終工程で配合するのが好ましい。   In the sliding material composition according to the present invention, various other resin additives can be blended within a range that does not impair the object and effect of the present invention. Examples of resin additives that can be blended include colorants, plasticizers, lubricants, heat stabilizers, light stabilizers, ultraviolet absorbers, fillers, foaming agents, flame retardants, and rust inhibitors. These various resin additives are preferably blended in the final step when the conductive plastic according to the present invention is prepared.

摺動材組成物を構成する各成分を混合・混練する方法としては、本発明の重要な位置を占め、特に気相法炭素繊維の破断を極力抑え、破断率を20%以下、好ましくは15%以下、より好ましくは10%以下に抑える。破断の程度は混合、混練の前・後での炭素繊維のアスペクト比(例えばSEM観察で求める。)を比較することで評価できる。さらに嵩比重が0.01〜0.1と非常に低いものを樹脂に高充填することを、鋭意検討した結果以下のような手法が良好であることを見出した。   As a method of mixing and kneading each component constituting the sliding material composition, it occupies an important position of the present invention, and particularly suppresses breakage of vapor grown carbon fiber as much as possible, and breakage rate is 20% or less, preferably 15 % Or less, more preferably 10% or less. The degree of breakage can be evaluated by comparing the aspect ratios of carbon fibers before and after mixing and kneading (for example, determined by SEM observation). Furthermore, as a result of intensive investigations into highly filling a resin with a very low bulk specific gravity of 0.01 to 0.1, it has been found that the following method is good.

一般に熱可塑性樹脂に無機フィラーを溶融混練する場合、分散混合と呼ばれている、凝集した無機フィラーに高せん断を加え、無機フィラーを破壊し、微細化して、溶融樹脂中へ無機フィラーを均一に分散させている。このような高せん断力を発生させる混練機としては、石臼機構を利用したものや、同方向2軸押出機でスクリューエレメント中に高せん断のかかるニーディングディスクを導入したものが数多く使用されている。しかし、このような混練機を使用すると、混練工程中において気相法炭素繊維を破断してしまう。また、せん断力の弱い単軸押出機の場合は、繊維の破断は抑えられるが、繊維の分散が均一にならない。したがって、繊維の破断を抑えながら、均一な分散をはかるために、加圧ニーダーのような、高せん断が掛からなくて、時間をかけて分散が達成できる(滞留時間が長い)混練機を使用することが好ましい。   In general, when an inorganic filler is melt-kneaded into a thermoplastic resin, high dispersion is applied to the agglomerated inorganic filler, which is called dispersion mixing, and the inorganic filler is destroyed and refined to make the inorganic filler uniform in the molten resin. Distributed. As a kneading machine for generating such a high shear force, a machine using a stone mortar mechanism or a machine in which a kneading disk with high shear is introduced into a screw element by a same direction twin screw extruder is used. . However, when such a kneader is used, the vapor grown carbon fiber is broken during the kneading step. Further, in the case of a single screw extruder having a weak shearing force, fiber breakage can be suppressed, but fiber dispersion is not uniform. Therefore, in order to achieve uniform dispersion while suppressing fiber breakage, a kneader such as a pressure kneader that does not require high shear and can achieve dispersion over time (long residence time) is used. It is preferable.

さらに、無機フィラーを樹脂中に高充填するためには、溶融樹脂と無機フィラーの濡れが非常に大切であり、溶融混練中に無機フィラーの表面を更新し、樹脂と無機フィラーの界面に相当する面積を増すことが不可欠である。そのための混練機としては、通常の単軸押出機や同方向2軸押出機では滞留時間が短く高充填が難しい。さらに、本発明で使用する気相法炭素繊維では、嵩比重が0.01〜0.1程度と、非常に小さく、ふわふわなものであり、空気を巻き込みやすく、通常の単軸押出機や同方向2軸押出機では脱気が難しく、高充填は不可能である。高充填でき、繊維の破断を極力抑える混練機として、バッチ式の加圧ニーダーが有効であり、本発明では使用した。バッチ式の加圧ニーダーで混練したものを、固化するまえに、単軸押出機に投入して、ペレット化を行うことができる。   Furthermore, in order to highly fill the inorganic filler in the resin, wetting of the molten resin and the inorganic filler is very important, and the surface of the inorganic filler is renewed during the melt kneading, which corresponds to the interface between the resin and the inorganic filler. It is essential to increase the area. As a kneading machine for that purpose, a normal single-screw extruder or a co-directional twin-screw extruder has a short residence time and high filling is difficult. Furthermore, the vapor grown carbon fiber used in the present invention has a bulk specific gravity of about 0.01 to 0.1, which is very small and fluffy, and is easy to entrain air. Degassing is difficult with a directional twin screw extruder, and high filling is impossible. A batch-type pressure kneader is effective as a kneader capable of high filling and suppressing fiber breakage as much as possible, and was used in the present invention. A material kneaded by a batch type pressure kneader can be put into a single screw extruder and pelletized before solidification.

また、バッチ式加圧ニーダーと単軸押出機を連続して使用せずに、繊維に高せん断力をかけずに、繊維表面を更新でき、分散性良好で、押出機内での内圧がなく、空気を多く含んだ気相法炭素繊維等を脱気でき、高充填可能な押出機を使用することが好ましいこの様な特殊単軸押出機として、往復動単軸スクリュー押出機(コペリオン・ブス社製コニーダー)が使用できる。即ち、所定量の各成分をタンブラーミキサーなどの混合機で混合し、この混合物を往復動単軸スクリュー押出機に投入し、ペレット化を行う方法が使用できる。   In addition, without using a batch-type pressure kneader and a single-screw extruder continuously, the fiber surface can be renewed without applying high shearing force to the fiber, good dispersibility, no internal pressure in the extruder, A reciprocating single-screw extruder (Coperion Bus Co., Ltd.) is a special single-screw extruder that can degas a gas-phase carbon fiber containing a large amount of air and preferably uses a highly-fillable extruder. Connieder) can be used. That is, a method in which a predetermined amount of each component is mixed with a mixer such as a tumbler mixer, the mixture is put into a reciprocating single screw extruder, and pelletized can be used.

本発明に係る摺動材組成物は、力学的特性、耐熱性、熱伝導性に優れ、摺動性に関しては、摩擦係数および摩耗量ともに小さく、限界PV値は非常に大きい。
即ち、摺動部材が一定の荷重P(kg/cm2)においてある周速度V(cm/sec)以上になったとき、溶けたり焼き付いたりする負荷の限界値PとVとの積を意味し、本発明の摺動材組成物はこの値が極めて高い摺動部材を得ることができる。
The sliding material composition according to the present invention is excellent in mechanical properties, heat resistance, and thermal conductivity. Regarding sliding properties, both the friction coefficient and the wear amount are small, and the limit PV value is very large.
In other words, it means the product of the limit values P and V of the load that melts or seizes when the sliding member exceeds a certain peripheral speed V (cm / sec) at a constant load P (kg / cm 2 ). The sliding material composition of the present invention can provide a sliding member having an extremely high value.

なお、合成樹脂材料は一般に、金属材料に比して耐熱性、剛性等の機械的性質が低く、又熱伝導製が低いという問題があるが、本発明の摺動材組成物は、特定の気相法炭素繊維を繊維の破断を少なくして配合することにより、
(1)熱変形温度が熱可塑性樹脂を使用した場合であっても160℃以上、好ましくは180℃以上、より好ましくは200℃以上有することができる。
(2)気相法炭素繊維を配合することにより合成樹脂であるにもかかわらず動摩擦係数が0.6以下、好ましくは0.5以下を容易に確保できる。このため比摩耗量も小さく維持できる。
Synthetic resin materials generally have a problem that mechanical properties such as heat resistance and rigidity are low compared to metal materials, and heat conduction is low, but the sliding material composition of the present invention has a specific property. By blending vapor grown carbon fiber with less fiber breakage,
(1) Even when a thermoplastic resin is used, the heat distortion temperature can be 160 ° C or higher, preferably 180 ° C or higher, more preferably 200 ° C or higher.
(2) By blending vapor grown carbon fiber, the coefficient of dynamic friction can be easily secured to 0.6 or less, preferably 0.5 or less despite being a synthetic resin. For this reason, the specific wear amount can be kept small.

(3)熱伝導率も、気相法炭素繊維を繊維の破断を少なくすることにより1W/mK以上、好ましくは1.8W/mK以上、より好ましくは2W/mK以上を容易に達成できる。このことは、高速の摺動条件においても熱の分散を良くし、摺動部の高温化を防止できるために重要な条件の一つである。
(4)曲げ弾性率も、4000Mpa以上、好ましくは5000Mpa以上、より好ましくは5500Mpa以上を確保できる。このことは合成樹脂摺動材として比較的重荷重の摺動材として使用することが可能となるものである。
(3) The thermal conductivity of the vapor grown carbon fiber can be easily achieved at 1 W / mK or higher, preferably 1.8 W / mK or higher, more preferably 2 W / mK or higher by reducing fiber breakage. This is one of the important conditions in order to improve heat dispersion even under high-speed sliding conditions and to prevent the sliding part from becoming hot.
(4) The flexural modulus can also be secured to 4000 Mpa or more, preferably 5000 Mpa or more, more preferably 5500 Mpa or more. This can be used as a relatively heavy load sliding material as a synthetic resin sliding material.

(5)本発明の摺動材組成物の大きな特徴は、特定の気相法炭素繊維を大量に配合しているにも拘わらず、流動性を高く維持できる点にある。このことは本組成物から摺動部材を成形する際に、生産性、製品の成形精度を高く維持できる点において極めて重要な性質であり、摺動材組成物として極めて優れた材料となるものである。
(6)本発明の摺動材組成物は、原則として合成樹脂と気相法炭素繊維からなるものであるため、摺動部材に望まれている自己潤滑性を有しているため、潤滑油などを必要とせずに無給油で使用できるだけでなく、それ自体の剛性が小さいため相手材がアルミニウムなどの軟質材であってもそれを傷つけることが防止できる利点を有している。
(5) A major feature of the sliding material composition of the present invention is that the fluidity can be maintained high despite the large amount of the specific vapor grown carbon fiber. This is an extremely important property in that the productivity and the molding accuracy of the product can be kept high when molding a sliding member from this composition, and it becomes an extremely excellent material as a sliding material composition. is there.
(6) Since the sliding material composition of the present invention is composed of a synthetic resin and vapor grown carbon fiber in principle, it has the self-lubricating property desired for the sliding member. In addition, it can be used without lubrication, and since it has a small rigidity, it can be prevented from being damaged even if the counterpart material is a soft material such as aluminum.

そのため、自動車、電気・電子分野等の摺動部材として広範な用途に使用できる。これら製品を製造する際には、従来から知られているプラスチックの成形法によることが出来る。成形法としては、例えば、射出成形法、中空成形法、押出成形法、シート成形法、熱成形法、回転成形法、積層成形法、トランスファー成形法などが挙げられる。   Therefore, it can be used for a wide range of applications as a sliding member in automobiles, electrical / electronic fields and the like. When these products are manufactured, conventionally known plastic molding methods can be used. Examples of the molding method include an injection molding method, a hollow molding method, an extrusion molding method, a sheet molding method, a thermoforming method, a rotational molding method, a laminate molding method, and a transfer molding method.

以下に本発明を実施例によって、詳しく説明するが、本発明はこれらの範囲に限定されるものではない。
(実施例1〜9、比較例1〜8)
実施例および比較例の配合を表1、表2に示す。これらの配合条件に従って、樹脂および導電性フィラーをアスペクト比を低下させない方法で溶融混練し、その混練物を射出成形して各種試験片(HDT用、曲げ試験用、熱伝導測定用)を作成した。使用した樹脂、導電性フィラー、混練条件、成形条件、評価方法の詳細については以下に示した。各実施例および比較例の各種試験結果を表3、表4に示す。
EXAMPLES The present invention will be described in detail below with reference to examples, but the present invention is not limited to these ranges.
(Examples 1-9, Comparative Examples 1-8)
Tables 1 and 2 show the formulations of Examples and Comparative Examples. In accordance with these blending conditions, the resin and the conductive filler were melt-kneaded by a method that does not reduce the aspect ratio, and the kneaded product was injection molded to prepare various test pieces (for HDT, for bending test, for heat conduction measurement). . Details of the used resin, conductive filler, kneading conditions, molding conditions, and evaluation method are shown below. Tables 3 and 4 show various test results of the examples and comparative examples.

混練方法
[使用装置]
トーシン(株)製加圧ニーダー(混合容量10リットル)で溶融混練した後、田辺プラスチックス(株)製30mmφ単軸押出機を使用してペレット化を行った。
Kneading method [use equipment]
After melt-kneading with a pressure kneader (mixing capacity 10 liters) manufactured by Toshin Co., Ltd., pelletization was performed using a Tanabe Plastics 30 mmφ single screw extruder.

成形方法
(イ)熱可塑性樹脂
住友重機(株)製サイキャップ型締力75トン射出成形機を使用して、各種試験片を成形した。
(ロ) 熱硬化性樹脂
名機製作所(株)製 M−70C−TSを使用して、各種試験片を作成した。
Molding method (A) Thermoplastic resin Various test pieces were molded using a CYCAP mold clamping force 75-ton injection molding machine manufactured by Sumitomo Heavy Industries, Ltd.
(B) Thermosetting resin Various test pieces were prepared using M-70C-TS manufactured by Meiki Seisakusho Co., Ltd.

気相法炭素繊維
(イ) VGCF(登録商標):昭和電工製気相法炭素繊維(繊維径0.1〜0.2μm、繊維長10μm)を使用した。嵩比重0.04、比表面積13m2/g、アスペクト比70
(ロ) VGNF(登録商標):昭和電工製気相法炭素繊維(繊維径0.08〜0.12μm、繊維長50μm)を使用した。嵩比重0.02、比表面積20m2/g、アスペクト比500
(ハ) 気相法炭素繊維−H:昭和電工製気相法炭素繊維(繊維径0.1〜0.2μm、繊維長10μm)を使用した。嵩比重0.08、比表面積13m2/g、アスペクト比70
(ニ) 気相法炭素繊維粉砕品:上記気相法炭素繊維を粉砕機で粉砕し、アスペクト比を35にしたものを使用した。嵩比重0.12、比表面積14m2g、アスペクト比35
Vapor grown carbon fiber (I) VGCF (registered trademark): Vapor grown carbon fiber (fiber diameter 0.1 to 0.2 μm, fiber length 10 μm) manufactured by Showa Denko was used. Bulk specific gravity 0.04, specific surface area 13m 2 / g, aspect ratio 70
(B) VGNF (registered trademark): Vapor-grown carbon fiber (fiber diameter 0.08 to 0.12 μm, fiber length 50 μm) manufactured by Showa Denko was used. Bulk specific gravity 0.02, specific surface area 20m 2 / g, aspect ratio 500
(C) Vapor grown carbon fiber-H: Vapor grown carbon fiber (fiber diameter 0.1 to 0.2 μm, fiber length 10 μm) manufactured by Showa Denko was used. Bulk specific gravity 0.08, specific surface area 13m 2 / g, aspect ratio 70
(D) Vapor-grown carbon fiber pulverized product: The vapor-grown carbon fiber was pulverized with a pulverizer and the aspect ratio was 35. Bulk specific gravity 0.12, specific surface area 14m 2 g, aspect ratio 35

炭素繊維(CF)
東邦テナックス(株)製の導電性用ベスファイトHTA−C6−SRを使用した。繊維径7μm、繊維長6mm比表面積2m2/g、嵩比重0.8
カーボンナノチューブ:CNT(中空炭素フィブリル)
ハイペリオンキャタリシス(株)製PA66マスターバッチ(RMB4620−00):CNT20質量%含有)を使用した。比表面積250m2/g、繊維径10nm 繊維長5μm
Carbon fiber (CF)
Conductive Besfight HTA-C6-SR manufactured by Toho Tenax Co., Ltd. was used. Fiber diameter 7 μm, fiber length 6 mm, specific surface area 2 m 2 / g, bulk specific gravity 0.8
Carbon nanotube: CNT (hollow carbon fibril)
A PA66 masterbatch (RMB 4620-00) manufactured by Hyperion Catalysis Co., Ltd. (containing 20% by mass of CNT) was used. Specific surface area 250 m 2 / g, fiber diameter 10 nm, fiber length 5 μm

使用したプラスチック
(イ) 熱可塑性樹脂
ポリアミド66(PA66):東レ(株)製 アミラン CM3001
ポリフェニレンサルファイド(PPS):東ソー(株)製サスティールB385
(ロ) 熱硬化性樹脂
アリルエステル樹脂:昭和電工製、AA101,粘度630000cps(30℃)有機過酸化物として、ジクミルパーオキサイド[日本油脂製パークミルD]を使用した。
Used plastic (I) Thermoplastic resin Polyamide 66 (PA66): Amilan CM3001 manufactured by Toray Industries, Inc.
Polyphenylene sulfide (PPS): Tosoh Co., Ltd.
(B) Thermosetting resin Allyl ester resin: AA101 manufactured by Showa Denko, viscosity 630000 cps (30 ° C.) Dicumyl peroxide [Nippon Oil & Fats Park Mill D] was used as the organic peroxide.

評価物性
(イ) 摺動特性:東洋精機(株)製スラスト摩耗試験機を使用して相手材アルミニウムを使用して、動摩擦係数、摩耗量を評価した。試験サンプルは、100×100×2mm厚の平板を切削加工して使用した。アルミニウム材の摩耗量は、測定2時間後の摩耗量を測定した。
(ロ) 熱変形温度HDT(大荷重):ASTM D−648に準拠した。
(ハ) 曲げ弾性率は、ASTM D−790に準拠した。
Evaluation physical properties (A) Sliding characteristics: Using a thrust wear tester manufactured by Toyo Seiki Co., Ltd., the counterpart material aluminum was used to evaluate the dynamic friction coefficient and the wear amount. As the test sample, a flat plate having a thickness of 100 × 100 × 2 mm was cut and used. The amount of wear of the aluminum material was measured after 2 hours of measurement.
(B) Thermal deformation temperature HDT (large load): compliant with ASTM D-648.
(C) The flexural modulus was based on ASTM D-790.

(ニ) 熱伝導率:京都電子工業(株)製迅速熱伝導率計を使用し、熱線法で測定した。試験サンプルは100×100×2mm厚の平板を5枚重ねて使用した。
(ホ) 成形品に含まれる炭素繊維のアスペクト比:不活性ガス(アルゴン)炉で600℃で熱処理し、残った繊維状物を電子顕微鏡(SEM)観察し、測定した。
(ヘ) 限界PV値:摩耗速度30cm/secを一定とし、荷重を変化させて2時間運転後、摩擦面を観察し、判定した。
(ト) 組成物の流動性:MI(メルトインデックス)測定を行った。PPS樹脂の場合は、320℃、PA66樹脂の場合は、280℃、アリルエステル樹脂の場合は、60℃で2.16kg荷重での10分間での組成物の流出量を測定した。
(チ)炭素繊維の破断率(%): 混合・混練する前の炭素繊維のアスペクト比と組成物成形品の炭素繊維のアスペクト比の比率。
炭素繊維の破断率(%)={1−(組成物成形品の炭素繊維のアスペクト比/
混合・混練する前の炭素繊維のアスペクト比)}×100
(D) Thermal conductivity: Measured by a hot wire method using a rapid thermal conductivity meter manufactured by Kyoto Electronics Industry Co., Ltd. As the test sample, five flat plates each having a thickness of 100 × 100 × 2 mm were used.
(E) Aspect ratio of carbon fiber contained in the molded product: heat treatment was performed at 600 ° C. in an inert gas (argon) furnace, and the remaining fibrous material was observed and measured with an electron microscope (SEM).
(F) Critical PV value: The wear rate was fixed at 30 cm / sec, the load was changed, and after 2 hours of operation, the friction surface was observed and judged.
(G) Fluidity of the composition: MI (melt index) was measured. In the case of PPS resin, the flow rate of the composition was measured at 320 ° C., in the case of PA66 resin at 280 ° C., and in the case of allyl ester resin at 60 ° C. under a load of 2.16 kg for 10 minutes.
(H) Breaking rate of carbon fiber (%): Ratio of the aspect ratio of the carbon fiber before mixing and kneading to the aspect ratio of the carbon fiber of the composition molded product.
Carbon fiber breaking rate (%) = {1− (aspect ratio of carbon fiber of composition molded product /
Carbon fiber aspect ratio before mixing and kneading)} × 100

Figure 2005325346
Figure 2005325346

Figure 2005325346
Figure 2005325346

Figure 2005325346
Figure 2005325346

Figure 2005325346
Figure 2005325346

主として、力学的特性の向上を目的として、炭素繊維樹脂複合材が多く使用され、航空・宇宙、自動車、スポーツ、工業材料等、広い分野で使用されてきている。これらの繊維充填材として用いられている炭素繊維は、主にアクリル系繊維あるいはピッチ系繊維を焼成したものである。このような炭素繊維を使用した複合材は、力学的特性、耐熱性は優れるものの、流動性が低く、耐摩耗性は不満足であるため、各種工業用の摺動部材として使用したときは、生産性、精密性に欠け、使用寿命が短く、実用に供しても必ずしも望ましい結果が得られていない。更に、一般に摺動部材の相手材は鋼が一般的であるが、今後、アルミニウム等の軟質の軽量化素材が使われる傾向にあるが、本発明の摺動材組成物からの摺動部材はこれを傷つけることがないので安全に使用できる。   Carbon fiber resin composite materials are often used mainly for the purpose of improving mechanical properties, and have been used in a wide range of fields such as aerospace, automobiles, sports, and industrial materials. The carbon fibers used as these fiber fillers are mainly baked acrylic fibers or pitch fibers. Although composite materials using such carbon fibers have excellent mechanical properties and heat resistance, they are poor in fluidity and unsatisfactory in wear resistance, so when used as sliding members for various industries, they are produced. It lacks in accuracy and precision, has a short service life, and does not always give desirable results even when put to practical use. Furthermore, in general, the mating material of the sliding member is generally steel, but in the future, there is a tendency to use a soft and lightweight material such as aluminum, but the sliding member from the sliding material composition of the present invention is Since this is not hurt, it can be used safely.

動摩擦計数と気相法炭素繊維配合量の依存性。Dependence of dynamic friction coefficient and gas phase carbon fiber content.

Claims (10)

マトリックス合成樹脂と、繊維径:50〜200nm、アスペクト比:40〜1000、ラマン散乱スペクトルの1580cm-1及び1360cm-1のピーク強度比(I0=I1360/I1580):0.1〜1の気相法炭素繊維を混練した、ASTM D 648 大荷重の熱変形温度が160℃以上、であることを特徴とする摺動材組成物。 And the matrix synthetic resin, fiber diameter: 50 to 200 nm, aspect ratio: 40 to 1000, 1580 cm -1 and peak intensity ratio of 1360 cm -1 of the Raman scattering spectrum (I 0 = I 1360 / I 1580): 0.1~1 A sliding material composition characterized in that the heat distortion temperature of ASTM D 648 heavy load is 160 ° C. or higher, kneaded with vapor-grown carbon fiber. 気相法炭素繊維を10質量%〜70質量%配合した請求項1に記載の摺動材組成物。   The sliding material composition of Claim 1 which mix | blended 10 mass%-70 mass% of vapor grown carbon fiber. 熱伝導率が1W/mK以上である請求項1または2に記載の摺動材組成物。   The sliding material composition according to claim 1, wherein the thermal conductivity is 1 W / mK or more. 曲げ弾性率が4000MPa以上である請求項1〜3のいずれかに1項に記載の摺動材組成物。   The sliding material composition according to any one of claims 1 to 3, wherein the flexural modulus is 4000 MPa or more. 熱可塑性樹脂と繊維径:50〜200nm、アスペクト比:40〜1000、ラマン散乱スペクトルの1580cm-1及び1360cm-1のピーク強度比(I0=I1360/I1580):0.1〜1、嵩比重:0.01〜0.1の気相法炭素繊維を、炭素繊維の破断率を20%以下に抑え、高せん断力をかけないで混練を行うことを特徴とする摺動材組成物の製造方法。 Thermoplastic resin and fiber diameter: 50 to 200 nm, aspect ratio: 40 to 1000, 1580 cm -1 and peak intensity ratio of 1360 cm -1 of the Raman scattering spectrum (I 0 = I 1360 / I 1580): 0.1~1, Bulking specific gravity: A sliding material composition characterized by kneading a vapor grown carbon fiber of 0.01 to 0.1 without limiting the breaking rate of the carbon fiber to 20% or less and applying a high shearing force. Manufacturing method. 熱可塑性樹脂と気相法炭素繊維を混練する際に、複合材組成物中に気相法炭素繊維を10質量%〜70質量%を配合した請求項5に記載の摺動材組成物の製造方法。   6. The production of the sliding material composition according to claim 5, wherein when the thermoplastic resin and the vapor grown carbon fiber are kneaded, 10 mass% to 70 mass% of the vapor grown carbon fiber is blended in the composite composition. Method. 熱可塑性樹脂と気相法炭素繊維を混練する際に、炭素繊維の破断率を20%以下に抑え、加圧ニーダーで溶融混練した後、単軸押出機で、または往復動単軸スクリュー押出機でペレット化する請求項5または6に記載の摺動材組成物の製造方法。   When kneading a thermoplastic resin and vapor-grown carbon fiber, the fracture rate of the carbon fiber is suppressed to 20% or less, and after melt-kneading with a pressure kneader, a single screw extruder or a reciprocating single screw extruder The manufacturing method of the sliding material composition of Claim 5 or 6 pelletized by. 請求項5〜7のいずれか1項に記載の摺動材組成物の製造方法によって製造された摺動材組成物を、金型温度を冷却時間が5秒で良品率が95%以上となる射出成形時の温度より20℃〜40℃高温度で成形することを特徴とする摺動材成形体の製造方法。   The sliding material composition manufactured by the manufacturing method of the sliding material composition according to any one of claims 5 to 7, wherein the non-defective product ratio is 95% or more when the mold temperature is cooled for 5 seconds. A method for producing a sliding material molded body, characterized by molding at a temperature 20 to 40 ° C higher than the temperature at the time of injection molding. 請求項5〜7のいずれか1項に記載の摺動材組成物の製造方法によって製造された樹脂組成物を用いた摺動合成樹脂成形体。   The sliding synthetic resin molding using the resin composition manufactured by the manufacturing method of the sliding material composition of any one of Claims 5-7. 請求項5〜7のいずれか1項に記載の摺動材組成物の製造法によって製造された樹脂組成物を用いた無潤滑摺動材。   The non-lubricating sliding material using the resin composition manufactured by the manufacturing method of the sliding material composition of any one of Claims 5-7.
JP2005116549A 2004-04-15 2005-04-14 Sliding material composition and its manufacturing method Pending JP2005325346A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005116549A JP2005325346A (en) 2004-04-15 2005-04-14 Sliding material composition and its manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004120431 2004-04-15
JP2005116549A JP2005325346A (en) 2004-04-15 2005-04-14 Sliding material composition and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2005325346A true JP2005325346A (en) 2005-11-24

Family

ID=35471932

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005116549A Pending JP2005325346A (en) 2004-04-15 2005-04-14 Sliding material composition and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2005325346A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006225649A (en) * 2005-01-21 2006-08-31 Showa Denko Kk Heat-resistant sliding resin composition, its production method and use
JP2008037948A (en) * 2006-08-03 2008-02-21 Du Pont Toray Co Ltd Elastomer resin composition and drive-transmitting part comprising the elastomer resin composition
JP2010175020A (en) * 2009-01-30 2010-08-12 Starlite Co Ltd Bearing device with sealing function
JP2010275376A (en) * 2009-05-26 2010-12-09 Bridgestone Corp Rubber composition and tire using the same
JP2013508533A (en) * 2009-10-27 2013-03-07 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Compositions and articles for high temperature wear applications
JP2013199608A (en) * 2012-03-26 2013-10-03 Yokoi Seisakusho:Kk Stirring member

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02298554A (en) * 1989-05-15 1990-12-10 Asahi Chem Ind Co Ltd Resin composition for electrically conductive sliding member
JPH0753848A (en) * 1993-06-10 1995-02-28 Toray Ind Inc Resin composition
JPH08259750A (en) * 1995-03-24 1996-10-08 Ube Ind Ltd Production of fiber-reinforced polypropylene composition
JPH10281262A (en) * 1997-04-11 1998-10-23 Koyo Seiko Co Ltd Motive power transmission member
JP2000281995A (en) * 1999-03-30 2000-10-10 Polymatech Co Ltd Thermally conductive adhesive film and semiconductor device
JP2000290514A (en) * 1999-04-13 2000-10-17 Toyo Ink Mfg Co Ltd Conductive resin composition and manufacture thereof
JP2003003621A (en) * 2001-04-17 2003-01-08 Sekisui Chem Co Ltd Plastic building material and method for producing the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02298554A (en) * 1989-05-15 1990-12-10 Asahi Chem Ind Co Ltd Resin composition for electrically conductive sliding member
JPH0753848A (en) * 1993-06-10 1995-02-28 Toray Ind Inc Resin composition
JPH08259750A (en) * 1995-03-24 1996-10-08 Ube Ind Ltd Production of fiber-reinforced polypropylene composition
JPH10281262A (en) * 1997-04-11 1998-10-23 Koyo Seiko Co Ltd Motive power transmission member
JP2000281995A (en) * 1999-03-30 2000-10-10 Polymatech Co Ltd Thermally conductive adhesive film and semiconductor device
JP2000290514A (en) * 1999-04-13 2000-10-17 Toyo Ink Mfg Co Ltd Conductive resin composition and manufacture thereof
JP2003003621A (en) * 2001-04-17 2003-01-08 Sekisui Chem Co Ltd Plastic building material and method for producing the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006225649A (en) * 2005-01-21 2006-08-31 Showa Denko Kk Heat-resistant sliding resin composition, its production method and use
JP2008037948A (en) * 2006-08-03 2008-02-21 Du Pont Toray Co Ltd Elastomer resin composition and drive-transmitting part comprising the elastomer resin composition
JP2010175020A (en) * 2009-01-30 2010-08-12 Starlite Co Ltd Bearing device with sealing function
JP2010275376A (en) * 2009-05-26 2010-12-09 Bridgestone Corp Rubber composition and tire using the same
JP2013508533A (en) * 2009-10-27 2013-03-07 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Compositions and articles for high temperature wear applications
JP2013199608A (en) * 2012-03-26 2013-10-03 Yokoi Seisakusho:Kk Stirring member

Similar Documents

Publication Publication Date Title
EP1735376B1 (en) Method of producing a conductive resin composition
JP4963831B2 (en) Semiconductive structure, conductive and / or thermally conductive structure, method for producing the structure, and use thereof
JP5889945B2 (en) Seal ring
JP5020515B2 (en) Heat-resistant sliding resin composition, production method and use thereof
JP4937523B2 (en) COMPOSITE COMPOSITION AND PROCESS FOR PRODUCING THE SAME
JP2006097006A (en) Method for producing electrically conductive resin composition and application thereof
JP2005325346A (en) Sliding material composition and its manufacturing method
Zhan et al. Electrical, thermal, and mechanical properties of polyarylene ether nitriles/graphite nanosheets nanocomposites prepared by masterbatch route
JP2006089710A (en) Carbon-based conductive filler and composition thereof
JP6527010B2 (en) Thermally conductive resin molding and method for producing the same
WO2007055338A1 (en) Resin molding material
US20190144616A1 (en) Thermoplastic resin composition and method for producing thermoplastic resin composition
JP4386633B2 (en) Fluoro resin composition
JP4589154B2 (en) Seal ring
Kurien et al. Comparative mechanical, tribological and morphological properties of epoxy resin composites reinforced with multi-walled carbon nanotubes
Mohsenzadeh et al. Synergetic impacts of two rigid nano‐scale inclusions on the mechanical and thermal performance of POM/carbon black/CaCO3 ternary nanocomposite systems
JP2015000937A (en) Heat-conductive resin composition
Li et al. Effectual dispersion of carbon nanofibers in polyetherimide composites and their mechanical and tribological properties
US20150126663A1 (en) Tribological aromatic polyimide compositions
JPH10281132A (en) Resin nut, manufacture thereof, and slide screw device
JP2008038062A (en) Sliding material composition
JP2006097005A (en) Electrically conductive resin composition and method for producing the same
CN111269530B (en) Polyether-ether-ketone-based polymer alloy composite material and preparation method and application thereof
Ruckdäschel et al. On the friction and wear of carbon nanofiber–reinforced PEEK–based polymer composites
JP5560649B2 (en) Resin composition for sliding member and resin sliding member

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070705

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100813

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100817

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101221