JP2006193649A - Carbon fiber-containing resin molded product - Google Patents

Carbon fiber-containing resin molded product Download PDF

Info

Publication number
JP2006193649A
JP2006193649A JP2005007717A JP2005007717A JP2006193649A JP 2006193649 A JP2006193649 A JP 2006193649A JP 2005007717 A JP2005007717 A JP 2005007717A JP 2005007717 A JP2005007717 A JP 2005007717A JP 2006193649 A JP2006193649 A JP 2006193649A
Authority
JP
Japan
Prior art keywords
area ratio
resin molded
carbon fiber
area
molded body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005007717A
Other languages
Japanese (ja)
Inventor
Hirobumi Takase
博文 高瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takiron Co Ltd
Original Assignee
Takiron Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takiron Co Ltd filed Critical Takiron Co Ltd
Priority to JP2005007717A priority Critical patent/JP2006193649A/en
Publication of JP2006193649A publication Critical patent/JP2006193649A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a resin molded product which contains a small amount of an extrafine carbon fiber in a nearly best dispersion state to exhibit electrical insulation or conductivity as much as possible. <P>SOLUTION: The carbon fiber-containing molded product comprises 0.05-15 pts.wt. of the extrafine carbon fiber dispersed in 100 pts.wt. of a thermoplastic resin, wherein the extrafine carbon fiber has an average aspect ratio of 20-100 and an area rate [Ar] of 0.2-5.0% as calculated from a SEM photograph, provided that the SEM photograph has preferably a maximum particle area of 5.0×10<SP>1</SP>μm<SP>2</SP>or less. The area rate äAr}: a 1 μm thick slice piece of the resin molded product is taken a photograph of at 30 magnification by a transmission electron microscope, from the image of which particles having an area of 1.23×10<SP>-1</SP>μm<SP>2</SP>or more are extracted, followed by totaling their areas to represent as a percentage äAr} in the visual field. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、極細炭素繊維を含有させた樹脂成形体に関し、更に詳しくは、その極細炭素繊維の含有量で可能な最大限に近い制電性ないし導電性を発現するように極細炭素繊維を最適に近い分散状態で分散させた樹脂成形体に関する。   The present invention relates to a resin molded body containing ultrafine carbon fibers. More specifically, the ultrafine carbon fibers are optimized so as to express the antistatic property or conductivity close to the maximum possible with the content of the ultrafine carbon fibers. It is related with the resin molding disperse | distributed in the dispersion state close | similar to.

近年、合成樹脂中に極細炭素繊維を分散させて制電性ないし導電性を発現させるようにした樹脂組成物や樹脂成形体の研究開発が行われるようになってきた。その一例として、樹脂中にカーボンナノチューブを分散させた樹脂組成物であって、カーボンナノチューブ中に2〜5層の多層カーボンナノチューブの占める割合が50%以上である樹脂組成物が提案されている(特許文献1)。また、カーボンナノチューブと樹脂と充填材からなる組成物であって、カーボンナノチューブ同士が実質的に凝集体を形成しないで絡み合いなく樹脂中に0.01〜1.8重量%分散させた組成物やその成形体も提案されている(特許文献2)。   In recent years, research and development have been carried out on resin compositions and resin molded articles in which ultrafine carbon fibers are dispersed in a synthetic resin so as to exhibit antistatic properties or conductivity. As an example, a resin composition in which carbon nanotubes are dispersed in a resin, in which the proportion of 2 to 5 multilayer carbon nanotubes in the carbon nanotubes is 50% or more has been proposed ( Patent Document 1). Further, a composition comprising carbon nanotubes, a resin and a filler, wherein the carbon nanotubes are dispersed in the resin in an amount of 0.01 to 1.8% by weight without substantially entangled without forming an aggregate. The molded body has also been proposed (Patent Document 2).

しかしながら、上記特許文献1,2の樹脂組成物やその成形体は、カーボンナノチューブの分散の程度や状態が数値化されて示されてないため客観的に把握し難く、そのカーボンナノチューブの含有量で可能な最大限に近い制電性ないし導電性を発現できるような分散状態となっているのかどうか不明であり、また、制電性ないし導電性とカーボンナノチューブのアスペクト比や分散均一性との関係も不明であることから、少量のカーボンナノチューブで可能な最大限に近い制電性ないし導電性を発現できる樹脂組成物やその成形体を得ることが難しいという問題があった。
特開2003−306607号公報 特開2003−12939号公報
However, the resin composition and the molded body thereof described in Patent Documents 1 and 2 are difficult to grasp objectively because the degree and state of dispersion of the carbon nanotubes are not numerically shown. It is unclear whether it is in a dispersion state that can exhibit antistaticity or conductivity that is close to the maximum possible, and the relationship between antistaticity or conductivity and the aspect ratio and dispersion uniformity of carbon nanotubes Since it is also unclear, there is a problem that it is difficult to obtain a resin composition and its molded body that can exhibit antistaticity or conductivity that is as close to the maximum as possible with a small amount of carbon nanotubes.
JP 2003-306607 A JP 2003-12939 A

本発明は上記の問題を解決すべくなされたもので、極細炭素繊維の分散の程度を、独自の分散パラメーターである面積率[Ar]によって数値化し、この面積率[Ar]と、極細炭素繊維の長さ又はアスペクト比と、体積抵抗率[ρ]との関係を明らかにすると共に、これらと分散均一性との関係をも明らかにして、少ない繊維含有量で可能な最大限に近い制電性ないし導電性を発現できるように極細炭素繊維を最適に近い分散状態で分散させた樹脂成形体を提供することを解決課題としている。 The present invention has been made to solve the above problem, and the degree of dispersion of the ultrafine carbon fiber is quantified by the area ratio [Ar], which is a unique dispersion parameter. In addition to clarifying the relationship between the length or aspect ratio of the resin and the volume resistivity [ρ v ], the relationship between these and the dispersion uniformity is also clarified to achieve the maximum possible control with a small fiber content. An object of the present invention is to provide a resin molded body in which ultrafine carbon fibers are dispersed in a dispersion state that is close to optimum so as to exhibit electrical conductivity or electrical conductivity.

上記課題を解決するため、本発明に係る炭素繊維含有樹脂成形体は、100重量部の熱可塑性樹脂中に0.05〜15重量部の極細炭素繊維を分散させた樹脂成形体であって、極細炭素繊維の平均アスペクト比が20〜100であり、以下に定義する面積率[Ar]が0.2〜5.0%であることを特徴とする。
面積率[Ar]:樹脂成形体の厚さ1μmのスライス片を透過型実体顕微鏡にて30倍で写真撮影し、その画像内に占める1.23×10−1μm以上の面積の粒子を抽出し、その視野内に占める該粒子の合計面積を百分率で表したもの。
本発明において、樹脂成形体中に分散している極細炭素繊維のアスペクト比とは、原則として1本ずつ分散している極細炭素繊維の長さを直径で除した値をいうが、後述する単層カーボンナノチューブのように複数本集まって束になり、この束が1束ずつ分離して分散している場合は、例外的にこの1束の長さを1束の直径で除した値をいうものとする。
In order to solve the above problems, a carbon fiber-containing resin molded body according to the present invention is a resin molded body in which 0.05 to 15 parts by weight of ultrafine carbon fibers are dispersed in 100 parts by weight of a thermoplastic resin, The average aspect ratio of the ultrafine carbon fiber is 20 to 100, and the area ratio [Ar] defined below is 0.2 to 5.0%.
Area ratio [Ar]: Photograph a slice of a resin molded body having a thickness of 1 μm at a magnification of 30 × with a transmission stereomicroscope, and particles having an area of 1.23 × 10 −1 μm 2 or more in the image. Extracted and expressed as a percentage of the total area of the particles in the field of view.
In the present invention, the aspect ratio of the ultrafine carbon fibers dispersed in the resin molded body is a value obtained by dividing the length of the ultrafine carbon fibers dispersed one by one by the diameter in principle. When a plurality of single-walled carbon nanotubes are gathered into a bundle, and the bundles are separated and dispersed one by one, the value is obtained by dividing the length of the bundle by the diameter of the bundle. Shall.

本発明の炭素繊維含有樹脂成形体においては、前記の面積率[Ar]を求めるときに抽出される粒子の最大面積が5.0×10μm以下であることが好ましい。また、極細炭素繊維が、単層カーボンナノチューブ又は直径が80nm以下の2層もしくは多層カーボンナノチューブであって、100重量部の熱可塑性樹脂中に0.05〜5重量部分散していることが好ましく、かかる樹脂成形体においては、面積率[Ar]を求めるときに抽出される粒子の最大面積が1.0×10μm以下であることが好ましい。そして、本発明では、複数のスライス片について求めた前記面積率[Ar]の標準偏差[σ]を分散均一性のパラメーターとするのが望ましく、この面積率[Ar]の標準偏差[σ]は、上記のカーボンナノチューブを0.05〜5重量部分散させた樹脂成形体の場合、0.5〜5の範囲にあることが好ましい。また、前記の面積率[Ar]は、いずれの樹脂成形体においても0.3〜2%の範囲にあることが一層好ましい。 In the carbon fiber-containing resin molded body of the present invention, it is preferable that the maximum area of the particles extracted when obtaining the area ratio [Ar] is 5.0 × 10 1 μm 2 or less. Further, it is preferable that the ultrafine carbon fiber is a single-walled carbon nanotube or a double-walled or multi-walled carbon nanotube having a diameter of 80 nm or less and is dispersed in an amount of 0.05 to 5 parts by weight in 100 parts by weight of a thermoplastic resin. In such a resin molded body, it is preferable that the maximum area of particles extracted when determining the area ratio [Ar] is 1.0 × 10 1 μm 2 or less. In the present invention, the standard deviation [σ] of the area ratio [Ar] obtained for a plurality of slice pieces is preferably used as a parameter for dispersion uniformity, and the standard deviation [σ] of the area ratio [Ar] is In the case of a resin molded body in which 0.05 to 5 parts by weight of the carbon nanotube is dispersed, it is preferably in the range of 0.5 to 5. The area ratio [Ar] is more preferably in the range of 0.3 to 2% in any resin molded body.

熱可塑性樹脂中に少量の極細炭素繊維を分散させた樹脂成形体は、後で詳しく説明するように、面積率[Ar]が小さくなるにつれて体積抵抗率[ρ]が低下し、ある面積率[Ar]以下になると体積抵抗率[ρ]は反転して増加するという関係がある。熱可塑性樹脂100重量部に対する極細炭素繊維の含有量が0.05〜15重量部である樹脂成形体の場合、その体積抵抗率[ρ]の極小点は面積率[Ar]が0.2〜5.0%の範囲内に存在する。また、極細炭素繊維の平均繊維長は面積率[Ar]が小さくなるほど短くなり、それに伴って平均アスペクト比が低下する。この極細炭素繊維の平均アスペクト比は、面積率[Ar]が0.2〜5.0%の範囲内では20〜100である。平均アスペクト比がこれより高い場合は、極細炭素繊維の凝集体が多く導電パスの形成が不十分であるため体積抵抗率[ρ]が高くなり、平均アスペクト比がこれより低い場合は、極細炭素繊維の凝集体が大幅に減少するけれども繊維の接触頻度が低下して導電パスが減少するため、やはり体積抵抗率[ρ]が高くなる。従って、本発明の樹脂成形体のように、100重量部の熱可塑性樹脂中に0.05〜15重量部の極細炭素繊維が分散し、平均アスペクト比が20〜100、面積率[Ar]が0.2〜5.0%の範囲内にあるものは、体積抵抗率[ρ]が極小値もくしは極小値に近い値を示し、その極細炭素繊維の含有量で可能な最大限に近い制電性ないし導電性を発現する最適に近い分散状態で極細炭素繊維が分散している成形体といえる。 As will be described in detail later, the resin molded body in which a small amount of ultrafine carbon fiber is dispersed in a thermoplastic resin has a volume resistivity [ρ v ] that decreases as the area ratio [Ar] decreases, and a certain area ratio. When [Ar] or less, the volume resistivity [ρ v ] is reversed and increases. In the case of a resin molded body having an ultrafine carbon fiber content of 0.05 to 15 parts by weight with respect to 100 parts by weight of the thermoplastic resin, the minimum point of the volume resistivity [ρ v ] has an area ratio [Ar] of 0.2. It exists in the range of -5.0%. In addition, the average fiber length of the ultrafine carbon fiber becomes shorter as the area ratio [Ar] becomes smaller, and the average aspect ratio decreases accordingly. The average aspect ratio of the ultrafine carbon fiber is 20 to 100 when the area ratio [Ar] is in the range of 0.2 to 5.0%. When the average aspect ratio is higher than this, the volume resistivity [ρ v ] is high because there are many aggregates of ultrafine carbon fibers and the formation of the conductive path is insufficient, and when the average aspect ratio is lower than this, Although the agglomeration of carbon fibers is greatly reduced, the volume resistivity [ρ v ] is also increased because the contact frequency of the fibers is reduced and the conductive paths are reduced. Therefore, as in the resin molded body of the present invention, 0.05 to 15 parts by weight of ultrafine carbon fibers are dispersed in 100 parts by weight of the thermoplastic resin, the average aspect ratio is 20 to 100, and the area ratio [Ar] is In the range of 0.2 to 5.0%, the volume resistivity [ρ v ] shows a minimum value or a value close to the minimum value, and the maximum possible with the content of the ultrafine carbon fiber. It can be said that it is a molded body in which ultrafine carbon fibers are dispersed in a nearly optimal dispersion state that exhibits close antistatic properties or electrical conductivity.

極細炭素繊維は熱可塑性樹脂中での分散が理想状態に近くなれば、熱可塑性樹脂100重量部に対し0.05〜15重量部と少量でも制電ないし導電機能を発現する。その中でも、カーボンナノチューブは機械的および電気的特性、熱伝導性等に優れているため含有量(分散量)を更に低減することができ、特に、単層カーボンナノチューブや、直径が80nm以下の2層もしくは多層カーボンナノチューブを分散させた樹脂成形体は、その含有量(分散量)を熱可塑性樹脂100重量部に対し0.05〜5重量部にまで低減しても、分散状態が良好であれば、満足な制電性ないし導電性を発現する。   When the dispersion in the thermoplastic resin is close to the ideal state, the ultrafine carbon fiber exhibits an antistatic or conductive function even in a small amount of 0.05 to 15 parts by weight with respect to 100 parts by weight of the thermoplastic resin. Among them, the carbon nanotubes are excellent in mechanical and electrical characteristics, thermal conductivity and the like, and therefore the content (dispersion amount) can be further reduced. In particular, single-walled carbon nanotubes and 2 having a diameter of 80 nm or less. Even if the resin molded body in which the single-walled or multi-walled carbon nanotubes are dispersed is reduced to 0.05 to 5 parts by weight with respect to 100 parts by weight of the thermoplastic resin, the dispersion state should be good. As a result, satisfactory antistatic or conductive properties are exhibited.

ところで、炭素繊維含有樹脂成形体の面積率[Ar]を求めるときに抽出される粒子の中に面積の大きいものがある場合は、極細炭素繊維が面積の大きい凝集体となって偏在しているのであるから良好な分散状態とはいえず、たとえ面積率[Ar]が0.2〜5.0%の範囲内でも体積抵抗率[ρ]は増大する。許容できる粒子の最大面積は5.0×10μmであり、これより大きい面積の粒子が存在する場合は、極細炭素繊維の分散が不十分で体積抵抗率[ρ]が極小値に近い値とならないので、抽出される粒子の最大面積は5.0×10μm以下であることが好ましい。但し、単層カーボンナノチューブや、直径が80nm以下の2層もしくは多層カーボンナノチューブを分散させた樹脂成形体の場合は、繊維の直径がもともと小さいので、許容できる粒子の最大面積は1.0×10μmであり、従って、抽出される粒子の最大面積はこれ以下であることが好ましい。 By the way, when there are particles having a large area among the particles extracted when obtaining the area ratio [Ar] of the carbon fiber-containing resin molded body, the ultrafine carbon fibers are unevenly distributed as aggregates having a large area. Therefore, it cannot be said that it is a good dispersion state, and the volume resistivity [ρ v ] increases even if the area ratio [Ar] is in the range of 0.2 to 5.0%. The maximum allowable particle area is 5.0 × 10 1 μm 2 , and when particles with an area larger than this are present, the dispersion of the ultrafine carbon fiber is insufficient and the volume resistivity [ρ v ] is minimized. Since the value is not close, the maximum area of the extracted particles is preferably 5.0 × 10 1 μm 2 or less. However, in the case of a single-walled carbon nanotube or a resin molded body in which a double-walled or multi-walled carbon nanotube having a diameter of 80 nm or less is dispersed, since the diameter of the fiber is originally small, the maximum allowable particle area is 1.0 × 10 6. 1 [mu] m is 2, therefore the maximum area of the particle to be extracted is preferably less than this.

面積率[Ar]の標準偏差[σ]は分散均一性のパラメーターとして好ましく採用されるものであり、後で詳しく説明するように、分散均一性が良いものほど、また、面積率[Ar]が小さいものほど、標準偏差[σ]は小さくなる。単層カーボンナノチューブや、直径が80nm以下の2層もしくは多層カーボンナノチューブを分散させた上記の樹脂成形体の場合、面積率[Ar]が0.2〜5.0%の範囲では、標準偏差[σ]は0.5〜5の範囲にあることが好ましい。標準偏差[σ]がこれより大きくなると、カーボンナノチューブの凝集体が多数偏在して導電パスが形成されにくいため、体積抵抗率[ρ]が高くなり、標準偏差[σ]がこれより小さくなると、カーボンナノチューブの分散均一性が大幅に向上するけれども平均アスペクト比が低下しすぎて導電パスが形成されにくいため、やはり体積抵抗率[ρ]は高くなる。上記のように面積率[Ar]の標準偏差[σ]が0.5〜5の範囲にある樹脂成形体は、カーボンナノチューブの分散均一性の程度と平均アスペクト比のバランスが良く、そのカーボンナノチューブの含有量で可能な最大限に近い制電性ないし導電性を発現する最適に近い分散状態で極細炭素繊維が分散して十分な導電パスを形成する。 The standard deviation [σ] of the area ratio [Ar] is preferably adopted as a parameter for dispersion uniformity. As described in detail later, the better the dispersion uniformity, the more the area ratio [Ar] is The smaller the value, the smaller the standard deviation [σ]. In the case of the above-mentioned resin molded body in which single-walled carbon nanotubes or two- or multi-walled carbon nanotubes having a diameter of 80 nm or less are dispersed, the standard deviation [Ar] is in the range of 0.2 to 5.0%. [sigma]] is preferably in the range of 0.5-5. When the standard deviation [σ] is larger than this, a large number of aggregates of carbon nanotubes are unevenly distributed and it is difficult to form a conductive path, so that the volume resistivity [ρ v ] is increased and the standard deviation [σ] is smaller than this. Although the dispersion uniformity of the carbon nanotubes is greatly improved, the volume resistivity [ρ v ] is also increased because the average aspect ratio is too low to form a conductive path. As described above, the resin molded product having the standard deviation [σ] of the area ratio [Ar] in the range of 0.5 to 5 has a good balance between the degree of dispersion uniformity of carbon nanotubes and the average aspect ratio. The ultrafine carbon fiber is dispersed in a nearly optimal dispersion state that exhibits the maximum possible antistatic property or conductivity with the content of bismuth to form a sufficient conductive path.

また、本発明の炭素繊維含有樹脂成形体は、後述するように、面積率[Ar]が1%の付近において体積抵抗率[ρ]の極小値を有する場合が多いので、面積率[Ar]が0.3〜2%とされた樹脂成形体は、その体積抵抗率[ρ]が極小値又はそれに極めて近い値となる。 Further, as described later, the carbon fiber-containing resin molded body of the present invention often has a minimum value of volume resistivity [ρ v ] in the vicinity of 1% of the area ratio [Ar]. ] Has a volume resistivity [ρ v ] of a minimum value or a value very close to it.

本発明を実施するに際しては、材料の熱可塑性樹脂として公知の種々の熱可塑性樹脂を使用できるが、その中でも、融点以上に加熱されると粘度が大きく低下する結晶性のポリフェニレンスルフィド、ポリエーテルエーテルケトン、ポリエチレンやポリプロピレン等のオレフィン系樹脂、或いは、非晶性のポリエーテルスルフォン、ポリエーテルイミド、ポリカーボネートや結晶性又は非晶性のポリエチレンテレフタレート等のエステル系樹脂が好ましく使用される。これらの樹脂は、前述したように極めて低粘度化するので、その低粘度溶融樹脂中での極細炭素繊維の分散性が他の熱可塑性樹脂よりも良いからである。特に、エステル系樹脂やオレフィン系樹脂は低粘度化しやすいために、より好ましく使用される。   In carrying out the present invention, various known thermoplastic resins can be used as the thermoplastic resin of the material. Among them, crystalline polyphenylene sulfide and polyether ether whose viscosity is greatly reduced when heated to a temperature higher than the melting point. Olefin resins such as ketone, polyethylene and polypropylene, or ester resins such as amorphous polyethersulfone, polyetherimide, polycarbonate and crystalline or amorphous polyethylene terephthalate are preferably used. This is because these resins have a very low viscosity as described above, and therefore the dispersibility of the ultrafine carbon fibers in the low-viscosity molten resin is better than that of other thermoplastic resins. In particular, ester resins and olefin resins are more preferably used because of their low viscosity.

上記の熱可塑性樹脂中に分散させる極細炭素繊維としては、カーボンナノチューブ、カーボンナノホーン、カーボンナノワイヤー、カーボンナノファイバー、グラファイトフィブリル等を使用できるが、その中でも、機械的および電気的特性が優れ、アスペクト比が高く、熱可塑性樹脂との混練によって分散及び導電パスの形成に適した20〜100の平均アスペクト比となるように切断されて分散するカーボンナノチューブが好ましく使用される。カーボンナノチューブには、中心軸の回りに直径が異なる複数の円筒状に閉じたカーボン壁を有する多層カーボンナノチューブと、カーボン壁が2層である2層カーボンナノチューブと、中心軸の周りに単独の円筒状に閉じたカーボン壁を有する単層カーボンナノチューブがあり、多層カーボンナノチューブと2層カーボンナノチューブは1本ずつ分離して分散するが、単層カーボンナノチューブは1本ずつ分離して分散しにくく、2本以上、通常は10〜50本程度集まって束になり、この束が1束ずつ分離して分散する。特に好ましく使用されるカーボンナノチューブは、直径が5〜80nm程度、アスペクト比が40〜500程度、繊維長が0.2〜40μm程度の2層もしくは多層カーボンナノチューブ、及び1束の直径が0.5〜8nm程度、1束のアスペクト比が40〜600程度、束の繊維長が0.02〜5μm程度の単層カーボンナノチューブである。これらのカーボンナノチューブは、熱可塑性樹脂との混練により切断されて平均アスペクト比が20〜100になると、極めて良好な分散状態で分散されて導電パスを形成し、少ない含有量であっても制電性ないし導電性を発揮できる。また、直径が80〜200nm程度、アスペクト比が40〜400程度の多層カーボンナノチューブも使用できる。 Carbon nanotubes, carbon nanohorns, carbon nanowires, carbon nanofibers, graphite fibrils, etc. can be used as the ultrafine carbon fibers dispersed in the above thermoplastic resin. Among them, the mechanical and electrical characteristics are excellent, and the aspect Carbon nanotubes that have a high ratio and are cut and dispersed so as to have an average aspect ratio of 20 to 100 suitable for dispersion and formation of a conductive path by kneading with a thermoplastic resin are preferably used. The carbon nanotube includes a multi-walled carbon nanotube having a plurality of cylindrically closed carbon walls having different diameters around the central axis, a double-walled carbon nanotube having two carbon walls, and a single cylinder around the central axis. There are single-walled carbon nanotubes having closed carbon walls, and multi-walled carbon nanotubes and double-walled carbon nanotubes are separated and dispersed one by one, but single-walled carbon nanotubes are difficult to separate and disperse one by one. More than ten, usually about 10 to 50, gather to form a bundle, and the bundle is separated and dispersed one by one. Particularly preferably used carbon nanotubes are two- or multi-walled carbon nanotubes having a diameter of about 5 to 80 nm , an aspect ratio of about 40 to 500, a fiber length of about 0.2 to 40 μm, and a bundle having a diameter of 0.5. The single-walled carbon nanotube has an aspect ratio of about ˜8 nm, a bundle aspect ratio of about 40 to 600, and a bundle fiber length of about 0.02 to 5 μm. When these carbon nanotubes are cut by kneading with a thermoplastic resin and have an average aspect ratio of 20 to 100, they are dispersed in a very good dispersion state to form a conductive path. Or exhibits electrical conductivity. Multi-walled carbon nanotubes having a diameter of about 80 to 200 nm and an aspect ratio of about 40 to 400 can also be used.

極細炭素繊維の含有量は、熱可塑性合成樹脂100重量部に対して0.05〜15重量部であるが、上記の単層カーボンナノチューブや、直径が80nm以下の2層もしくは多層カーボンナノチューブの場合は、0.05〜5重量部分散させれば十分であり、このように少量でも、理想に近い分散状態とすれば良好な制電性ないし導電性を発現する樹脂成形体となる。   The content of the ultrafine carbon fiber is 0.05 to 15 parts by weight with respect to 100 parts by weight of the thermoplastic synthetic resin. However, in the case of the single-walled carbon nanotube or the double-walled or multi-walled carbon nanotube having a diameter of 80 nm or less It is sufficient to disperse 0.05 to 5 parts by weight, and even in such a small amount, a resin molded product exhibiting good antistatic properties or conductivity can be obtained if the dispersion state is ideal.

なお、カーボンナノチューブの分散性を高めるために、分散剤を併用してもよい。分散剤としては、アルミニウム系カップリング剤、チタネート系カップリング剤、酸性ポリマーのアルキルアンモニウム塩溶液や3級アミン修飾アクリル共重合体やポリオキシエチレン、ポリオキシプロピレン等の高分子系分散剤などが用いられる。   In addition, in order to improve the dispersibility of a carbon nanotube, you may use a dispersing agent together. Dispersants include aluminum coupling agents, titanate coupling agents, alkylammonium salt solutions of acidic polymers, tertiary amine-modified acrylic copolymers, and polymer dispersants such as polyoxyethylene and polyoxypropylene. Used.

本発明の樹脂成形体は、上記の熱可塑性樹脂100重量部に対して上記の極細炭素繊維を0.05〜15重量部と必要に応じて少量の分散剤を予備ブレンドし、この樹脂混合物を加熱式スクリューシリンダー(スクリュー押出機など)で総剪断歪量[γ・t]を調節しながら樹脂の融点以上の温度で溶融混練し、押出成形や射出成形等の溶融成形を行うことにより得られるものである。ここで、総剪断歪量[γ・t]とは、加熱式スクリューシリンダーのスクリュー形状、押出吐出量、スクリュー回転数などから樹脂混合物に加わる剪断速度[γ](平均値)を求めると共に、加熱式スクリューシリンダー内における樹脂混合物の滞溜時間[t](平均値)を測定して、この剪断速度[γ]と滞溜時間[t]の積で表したものをいう。   The resin molded body of the present invention is prepared by pre-blending 0.05 to 15 parts by weight of the above ultrafine carbon fiber with 100 parts by weight of the above thermoplastic resin and, if necessary, a small amount of a dispersant. It can be obtained by melt kneading at a temperature above the melting point of the resin while adjusting the total shear strain [γ · t] with a heated screw cylinder (screw extruder, etc.), and performing melt molding such as extrusion molding or injection molding. Is. Here, the total amount of shear strain [γ · t] is obtained by calculating the shear rate [γ] (average value) applied to the resin mixture from the screw shape of the heating screw cylinder, the extrusion discharge amount, the screw rotation speed, etc. The stagnation time [t] (average value) of the resin mixture in the screw cylinder is measured and expressed by the product of the shear rate [γ] and the stagnation time [t].

加熱式スクリューシリンダーとしてのスクリュー押出機としては、図2に示すような二軸同方向回転押出機が好ましく使用されるが、単軸押出機、多軸押出機なども使用可能である。そして、スクリューとしては、図1(a)に示すフルフライト順送りセグメントを主な構成とした図1(c)の剪断速度が低い領域のスクリューや、図1(b)に示すニーディングセグメントを主な構成とした剪断速度が高い領域のスクリューや、フルフライト順送りセグメントとニーディングセグメントなどを適宜組み合わせて連結した剪断速度が中程度の領域のスクリューなどが使用される。   As a screw extruder as a heating screw cylinder, a twin-screw co-rotating extruder as shown in FIG. 2 is preferably used, but a single-screw extruder, a multi-screw extruder, or the like can also be used. And as a screw, the screw of the area | region where the shear rate is low of FIG.1 (c) which mainly made the full flight progressive segment shown in FIG.1 (a), and the kneading segment shown in FIG.1 (b) are main. For example, a screw having a high shear rate, a screw having a medium shear rate in which a full flight progressive segment and a kneading segment are connected in an appropriate combination, and the like are used.

二軸同方向回転押出機の場合、樹脂混合物に加わる剪断速度[γ](平均値)は、市販ソフトウェア(例えばワイ・エス・ピー社製の二軸押出機品質解析支援ソフト)を使用し、図2に示すように、吐出量、回転数、材料密度などから材料充填角度Θを求め、下記の基本式(1)〜(3)に基づいて簡易的に算出することができる。

Figure 2006193649
D=押出機内壁の内径
Ct=押出機内壁と押出機スクリューの最外部の隙間
θ=押出機シリンダ内に充填されている樹脂の量を示す角度
N=スクリューの回転数 In the case of a twin-screw co-rotating extruder, the shear rate [γ] (average value) applied to the resin mixture is determined using commercially available software (for example, twin-screw extruder quality analysis support software manufactured by YSP) As shown in FIG. 2, the material filling angle Θ can be obtained from the discharge amount, the rotation speed, the material density, and the like, and can be simply calculated based on the following basic formulas (1) to (3).
Figure 2006193649
D = Inner diameter of the inner wall of the extruder Ct 0 = Gap between the inner wall of the extruder and the extruder screw θ = An angle indicating the amount of resin filled in the extruder cylinder N = Number of rotations of the screw

また、樹脂混合物の押出機内における滞溜時間[t](平均値)は、例えば、スクリュー押出機の投入口から染料を投入し、その投入した時点から染料が完全にスクリュー押出機から吐出されて染料の色が消えるまでの間、試験片を連続して採取し、その試験片を一定の間隔(例えば10秒間隔)で分光光度計により、上記染料の最大吸光度波長における吸光度[Ab]を測定して、その値を時間軸に対してプロットすることにより滞溜時間分布曲線を導き、下記の式(4)に基づいて求めることができる。

Figure 2006193649
In addition, the residence time [t] (average value) in the extruder of the resin mixture is, for example, that the dye is charged from the charging port of the screw extruder, and the dye is completely discharged from the screw extruder from the charging time. Until the color of the dye disappears, specimens are continuously collected, and the specimen is measured at a constant interval (for example, every 10 seconds), and the absorbance [Ab] at the maximum absorbance wavelength of the dye is measured with a spectrophotometer. Then, the retention time distribution curve is derived by plotting the value with respect to the time axis, and can be obtained based on the following equation (4).
Figure 2006193649

平均剪断速度[γ]と平均滞溜時間[t]の積で表される総剪断歪量[γ・t]は、得られる樹脂成形体の極細炭素繊維の分散程度と密に関連し、総剪断歪量[γ・t]が大きくなるほど分散の程度が増して、前述の面積率[Ar]が減少する。図3は、後述の実施例及び比較例において条件を種々変えて作製した樹脂成形体A(極細炭素繊維として直径が10〜20nm、平均繊維長が略1μmの多層カーボンナノチューブを用いてポリカーボネートに3質量%分散させたもの)の面積率[Ar]と、総剪断歪量[γ・t]および体積抵抗率[ρ]との関係を示すグラフであって、このグラフから分かるように総剪断歪量[γ・t]の対数と面積率[Ar]は実質的に反比例の関係にあり、総剪断歪量[γ・t]が大きくなるほど面積率[Ar]は小さくなる。また、図6は後述の実施例及び比較例において条件を種々変えて作成した樹脂成形体B(極細炭素繊維として1束の直径が略8nm、繊維長が0.1〜2μmの単層カーボンナノチューブを用いてポリカーボネートに3質量%分散させたもの)の面積率[Ar]と、総剪断歪量[γ・t]および体積抵抗率[ρ]との関係を示すグラフであり、図9は後述の実施例及び比較例において条件を種々変えて作成した樹脂成形体C(極細炭素繊維として直径が150nm、平均繊維長が略9μmの多層カーボンナノチューブを用いてポリカーボネートに12質量%分散させたもの)であって、これらのグラフからも、総剪断歪量[γ・t]の対数と面積率[Ar]は上記と同様の関係にあることが分かる。そして、これのグラフから、面積率[Ar]が0.2〜5%である本発明の樹脂成形体を得るのに必要な総剪断歪量[γ・t]を推定できるので、必要な総剪断歪量[γ・t]が得られるように平均剪断速度[γ]と平均滞溜時間[t]を調整し、溶融混練して成形すれば、本発明の樹脂成形体を得ることができる。 The total shear strain [γ · t] represented by the product of the average shear rate [γ] and the average residence time [t] is closely related to the degree of dispersion of the ultrafine carbon fibers in the obtained resin molding, As the shear strain [γ · t] increases, the degree of dispersion increases and the area ratio [Ar] decreases. FIG. 3 shows a resin molded product A produced by changing the conditions in Examples and Comparative Examples described later (polycarbonate carbon nanotubes having a diameter of 10 to 20 nm and an average fiber length of about 1 μm as ultrafine carbon fibers. Is a graph showing the relationship between the area ratio [Ar] of the mass% dispersion), the total shear strain amount [γ · t], and the volume resistivity [ρ v ], as can be seen from this graph. The logarithm of the strain amount [γ · t] and the area ratio [Ar] are substantially in inverse proportion, and the area ratio [Ar] decreases as the total shear strain amount [γ · t] increases. FIG. 6 shows a resin molded product B prepared by changing the conditions in Examples and Comparative Examples described later (single-walled carbon nanotubes having a diameter of about 8 nm and a fiber length of 0.1 to 2 μm as a bundle of ultrafine carbon fibers). FIG. 9 is a graph showing the relationship between the area ratio [Ar] of 3% by mass dispersed in a polycarbonate using the above and the total shear strain [γ · t] and volume resistivity [ρ v ]. Resin molded product C prepared by changing conditions in Examples and Comparative Examples described later (dispersed in polycarbonate by 12% by mass using multi-walled carbon nanotubes having a diameter of 150 nm and an average fiber length of approximately 9 μm as ultrafine carbon fibers) From these graphs, it can be seen that the logarithm of the total shear strain amount [γ · t] and the area ratio [Ar] have the same relationship as described above. From this graph, the total shear strain amount [γ · t] required to obtain the resin molded product of the present invention having an area ratio [Ar] of 0.2 to 5% can be estimated. The resin molded body of the present invention can be obtained by adjusting the average shear rate [γ] and the average retention time [t] so as to obtain the shear strain amount [γ · t], and melt-kneading and molding. .

面積率[Ar]は前記の定義通りのものであって、極細炭素繊維の分散の程度が低い場合は、画像内に占める1.23×10−1μm以上の面積の粒子、つまり透過型実体顕微鏡画像(例えばORYMPUS社製のBX51)で観測できる大きさを有する極細炭素繊維の凝集体が多いため、面積率[Ar]は大きい。そして、分散の程度が高くなるにつれて、剪断により極細炭素繊維の凝集が解けて微細化し、透過型実体顕微鏡画像の観測限界である1.23×10−1μm未満の大きさになるため、面積率[Ar]は減少する。従って、面積率[Ar]が小さいものほど、分散の程度が高いといえる。
尚、上記の樹脂成形体Cの面積率[Ar]に限っては、直径略150nmの多層カーボンナノチューブの多くが面積の大きい凝集体として偏在するため、3μm以上の粒子を抽出して求めたものである。
The area ratio [Ar] is as defined above, and when the degree of dispersion of the ultrafine carbon fiber is low, particles having an area of 1.23 × 10 −1 μm 2 or more in the image, that is, transmission type Since there are many aggregates of ultrafine carbon fibers having a size that can be observed with a stereoscopic microscope image (for example, BX51 manufactured by ORYMPUS), the area ratio [Ar] is large. And as the degree of dispersion becomes higher, the aggregation of the ultrafine carbon fibers is dissolved and refined by shearing, and the size becomes less than 1.23 × 10 −1 μm 2 which is the observation limit of the transmission stereoscopic microscope image. The area ratio [Ar] decreases. Therefore, it can be said that the smaller the area ratio [Ar], the higher the degree of dispersion.
The area ratio [Ar] of the resin molded body C was determined by extracting particles of 3 μm 2 or more because many multi-walled carbon nanotubes having a diameter of about 150 nm are unevenly distributed as aggregates having a large area. Is.

面積率[Ar]が大きいときは、極細炭素繊維の大半が凝集して樹脂成形体中に偏在し、極細炭素繊維の相互接触による導電パスが殆ど形成されないため、樹脂成形体の体積抵抗率[ρ]は極めて高く、電気絶縁性を示す。けれども、分散の程度が高くなり面積率[Ar]が小さくなるにつれて、極細炭素繊維の凝集が解けて大部分の繊維が分散し、互いに接触して導電パスを形成するため、体積抵抗率[ρ]は低下する。そして、ある面積率[Ar]以下になると、分散の程度は更に高くなるけれども、極細炭素繊維が切断されて平均繊維長が短くなり過ぎ、平均アスペクト比が小さくなり過ぎて、極細炭素繊維の相互接触による導電パスの形成が却って減少するため、体積抵抗率[ρ]は反転して増加する。この体積抵抗率[ρ]の極小点は面積率[Ar]が0.2〜5%の範囲内に存在する。 When the area ratio [Ar] is large, most of the ultrafine carbon fibers are aggregated and unevenly distributed in the resin molded body, and almost no conductive path is formed by mutual contact of the ultrafine carbon fibers. [rho] v ] is extremely high and exhibits electrical insulation. However, as the degree of dispersion increases and the area ratio [Ar] decreases, the agglomeration of ultrafine carbon fibers is dissolved and most of the fibers are dispersed to form a conductive path in contact with each other. v ] decreases. When the area ratio is less than [Ar], the degree of dispersion is further increased, but the ultrafine carbon fibers are cut, the average fiber length becomes too short, and the average aspect ratio becomes too small. Since the formation of the conductive path due to the contact is decreased, the volume resistivity [ρ v ] is reversed and increased. The minimum point of the volume resistivity [ρ v ] exists in the range where the area ratio [Ar] is 0.2 to 5%.

図4は前記の樹脂成形体Aの面積率[Ar]と、極細炭素繊維(直径が10〜20nmの多層カーボンナノチューブ)の平均繊維長および体積抵抗率[ρ]との関係を示すグラフであって、この図4のグラフと図3のグラフから分かるように、面積率[Ar]が略8%以上では、樹脂成形体Aの体積抵抗率[ρ]が測定の不能な1014Ω・cm以上で、電気絶縁性を示す。そして、面積率[Ar]が略8%から低下するにつれて体積抵抗率[ρ]も低下し、面積率[Ar]が1%の付近で体積抵抗率[ρ]が極小となり、面積率[Ar]が略1%以下では体積抵抗率[ρ]が再び高くなる。これらのグラフは、極細炭素繊維(直径10〜20nmの多層カーボンナノチューブ)の含有量が3質量%の樹脂成形体Aについて測定したものであるから、面積率[Ar]が0.2〜5%の範囲内で、体積抵抗率[ρ]が略10〜1011Ω・cmとなって制電性を発現するが、極細炭素繊維の含有量が多くなると、図3及び図4のグラフにおいて、体積抵抗率[ρ]を対数で示す曲線が下側に移動すると共に右側にも移動し、体積抵抗率[ρ]が低下すると共に、極小点の現れる面積率[Ar]が増大して5%に近づくようになる。そして、極細炭素繊維の含有量が少なくなると、体積抵抗率[ρ]が上昇すると共に、極小点の現れる面積率[Ar]が低下して0.2%に近づくようになる。より安定的に体積抵抗率[ρ]を1011Ω・cm以下にするには、面積率[Ar]を0.3〜2%にすることが好ましく、この範囲であると、図4において体積抵抗率[ρ]が極小値ないし極小値に極めて近い略10〜略10Ω・cmとなり、十分な制電性能を発現する。 FIG. 4 is a graph showing the relationship between the area ratio [Ar] of the resin molded body A and the average fiber length and volume resistivity [ρ v ] of ultrafine carbon fibers (multi-walled carbon nanotubes having a diameter of 10 to 20 nm). As can be seen from the graph of FIG. 4 and the graph of FIG. 3, when the area ratio [Ar] is about 8% or more, the volume resistivity [ρ v ] of the resin molded body A is 10 14 Ω that cannot be measured.・ Electrically insulating at cm or more. Then, as the area ratio [Ar] decreases from about 8%, the volume resistivity [ρ v ] also decreases, and when the area ratio [Ar] is near 1%, the volume resistivity [ρ v ] becomes minimum, and the area ratio When [Ar] is approximately 1% or less, the volume resistivity [ρ v ] is increased again. Since these graphs were measured for a resin molded body A having a content of ultrafine carbon fibers (multi-walled carbon nanotubes having a diameter of 10 to 20 nm) of 3% by mass, the area ratio [Ar] was 0.2 to 5%. In the range, the volume resistivity [ρ v ] is approximately 10 6 to 10 11 Ω · cm and develops antistatic properties, but when the content of the ultrafine carbon fiber increases, the graphs of FIGS. 3 and 4 , The curve showing the volume resistivity [ρ v ] in a logarithm moves downward and to the right, the volume resistivity [ρ v ] decreases, and the area ratio [Ar] at which the minimum point appears increases. Then it approaches 5%. When the content of the ultrafine carbon fiber decreases, the volume resistivity [ρ v ] increases, and the area ratio [Ar] at which the minimum point appears decreases to approach 0.2%. In order to make the volume resistivity [ρ v ] less than 10 11 Ω · cm more stably, the area ratio [Ar] is preferably set to 0.3 to 2%. The volume resistivity [ρ v ] is about 10 6 to about 10 7 Ω · cm, which is extremely close to or very close to the minimum value, and exhibits sufficient antistatic performance.

図7は前記の樹脂成形体Bの面積率[Ar]と、極細炭素繊維(直径が略1nmの単層カーボンナノチューブ)の平均繊維長および体積抵抗率[ρ]との関係を示すグラフであり、図10は前記の樹脂成形体Cの面積率[Ar]と、極細炭素繊維(直径が略150nmの多層カーボンナノチューブ)の平均繊維長および体積抵抗率[ρ]との関係を示すグラフであって、これらのグラフをみても面積率[Ar]が1%の付近で体積抵抗率[ρ]が極小となることが分かる。そして、図7のグラフから分かるように、樹脂成形体Bでは、面積率[Ar]が0.3〜2%の範囲で、体積抵抗率[ρ]が極小値ないし極小値に極めて近い略10〜略10Ω・cmとなり、制電性ないし導電性を発現する。一方、樹脂成形体Cは、図10のグラフから分かるように、面積率[Ar]が0.3〜2%の範囲でも体積抵抗率[ρ]は略10〜略1013Ω・cmと樹脂成形体A、Bより高い。しかし、体積抵抗率[ρ]は、この範囲の面積率[Ar]において最低の抵抗率を示していて、この樹脂成形体Cにおいても面積率[Ar]が0.3〜2%の範囲であることが抵抗値を最低にするうえで好ましいことがわかる。このように、体積抵抗率[ρ]が樹脂成形体A、Bと樹脂成形体Cとで大きく異なるのは、樹脂成形体Cに分散させた直径が略150nmの多層カーボンナノチューブは、樹脂成形体A、Bに分散させた直径10〜20nmの多層カーボンナノチューブや単層カーボンナノチューブに比べると、単位重量当たりの本数の絶対数が少ないため、樹脂成形体A、Bと同様の体積抵抗率を得るためには多くの添加量を必要とするからである。 FIG. 7 is a graph showing the relationship between the area ratio [Ar] of the resin molded body B and the average fiber length and volume resistivity [ρ v ] of ultrafine carbon fibers (single-walled carbon nanotubes having a diameter of about 1 nm). FIG. 10 is a graph showing the relationship between the area ratio [Ar] of the resin molded body C and the average fiber length and volume resistivity [ρ v ] of ultrafine carbon fibers (multi-walled carbon nanotubes having a diameter of about 150 nm). In these graphs, the volume resistivity [ρ v ] is minimized when the area ratio [Ar] is around 1%. As can be seen from the graph of FIG. 7, in the resin molded body B, the area ratio [Ar] is in the range of 0.3 to 2%, and the volume resistivity [ρ v ] is a value that is extremely close to the minimum value or the minimum value. From 10 3 to about 10 5 Ω · cm, antistatic or conductive properties are exhibited. On the other hand, as can be seen from the graph of FIG. 10, the resin molded body C has a volume resistivity [ρ v ] of about 10 8 to about 10 13 Ω · cm even when the area ratio [Ar] is in the range of 0.3 to 2%. And higher than the resin moldings A and B. However, the volume resistivity [ρ v ] indicates the lowest resistivity in the area ratio [Ar] in this range, and the area ratio [Ar] is also in the range of 0.3 to 2% in the resin molded body C. It can be seen that it is preferable to minimize the resistance value. As described above, the volume resistivity [ρ v ] is greatly different between the resin molded bodies A and B and the resin molded body C. The multi-walled carbon nanotubes having a diameter of about 150 nm dispersed in the resin molded body C are resin-molded. Compared with 10 to 20 nm diameter multi-walled carbon nanotubes and single-walled carbon nanotubes dispersed in bodies A and B, the absolute number of the number per unit weight is small, so the volume resistivity is the same as that of resin molded bodies A and B. This is because a large amount of addition is required to obtain it.

また、図4のグラフから分かるように、前記の樹脂成形体Aの極細炭素繊維(直径が10〜20nmの多層カーボンナノチューブ)の平均繊維長は、分散の程度が増して面積率[Ar]が低下するほど短くなり、面積率[Ar]が0.2〜5%の範囲内では、平均繊維長が0.42〜0.53μmである。従って、分散している極細炭素繊維(直径が10〜20nmの多層カーボンナノチューブ)の平均アスペクト比はおよそ21〜53であり、この平均アスペクト比の範囲内では、体積抵抗率[ρ]が略10〜略1011Ω・cmとなり、十分な制電性能を発現する。平均繊維長が0.53μmより長い場合は、極細炭素繊維の凝集体が多く導電パスの形成が不十分であるため体積抵抗率[ρ]が高くなり、平均繊維長が0.42μmより短い場合は、分散性が向上するけれども繊維の接触頻度が低下して導電パスが減少するため、やはり体積抵抗率[ρ]が高くなる。平均繊維長が0.43〜0.5μm程度、平均アスペクト比がおよそ22〜50であると、体積抵抗率[ρ]が極小値ないし極小値に極めて近い樹脂成形体Aとなるのでより好ましい。 Further, as can be seen from the graph of FIG. 4, the average fiber length of the ultrafine carbon fibers (multi-walled carbon nanotubes having a diameter of 10 to 20 nm) of the resin molded body A increases the degree of dispersion and the area ratio [Ar] increases. The average fiber length is 0.42 to 0.53 μm when the area ratio [Ar] is in the range of 0.2 to 5%. Accordingly, the average aspect ratio of the dispersed ultrafine carbon fibers (multi-walled carbon nanotubes having a diameter of 10 to 20 nm) is approximately 21 to 53, and the volume resistivity [ρ v ] is substantially within the range of the average aspect ratio. 10 6 to about 10 11 Ω · cm, and sufficient antistatic performance is exhibited. When the average fiber length is longer than 0.53 μm, the volume resistivity [ρ v ] is increased because there are many aggregates of ultrafine carbon fibers and the formation of the conductive path is insufficient, and the average fiber length is shorter than 0.42 μm. In this case, although the dispersibility is improved, the contact frequency of the fibers is decreased and the conductive path is decreased, so that the volume resistivity [ρ v ] is also increased. An average fiber length of about 0.43 to 0.5 μm and an average aspect ratio of about 22 to 50 are more preferable because the volume resistivity [ρ v ] becomes a resin molded body A that is extremely close to or close to the minimum value. .

また、前記の樹脂成形体Bの場合も、図7のグラフから分かるように、極細炭素繊維(1束の直径が略8nmの単層カーボンナノチューブ)の平均繊維長(1束の長さ)は、分散の程度が増して面積率[Ar]が低下するほど短くなり、面積率[Ar]が0.2〜5%の範囲内では、平均繊維長が0.39〜0.62μmである。単層カーボンナノチューブは8nm程度の直径を有する束になって分散しているので、平均アスペクト比は、およそ40〜75であり、この平均アスペクト比の範囲内では、体積抵抗率[ρ]が略10〜略10Ω・cmとなり、十分な制電性ないし導電性を発現する。また、前記の樹脂成形体Cの場合は、図10のグラフから分かるように、面積率[Ar]が0.2〜5%の範囲内で、極細炭素繊維(直径が略150nmの多層カーボンナノチューブ)の平均繊維長が5〜7μm程度であり、その平均アスペクト比は、およそ33〜47である。 Also in the case of the resin molded body B, as can be seen from the graph of FIG. 7, the average fiber length (length of one bundle) of ultrafine carbon fibers (single-walled carbon nanotubes having a diameter of about 8 nm per bundle) is When the area ratio [Ar] decreases as the degree of dispersion increases and the area ratio [Ar] falls within the range of 0.2 to 5%, the average fiber length is 0.39 to 0.62 μm. Since the single-walled carbon nanotubes are dispersed in bundles having a diameter of about 8 nm, the average aspect ratio is about 40 to 75, and the volume resistivity [ρ v ] is within the range of the average aspect ratio. It becomes approximately 10 3 to approximately 10 8 Ω · cm, and exhibits sufficient antistatic property or conductivity. In the case of the resin molded body C, as can be seen from the graph of FIG. 10, the area ratio [Ar] is in the range of 0.2 to 5%, and the ultrafine carbon fiber (multi-walled carbon nanotube having a diameter of about 150 nm) is used. ) Has an average fiber length of about 5 to 7 μm and an average aspect ratio of about 33 to 47.

上記のように、樹脂成形体A,B,Cはいずれも、面積率[Ar]が0.2〜5%の良好な分散状態では、極細炭素繊維の平均アスペクト比が20〜100の範囲内にある。しかし、極細炭素繊維の平均アスペクト比が20〜100の範囲内にあっても、分散均一性が悪く、極細炭素繊維が一部凝集して偏在している場合は、導電パスが形成されにくいため体積抵抗率[ρ]は高くなる。従って、極細炭素繊維の平均アスペクト比と共に分散均一性が重要なファクターとなる。この分散均一性のパラメーターとして、樹脂成形体の複数のスライス片について求めた面積率[Ar]の標準偏差[σ]を採用すると、分散均一性が良好で面積率[Ar]が小さいものほど標準偏差[σ]が小さくなるという関係がある。 As described above, the resin molded bodies A, B, and C all have an average aspect ratio of the ultrafine carbon fiber in the range of 20 to 100 in a good dispersion state where the area ratio [Ar] is 0.2 to 5%. It is in. However, even if the average aspect ratio of the ultrafine carbon fiber is in the range of 20 to 100, the dispersion uniformity is poor, and if the ultrafine carbon fiber is partially agglomerated and unevenly distributed, it is difficult to form a conductive path. The volume resistivity [ρ v ] increases. Accordingly, the dispersion uniformity as well as the average aspect ratio of the ultrafine carbon fibers are important factors. When the standard deviation [σ] of the area ratio [Ar] obtained for a plurality of slices of the resin molded body is adopted as the dispersion uniformity parameter, the standard is the smaller the area ratio [Ar] with better dispersion uniformity. There is a relationship that the deviation [σ] becomes small.

図5は、前記の樹脂成形体Aの面積率[Ar]とその標準偏差[σ]と分散均一性との関係を示すグラフであって、面積率[Ar]が0.2〜5%の範囲では、面積率[Ar]の標準偏差[σ]は0.5〜5の範囲にある。標準偏差[σ]が5より大きい場合は、分散均一性が悪くて極細炭素繊維の凝集体が多数偏在し、また、標準偏差[σ]が0.5より小さい場合は、分散均一性が大幅に向上するけれども平均繊維長が短くなり過ぎ、平均アスペクト比が小さくなり過ぎるので、いずれの場合も導電パスが形成されにくく体積抵抗率[ρ]が高くなる。これに対し、面積率[Ar]の標準偏差[σ]が0.5〜5の範囲にある樹脂成形体Aは、極細炭素繊維の分散均一性の程度と平均繊維長のバランスが良く、その繊維含有量で可能な最大限に近い制電性ないし導電性を発現する最適に近い分散状態で極細炭素繊維が分散して十分な導電パスを形成する。同様に、前記の樹脂成形体Bも、図8のグラフに示すように、面積率[Ar]が0.2〜5%の範囲では、面積率[Ar]の標準偏差[σ]が0.5〜5の範囲にある。一方、前記の樹脂成形体Cは、図11のグラフに示すように、面積率[Ar]が0.2〜5%の範囲では、標準偏差[σ]が2〜15と樹脂成形体A、Bより大きい。これは、前述したように、面積率[Ar]の求め方が異なるからであり、この面積率[Ar]の求め方であれば、2〜15であっても十分な分散均一性が得られている。図5、図8のグラフから分かるように、優れた分散状態の樹脂成形体とするには、面積率[Ar]の標準偏差[σ]が0.5〜5の範囲にあることが大切である。 FIG. 5 is a graph showing the relationship between the area ratio [Ar] of the resin molded body A, its standard deviation [σ], and dispersion uniformity, and the area ratio [Ar] is 0.2 to 5%. In the range, the standard deviation [σ] of the area ratio [Ar] is in the range of 0.5 to 5. When the standard deviation [σ] is greater than 5, the dispersion uniformity is poor and a large number of fine carbon fiber aggregates are unevenly distributed. When the standard deviation [σ] is less than 0.5, the dispersion uniformity is greatly increased. However, since the average fiber length becomes too short and the average aspect ratio becomes too small, a conductive path is hardly formed in any case, and the volume resistivity [ρ v ] becomes high. On the other hand, the resin molded product A having a standard deviation [σ] of the area ratio [Ar] in the range of 0.5 to 5 has a good balance between the degree of dispersion uniformity of the ultrafine carbon fibers and the average fiber length. The ultrafine carbon fibers are dispersed in a nearly optimal dispersion state that develops an antistatic property or conductivity close to the maximum possible with the fiber content, thereby forming a sufficient conductive path. Similarly, as shown in the graph of FIG. 8, the resin molded body B also has a standard deviation [σ] of the area ratio [Ar] of 0.2 when the area ratio [Ar] is in the range of 0.2 to 5%. It is in the range of 5-5. On the other hand, as shown in the graph of FIG. 11, the resin molded body C has a standard deviation [σ] of 2 to 15 and a resin molded body A in the area ratio [Ar] of 0.2 to 5%. Greater than B. This is because, as described above, the method of obtaining the area ratio [Ar] is different. If this method of obtaining the area ratio [Ar] is obtained, sufficient dispersion uniformity can be obtained even if it is 2-15. ing. As can be seen from the graphs of FIGS. 5 and 8, it is important that the standard deviation [σ] of the area ratio [Ar] is in the range of 0.5 to 5 in order to obtain an excellent resin molded product in a dispersed state. is there.

ところで、炭素繊維含有樹脂成形体の面積率[Ar]を求めるときに抽出される粒子の中に面積の大きいものがある場合は、極細炭素繊維が面積の大きい凝集体となって偏在しているのであるから良好な分散状態とはいえず、たとえ面積率[Ar]が0.2〜5.0%の範囲内でも体積抵抗率[ρ]は増大することになる。許容できる粒子の最大面積は5.0×10μmであり、これより大きい面積の粒子が存在する場合は、極細炭素繊維の分散が不十分で体積抵抗率[ρ]が極小値に近い値とならないので、抽出される粒子の最大面積は5.0×10μm以下であることが重要である。但し、単層カーボンナノチューブや、直径が80nm以下の2層もしくは多層カーボンナノチューブを分散させた樹脂成形体A,Bの場合は、繊維の直径がもともと小さいので、許容できる粒子の最大面積は1.0×10μmであり、従って、抽出される粒子の最大面積はこれ以下であることが重要である。そして、80nm以上の直径を持つ多層カーボンナノチューブは、繊維の直径が大きいので、許容できる粒子の最大面積を5×10μmであり、最大面積をこれ以下にすることが重要である。 By the way, when there are particles having a large area among the particles extracted when obtaining the area ratio [Ar] of the carbon fiber-containing resin molded body, the ultrafine carbon fibers are unevenly distributed as aggregates having a large area. Therefore, it cannot be said that the dispersion state is good, and the volume resistivity [ρ v ] increases even if the area ratio [Ar] is in the range of 0.2 to 5.0%. The maximum allowable particle area is 5.0 × 10 1 μm 2 , and when particles with an area larger than this are present, the dispersion of the ultrafine carbon fiber is insufficient and the volume resistivity [ρ v ] is minimized. Since the values are not close, it is important that the maximum area of the extracted particles is 5.0 × 10 1 μm 2 or less. However, in the case of single-walled carbon nanotubes or resin molded bodies A and B in which two- or multi-walled carbon nanotubes having a diameter of 80 nm or less are dispersed, the diameter of the fiber is originally small, so the maximum allowable particle area is 1. It is important that the maximum area of the extracted particles is less than or equal to 0 × 10 1 μm 2 . A multi-walled carbon nanotube having a diameter of 80 nm or more has a large fiber diameter. Therefore, it is important that the maximum area of allowable particles is 5 × 10 1 μm 2 and the maximum area is less than this.

以上から、本発明の樹脂成形体のように、100重量部の熱可塑性樹脂中に0.05〜15重量部の極細炭素繊維が分散され、極細炭素繊維の平均アスペクト比が20〜100であり、面積率[Ar]が0.2〜5%であり、面積率[Ar]の標準偏差[σ]が0.5〜5であり、面積率[Ar]を求めるときに抽出される粒子の最大面積が5.0×10μm以下(単層カーボンナノチューブや直径が80nm以下の2層もしくは多層カーボンナノチューブを分散させた樹脂成形体の場合は1.0×10μm以下)であるものは、その体積抵抗率[ρ]が極小値もしくは極小値に近い値となり、その繊維含有量で可能な最大限に近い制電性ないし導電性を発現する最適に近い分散状態および平均繊維長で極細炭素繊維が分散している樹脂成形体であると言える。特に、前記の樹脂成形体A,Bのように、極細炭素繊維が単層カーボンナノチューブ又は直径が80nm以下の2層もしくは多層カーボンナノチューブであって、100重量部の熱可塑性樹脂中に0.05〜5重量部分散しているものは、少量の繊維含有量で十分な制電性ないし導電性を発現できるので、極めて好ましい樹脂成形体であるといえる。 From the above, as in the resin molded body of the present invention, 0.05 to 15 parts by weight of ultrafine carbon fibers are dispersed in 100 parts by weight of the thermoplastic resin, and the average aspect ratio of the ultrafine carbon fibers is 20 to 100. The area ratio [Ar] is 0.2 to 5%, the standard deviation [σ] of the area ratio [Ar] is 0.5 to 5, and the particles extracted when determining the area ratio [Ar] The maximum area is 5.0 × 10 1 μm 2 or less (1.0 × 10 1 μm 2 or less in the case of a resin molded product in which single-walled carbon nanotubes or double-walled or multi-walled carbon nanotubes having a diameter of 80 nm or less are dispersed). For some, the volume resistivity [ρ v ] is a minimum value or a value close to a minimum value, and the dispersion state and the average that are close to the optimum, exhibiting antistaticity or conductivity close to the maximum possible with the fiber content. The ultrafine carbon fiber is dispersed with the fiber length. It can be said that that is a resin molded body. In particular, as in the resin moldings A and B, the ultrafine carbon fiber is a single-walled carbon nanotube or a double-walled or multi-walled carbon nanotube having a diameter of 80 nm or less, and 0.05% in 100 parts by weight of the thermoplastic resin. The dispersion of ˜5 parts by weight can be said to be a very preferable resin molded article because sufficient antistatic property or conductivity can be expressed with a small amount of fiber content.

次に、本発明の更に具体的な実施例と比較例を挙げる。   Next, more specific examples and comparative examples of the present invention will be given.

[実施例1]
熱可塑性樹脂として、乾燥したポリカーボネート(帝人化成(株)製のパンライトK−1285)を使用すると共に、極細炭素繊維として、直径が10〜20nm、平均繊維長が略1μmの多層カーボンナノチューブ(シンセンナノテクポート製)を使用し、上記のポリカーボネート(以下、PCという)97重量部に対し上記の多層カーボンナノチューブ(以下、多層CNTという)を3重量部添加して、PCと多層CNTをミキサーで予備分散させた。そして、二軸同方向回転押出機(スクリュー径が25mmのフルフライト順送りセグメントを連結した剪断速度が低い領域のスクリューを内蔵したもの)の投入口から上記の予備分散させた混合物を定量フィーダーで供給し、総剪断歪量[γ・t]の対数が3.2〜4.6の範囲内となるように、剪断速度[γ](平均値)と押出機内における混合物の滞溜時間[t](平均値)を変化させて、シリンダ温度270℃で混練、分散させながら押出すことにより、総剪断歪量[γ・t]の異なる樹脂成形体Aの多種類の試験片(20×20×1mm)を得た。
[Example 1]
As the thermoplastic resin, dried polycarbonate (Panlite K-1285 manufactured by Teijin Chemicals Ltd.) is used, and as the ultrafine carbon fiber, a multi-walled carbon nanotube (Shenzhen) having a diameter of 10 to 20 nm and an average fiber length of approximately 1 μm. 3 parts by weight of the above multi-walled carbon nanotube (hereinafter referred to as multi-walled CNT) is added to 97 parts by weight of the above-mentioned polycarbonate (hereinafter referred to as PC), and the PC and the multi-walled CNT are preliminarily mixed with a mixer. Dispersed. Then, the above pre-dispersed mixture is supplied by a quantitative feeder from the inlet of a twin-screw co-rotating extruder (with a screw having a low shear rate connected to a full flight progressive segment with a screw diameter of 25 mm). The shear rate [γ] (average value) and the residence time [t] of the mixture in the extruder so that the logarithm of the total shear strain [γ · t] is in the range of 3.2 to 4.6. By changing the (average value) and extruding while kneading and dispersing at a cylinder temperature of 270 ° C., various types of test pieces (20 × 20 ×) of the resin molded product A having different total shear strain [γ · t] 1 mm).

[比較例1]
比較のために、総剪断歪量[γ・t]の対数が3.2未満、又は、4.6を超えるように、剪断速度[γ](平均値)と押出機内における混合物の滞溜時間[t](平均値)を変化させた以外は、上記の実施例と同様にして、樹脂成形体Aの多種類の比較用の試験片(20×20×1mm)を得た。
[Comparative Example 1]
For comparison, the shear rate [γ] (average value) and the residence time of the mixture in the extruder so that the logarithm of the total shear strain [γ · t] is less than 3.2 or exceeds 4.6. Except that [t] (average value) was changed, various types of comparative test pieces (20 × 20 × 1 mm) of the resin molded product A were obtained in the same manner as in the above-described example.

上記の実施例1及び比較例1においては、二軸同方向回転押出機の吐出量を1.7kg/hrに設定してスクリュー回転速度を20〜100rpmの範囲内で変化させたり、スクリュー回転速度を60rpmに設定して吐出量を0.9〜5.3kg/hrの範囲内で変化させることにより、剪断速度[γ]と滞溜時間[t]を変えて総剪断歪量[γ・t]の調整を行った。なお、剪断速度[γ]と滞溜時間[t]は前述の方法で測定した。   In Example 1 and Comparative Example 1 described above, the discharge rate of the twin-screw co-rotating extruder is set to 1.7 kg / hr, and the screw rotation speed is changed within the range of 20 to 100 rpm. Is set to 60 rpm, and the discharge rate is changed within a range of 0.9 to 5.3 kg / hr, thereby changing the shear rate [γ] and the retention time [t] to change the total shear strain [γ · t ] Was adjusted. The shear rate [γ] and the retention time [t] were measured by the methods described above.

上記の実施例及び比較例で得られた各試験片の断面からミクロトーム(Reica社製のRM2065)で厚さ1μmのサンプルを切り出して透過型実体顕微鏡(OLYMPUS社製のBX51)にて30倍で写真撮影(SEM写真)し、その画像から画像解析ソフト(プラネトロン社製Image-Pro Plus)を用いて、画像内に占める1.23×10−1μm以上の面積の粒子を抽出し、その視野内に占める該粒子の面積率[Ar]を求めた。また、三菱化学(株)製のHiresta-UP MCP-450を使用し、それぞれの試験片の体積抵抗率[ρ]を測定時間1分の条件下に測定した。そして、各試験片についての総剪断歪量[γ・t]の対数と、面積率[Ar]と、体積抵抗率[ρ]の対数をプロットして、図3のグラフを作成した。 A sample having a thickness of 1 μm was cut out from the cross section of each test piece obtained in the above Examples and Comparative Examples with a microtome (RM2065 manufactured by Reica), and 30 times with a transmission stereomicroscope (BX51 manufactured by OLYMPUS). Taking a photograph (SEM photograph), using the image analysis software (Image-Pro Plus manufactured by Planetron Co.) from the image, extract particles having an area of 1.23 × 10 −1 μm 2 or more in the image, The area ratio [Ar] of the particles in the field of view was determined. Further, Hiresta-UP MCP-450 manufactured by Mitsubishi Chemical Corporation was used, and the volume resistivity [ρ v ] of each test piece was measured under the condition of a measurement time of 1 minute. Then, the logarithm of the total shear strain [γ · t], the area ratio [Ar], and the logarithm of the volume resistivity [ρ v ] for each test piece were plotted, and the graph of FIG. 3 was created.

また、面積率[Ar]が6%以下の実施例1及び比較例1の各試験片について、そのPCをクロロホルムで除去し、多層CNTのみを抽出してSEM写真をとり、その画像から画像解析ソフト(Image-Pro Plus)を用いて500本以上の多層CNTの長さの平均値を求めた。そして、各試験片についての多層CNTの平均繊維長と、面積率[Ar]と、体積抵抗率[ρ]の対数をプロットして、図4のグラフを作成した。 Moreover, about each test piece of Example 1 and Comparative Example 1 whose area ratio [Ar] is 6% or less, the PC is removed with chloroform, only the multilayer CNT is extracted, an SEM photograph is taken, and image analysis is performed from the image. Using software (Image-Pro Plus), an average length of 500 or more multi-walled CNTs was determined. Then, an average fiber length of the multi-layer CNT for each specimen, the area ratio and [Ar], by plotting the logarithm of the volume resistivity [[rho v], and create a graph in FIG.

更に、面積率[Ar]が6%以下の実施例1及び比較例1の試験片から抽出した5つの試験片について、面積率[Ar]を求めるために切り出した複数のスライス片の顕微鏡写真間における面積率[Ar]の標準偏差[σ]を、分散均一性の指標として求めた。その際、近接したスライス片は除外し、多層CNTの凝集体の大きさよりも十分に離れたスライス片を測定に使用した。そして、それぞれの試験片についての面積率[Ar]とその標準偏差[σ]をプロットして、図5のグラフを作成した。   Further, for five test pieces extracted from the test pieces of Example 1 and Comparative Example 1 having an area ratio [Ar] of 6% or less, between micrographs of a plurality of slice pieces cut out to obtain the area ratio [Ar]. The standard deviation [σ] of the area ratio [Ar] was determined as an index of dispersion uniformity. At that time, adjacent slice pieces were excluded, and slice pieces sufficiently separated from the size of the aggregate of the multi-walled CNTs were used for the measurement. Then, the area ratio [Ar] and its standard deviation [σ] for each test piece were plotted to create the graph of FIG.

上記の実施例1及び比較例1に基づいて作成した図3、図4、図5のグラフについての考察は、既に説明した通りであるから省略する。
なお、実施例1の各試験片はいずれも、面積率[Ar]を求めるときに抽出される粒子の最大面積が1.0×10μm以下であった。
Considerations on the graphs of FIGS. 3, 4, and 5 created based on the above-described Example 1 and Comparative Example 1 are the same as those already described, and will be omitted.
In addition, as for each test piece of Example 1, the maximum area of the particle | grains extracted when calculating | requiring an area ratio [Ar] was 1.0 * 10 < 1 > micrometer < 2 > or less.

[実施例2]
極細炭素繊維として、1本の直径が略1nm、繊維長が0.1〜2μmの単層カーボンナノチューブ(シンセンナノテクポート製)(以下、単層CNTという)を使用し、総剪断歪量[γ・t]の対数が3.6〜4.4の範囲内となるように、剪断速度[γ](平均値)と押出機内における混合物の滞溜時間[t](平均値)を変化させた以外は前記実施例1と同様にして、総剪断歪量[γ・t]の異なる樹脂成形体Bの多種類の試験片(20×20×1mm)を得た。
[Example 2]
As the ultrafine carbon fiber, a single-walled carbon nanotube (manufactured by Shenzhen Nanotechport) (hereinafter referred to as single-walled CNT) having a diameter of about 1 nm and a fiber length of 0.1 to 2 μm is used, and the total shear strain [γ The shear rate [γ] (average value) and the residence time [t] (average value) of the mixture in the extruder were changed so that the logarithm of t] was in the range of 3.6 to 4.4. Except for the above, in the same manner as in Example 1, various types of test pieces (20 × 20 × 1 mm) of the resin molded body B having different total shear strain [γ · t] were obtained.

[比較例2]
比較のために、総剪断歪量[γ・t]の対数が3.6未満、又は、4.4を超えるように、剪断速度[γ](平均値)と押出機内における混合物の滞溜時間[t](平均値)を変化させた以外は、上記実施例2と同様にして、樹脂成形体Bの多種類の比較用の試験片(20×20×1mm)を得た。
[Comparative Example 2]
For comparison, the shear rate [γ] (average value) and the residence time of the mixture in the extruder so that the logarithm of the total shear strain [γ · t] is less than 3.6 or exceeds 4.4. Except for changing [t] (average value), various types of comparative test pieces (20 × 20 × 1 mm) of the resin molded body B were obtained in the same manner as in Example 2 above.

そして、上記の実施例2及び比較例2の各試験片について、実施例1及び比較例1と同様にして面積率[Ar]と体積抵抗率[ρ]を測定し、各試験片についての総剪断歪量[γ・t]の対数と、面積率[Ar]と、体積抵抗率[ρ]の対数をプロットして、図6のグラフを作成した。
また、面積率[Ar]が6%以下の実施例2及び比較例2の各試験片について実施例1及び比較例1と同様にして単層CNT(1束)の長さの平均値を求め、各試験片についての単層CNTの平均繊維長と、面積率[Ar]と、体積抵抗率[ρ]の対数をプロットして、図7のグラフを作成した。
更に、面積率[Ar]が6%以下の実施例2及び比較例2の試験片から抽出した5つの試験片について、実施例1及び比較例1と同様にして面積率[Ar]の標準偏差[σ]を求め、それぞれの試験片についての面積率[Ar]とその標準偏差[σ]をプロットして、図8のグラフを作成した。
なお、実施例2の各試験片はいずれも、面積率[Ar]を求めるときに抽出される粒子の最大面積が1.0×10μm以下であった。
And about each test piece of said Example 2 and Comparative Example 2, area ratio [Ar] and volume resistivity [(rho) v ] are measured like Example 1 and Comparative Example 1, and about each test piece, The graph of FIG. 6 was created by plotting the logarithm of the total shear strain [γ · t], the area ratio [Ar], and the logarithm of the volume resistivity [ρ v ].
Moreover, the average value of the length of single-walled CNT (one bundle) was calculated | required similarly to Example 1 and Comparative Example 1 about each test piece of Example 2 and Comparative Example 2 whose area ratio [Ar] is 6% or less. 7 was prepared by plotting the average fiber length of single-walled CNT, the area ratio [Ar], and the logarithm of volume resistivity [ρ v ] for each test piece.
Further, for the five test pieces extracted from the test pieces of Example 2 and Comparative Example 2 having an area ratio [Ar] of 6% or less, the standard deviation of the area ratio [Ar] was obtained in the same manner as in Example 1 and Comparative Example 1. [Σ] was obtained, and the area ratio [Ar] and the standard deviation [σ] thereof for each test piece were plotted to create the graph of FIG.
In addition, as for each test piece of Example 2, the maximum area of the particle | grains extracted when calculating | requiring an area ratio [Ar] was 1.0 * 10 < 1 > micrometer < 2 > or less.

[実施例3]
極細炭素繊維として、直径が略150nm、繊維長が略9μmの多層カーボンナノチューブ[昭和電工(株)製](以下、多層CNT150nmφという)を使用し、その配合量を12質量%に変更すると共に、総剪断歪量[γ・t]の対数が3.25〜3.9の範囲内となるように、剪断速度[γ](平均値)と押出機内における混合物の滞溜時間[t](平均値)を変化させた以外は前記実施例1と同様にして、総剪断歪量[γ・t]の異なる樹脂成形体Cの多種類の試験片(20×20×1mm)を得た。
[Example 3]
As the ultrafine carbon fiber, a multi-walled carbon nanotube having a diameter of about 150 nm and a fiber length of about 9 μm [made by Showa Denko Co., Ltd.] (hereinafter referred to as multi-walled CNT 150 nmφ) is used, and the blending amount is changed to 12% by mass, The shear rate [γ] (average value) and the stagnation time [t] of the mixture in the extruder (average) so that the logarithm of the total shear strain [γ · t] is within the range of 3.25 to 3.9. In the same manner as in Example 1 except that the value) was changed, various types of test pieces (20 × 20 × 1 mm) of the resin molded product C having different total shear strain amounts [γ · t] were obtained.

[比較例3]
比較のために、総剪断歪量[γ・t]の対数が3.25未満、又は、3.9を超えるように、剪断速度[γ](平均値)と押出機内における混合物の滞溜時間[t](平均値)を変化させた以外は、上記実施例3と同様にして、樹脂成形体Cの多種類の比較用の試験片(20×20×1mm)を得た。
[Comparative Example 3]
For comparison, the shear rate [γ] (average value) and the stagnation time of the mixture in the extruder so that the logarithm of the total shear strain [γ · t] is less than 3.25 or more than 3.9. Except having changed [t] (average value), it carried out similarly to the said Example 3, and obtained the test piece (20x20x1 mm) for a variety of comparison of the resin molding C.

そして、上記の実施例3及び比較例3の各試験片について、実施例1及び比較例1と同様にして面積率[Ar]と体積抵抗率[ρ]を測定し、各試験片についての総剪断歪量[γ・t]の対数と、面積率[Ar]と、体積抵抗率[ρ]の対数をプロットして、図9のグラフを作成した。但し、面積率[Ar]は、3μm以上の粒子を抽出して求めたものである。
また、面積率[Ar]が6%以下の実施例3及び比較例3の各試験片について実施例1及び比較例1と同様にして多層CNT150nmφの長さの平均値を求め、各試験片についての単層CNTの平均繊維長と、面積率[Ar]と、体積抵抗率[ρ]の対数をプロットして、図10のグラフを作成した。
更に、面積率[Ar]が6%以下の実施例3及び比較例3の試験片から抽出した5つの試験片について、実施例1及び比較例1と同様にして面積率[Ar]の標準偏差[σ]を求め、それぞれの試験片についての面積率[Ar]とその標準偏差[σ]をプロットして、図11のグラフを作成した。
なお、実施例3の各試験片はいずれも、面積率[Ar]を求めるときに抽出される粒子の最大面積が5.0×10μm以下であった。
And about each test piece of said Example 3 and Comparative Example 3, area ratio [Ar] and volume resistivity [(rho) v ] are measured like Example 1 and Comparative Example 1, and about each test piece, The graph of FIG. 9 was created by plotting the logarithm of the total shear strain [γ · t], the area ratio [Ar], and the logarithm of the volume resistivity [ρ v ]. However, the area ratio [Ar] is obtained by extracting particles of 3 μm 2 or more.
Further, for each test piece of Example 3 and Comparative Example 3 having an area ratio [Ar] of 6% or less, the average value of the length of the multilayer CNT 150 nmφ was obtained in the same manner as in Example 1 and Comparative Example 1, and for each test piece. The average fiber length, the area ratio [Ar], and the logarithm of the volume resistivity [ρ v ] were plotted to produce the graph of FIG.
Further, for five test pieces extracted from the test pieces of Example 3 and Comparative Example 3 having an area ratio [Ar] of 6% or less, the standard deviation of the area ratio [Ar] was obtained in the same manner as in Example 1 and Comparative Example 1. [Σ] was determined, and the area ratio [Ar] and the standard deviation [σ] thereof were plotted for each test piece, and the graph of FIG. 11 was created.
In addition, as for each test piece of Example 3, the maximum area of the particle | grains extracted when calculating | requiring an area ratio [Ar] was 5.0 * 10 < 1 > micrometer < 2 > or less.

上記の実施例2及び比較例2に基づいて作成した図6、図7、図8のグラフについての考察、並びに、上記の実施例3及び比較例3に基づいて作成した図9、図10、図11のグラフについての考察は、既に説明した通りであるから省略する。   Considering the graphs of FIGS. 6, 7, and 8 created based on Example 2 and Comparative Example 2 above, and FIGS. 9, 10, and 10 created based on Example 3 and Comparative Example 3 above. The discussion on the graph of FIG. 11 is omitted because it has already been described.

本発明の炭素繊維含有樹脂成形体の製造に使用されるスクリューとそのセグメントを例示したもので、(a)はフルフライト順送りセグメントを示す側面図と正面図、(b)はニーディングセグメントを示す側面図と正面図、(c)はフルフライト順送りセグメントを連結したスクリューを示す側面図である。The screw used for manufacture of the carbon fiber containing resin molding of this invention and its segment are illustrated, (a) is a side view and front view which show a full flight progressive segment, (b) shows a kneading segment. A side view and a front view, (c) is a side view showing a screw connected to a full flight progressive segment. 剪断速度[γ]の求め方を説明するための二軸同方向回転押出機の概略断面図である。It is a schematic sectional drawing of the biaxial co-rotating extruder for demonstrating how to obtain | require a shear rate [(gamma)]. 本発明の実施例1及び比較例1において条件を種々変えて作製した樹脂成形体Aの面積率[Ar]と、総剪断歪量[γ・t]及び体積抵抗率[ρ]との関係を示すグラフである。Relationship between area ratio [Ar], total shear strain amount [γ · t] and volume resistivity [ρ v ] of resin molded body A produced by changing the conditions in Example 1 and Comparative Example 1 of the present invention. It is a graph which shows. 本発明の実施例1及び比較例1において条件を種々変えて作製した樹脂成形体Aの面積率[Ar]と、極細炭素繊維(直径が10〜20nmの多層カーボンナノチューブ)の平均繊維長及び体積抵抗率[ρ]との関係を示すグラフである。The area ratio [Ar] of the resin molding A produced by changing the conditions in Example 1 and Comparative Example 1 of the present invention, and the average fiber length and volume of ultrafine carbon fibers (multi-walled carbon nanotubes having a diameter of 10 to 20 nm) It is a graph which shows the relationship with resistivity [(rho) v ]. 本発明の実施例1及び比較例1において条件を種々変えて作製した樹脂成形体Aの面積率[Ar]とその標準偏差[σ]と分散均一性との関係を示すグラフである。It is a graph which shows the relationship between the area ratio [Ar] of the resin molding A produced by changing various conditions in Example 1 and Comparative Example 1 of the present invention, its standard deviation [σ], and dispersion uniformity. 本発明の実施例2及び比較例2において条件を種々変えて作製した樹脂成形体Bの面積率[Ar]と、総剪断歪量[γ・t]及び体積抵抗率[ρ]との関係を示すグラフである。Relationship between area ratio [Ar], total shear strain amount [γ · t], and volume resistivity [ρ v ] of resin molded body B produced by changing the conditions in Example 2 and Comparative Example 2 of the present invention. It is a graph which shows. 本発明の実施例2及び比較例2において条件を種々変えて作製した樹脂成形体Bの面積率[Ar]と、極細炭素繊維(単層カーボンナノチューブ)の平均繊維長及び体積抵抗率[ρ]との関係を示すグラフである。The area ratio [Ar] of the resin molding B produced by changing the conditions in Example 2 and Comparative Example 2 of the present invention, the average fiber length and volume resistivity [ρ v of the ultrafine carbon fiber (single-walled carbon nanotube) It is a graph which shows the relationship with]. 本発明の実施例2及び比較例2において条件を種々変えて作製した樹脂成形体Bの面積率[Ar]とその標準偏差[σ]と分散均一性との関係を示すグラフである。It is a graph which shows the relationship between the area ratio [Ar] of the resin molding B produced by changing various conditions in Example 2 and Comparative Example 2 of the present invention, its standard deviation [σ], and dispersion uniformity. 本発明の実施例3及び比較例3において条件を種々変えて作製した樹脂成形体Cの面積率[Ar]と、総剪断歪量[γ・t]及び体積抵抗率[ρ]との関係を示すグラフである。Relationship between area ratio [Ar], total shear strain [γ · t] and volume resistivity [ρ v ] of resin molded body C produced by changing the conditions in Example 3 and Comparative Example 3 of the present invention. It is a graph which shows. 本発明の実施例3及び比較例3において条件を種々変えて作製した樹脂成形体Cの面積率[Ar]と、極細炭素繊維(直径が150nmの多層カーボンナノチューブ)の平均繊維長及び体積抵抗率[ρ]との関係を示すグラフである。The area ratio [Ar] of the resin molded body C produced by variously changing the conditions in Example 3 and Comparative Example 3 of the present invention, and the average fiber length and volume resistivity of ultrafine carbon fibers (multi-walled carbon nanotubes having a diameter of 150 nm) It is a graph which shows the relationship with [(rho) v ]. 本発明の実施例3及び比較例3において条件を種々変えて作製した樹脂成形体Cの面積率[Ar]とその標準偏差[σ]と分散均一性との関係を示すグラフである。It is a graph which shows the relationship between the area ratio [Ar] of the resin molding C produced by changing various conditions in Example 3 and Comparative Example 3 of the present invention, its standard deviation [σ], and dispersion uniformity.

符号の説明Explanation of symbols

Θ 材料充填角度
D 押出機内壁の内径
Ct 押出機内壁と押出機スクリューの最外部の隙間
N スクリューの回転数
Θ Material filling angle D Inner wall inner diameter Ct 0 Outer wall of extruder and outermost gap between extruder screw N Screw rotation speed

Claims (6)

100重量部の熱可塑性樹脂中に0.05〜15重量部の極細炭素繊維を分散させた樹脂成形体であって、極細炭素繊維の平均アスペクト比が20〜100であり、以下に定義する面積率[Ar]が0.2〜5.0%であることを特徴とする炭素繊維含有樹脂成形体。
面積率[Ar]:樹脂成形体の厚さ1μmのスライス片を透過型実体顕微鏡にて30倍で写真撮影し、その画像内に占める1.23×10−1μm以上の面積の粒子を抽出し、その視野内に占める該粒子の合計面積を百分率で表したもの。
A resin molded body in which 0.05 to 15 parts by weight of ultrafine carbon fibers are dispersed in 100 parts by weight of a thermoplastic resin, the average aspect ratio of the ultrafine carbon fibers is 20 to 100, and the area defined below Ratio [Ar] is 0.2-5.0%, The carbon fiber containing resin molding characterized by the above-mentioned.
Area ratio [Ar]: Photograph a slice of a resin molded body having a thickness of 1 μm at a magnification of 30 × with a transmission stereomicroscope, and particles having an area of 1.23 × 10 −1 μm 2 or more in the image. Extracted and expressed as a percentage of the total area of the particles in the field of view.
面積率[Ar]を求めるときに抽出される粒子の最大面積が5.0×10μm以下である請求項1に記載の炭素繊維含有樹脂成形体。 The carbon fiber-containing resin molded body according to claim 1, wherein the maximum area of particles extracted when obtaining the area ratio [Ar] is 5.0 x 10 1 µm 2 or less. 極細炭素繊維が、単層カーボンナノチューブ又は直径が80nm以下の2層もしくは多層カーボンナノチューブであって、100重量部の熱可塑性樹脂中に0.05〜5重量部分散している請求項1に記載の炭素繊維含有樹脂成形体。   The ultrafine carbon fiber is a single-walled carbon nanotube or a double-walled or multi-walled carbon nanotube having a diameter of 80 nm or less, and 0.05 to 5 parts by weight are dispersed in 100 parts by weight of a thermoplastic resin. Carbon fiber-containing resin molded article. 面積率[Ar]を求めるときに抽出される粒子の最大面積が1.0×10μm以下である請求項3に記載の炭素繊維含有樹脂成形体。 The carbon fiber-containing resin molded product according to claim 3, wherein the maximum area of particles extracted when obtaining the area ratio [Ar] is 1.0 x 10 1 µm 2 or less. 複数のスライス片について求めた面積率[Ar]の標準偏差[σ]が0.5〜5である請求項3又は請求項4に記載の炭素繊維含有樹脂成形体。   The carbon fiber-containing resin molded article according to claim 3 or 4, wherein the standard deviation [σ] of the area ratio [Ar] obtained for the plurality of slice pieces is 0.5 to 5. 面積率[Ar]が0.3〜2%である請求項1ないし請求項5のいずれかに記
載の炭素繊維含有樹脂成形体。
The carbon fiber-containing resin molded article according to any one of claims 1 to 5, wherein the area ratio [Ar] is 0.3 to 2%.
JP2005007717A 2005-01-14 2005-01-14 Carbon fiber-containing resin molded product Pending JP2006193649A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005007717A JP2006193649A (en) 2005-01-14 2005-01-14 Carbon fiber-containing resin molded product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005007717A JP2006193649A (en) 2005-01-14 2005-01-14 Carbon fiber-containing resin molded product

Publications (1)

Publication Number Publication Date
JP2006193649A true JP2006193649A (en) 2006-07-27

Family

ID=36799976

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005007717A Pending JP2006193649A (en) 2005-01-14 2005-01-14 Carbon fiber-containing resin molded product

Country Status (1)

Country Link
JP (1) JP2006193649A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010155929A (en) * 2008-12-26 2010-07-15 Asahi Kasei Chemicals Corp Aromatic polycarbonate resin composition and molded product using the same
JP2010530925A (en) * 2007-06-23 2010-09-16 バイエル・マテリアルサイエンス・アクチェンゲゼルシャフト Method for producing conductive polymer composite material

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0374465A (en) * 1989-08-14 1991-03-29 Japan Synthetic Rubber Co Ltd Resin compostion
JP2002275276A (en) * 2001-01-15 2002-09-25 Yuka Denshi Co Ltd Electro conductive molded article
JP2003242474A (en) * 2002-02-18 2003-08-29 Toshiba Corp Non-contact ic card
JP2003342476A (en) * 2002-05-27 2003-12-03 Bridgestone Corp Conductive resin material
JP2003342475A (en) * 2002-05-27 2003-12-03 Bridgestone Corp Conductive resin material
JP2003342474A (en) * 2002-05-27 2003-12-03 Bridgestone Corp Conductive resin material
JP2004124086A (en) * 2002-09-13 2004-04-22 Osaka Gas Co Ltd Resin composition containing nano-scale carbon, conductive or antistatic resin molded product, conductive or antistatic resin coating composition, charge prevention film and method for producing the same
JP2004122794A (en) * 2003-12-18 2004-04-22 Asahi Glass Co Ltd Laminated hose consisting of conductive fluorine-containing copolymer composition
JP2006097006A (en) * 2004-08-31 2006-04-13 Showa Denko Kk Method for producing electrically conductive resin composition and application thereof
JP2006111870A (en) * 2004-09-14 2006-04-27 Showa Denko Kk Electrically-conductive resin composition, method for producing the same, and use of the same

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0374465A (en) * 1989-08-14 1991-03-29 Japan Synthetic Rubber Co Ltd Resin compostion
JP2002275276A (en) * 2001-01-15 2002-09-25 Yuka Denshi Co Ltd Electro conductive molded article
JP2003242474A (en) * 2002-02-18 2003-08-29 Toshiba Corp Non-contact ic card
JP2003342476A (en) * 2002-05-27 2003-12-03 Bridgestone Corp Conductive resin material
JP2003342475A (en) * 2002-05-27 2003-12-03 Bridgestone Corp Conductive resin material
JP2003342474A (en) * 2002-05-27 2003-12-03 Bridgestone Corp Conductive resin material
JP2004124086A (en) * 2002-09-13 2004-04-22 Osaka Gas Co Ltd Resin composition containing nano-scale carbon, conductive or antistatic resin molded product, conductive or antistatic resin coating composition, charge prevention film and method for producing the same
JP2004122794A (en) * 2003-12-18 2004-04-22 Asahi Glass Co Ltd Laminated hose consisting of conductive fluorine-containing copolymer composition
JP2006097006A (en) * 2004-08-31 2006-04-13 Showa Denko Kk Method for producing electrically conductive resin composition and application thereof
JP2006111870A (en) * 2004-09-14 2006-04-27 Showa Denko Kk Electrically-conductive resin composition, method for producing the same, and use of the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010530925A (en) * 2007-06-23 2010-09-16 バイエル・マテリアルサイエンス・アクチェンゲゼルシャフト Method for producing conductive polymer composite material
JP2010155929A (en) * 2008-12-26 2010-07-15 Asahi Kasei Chemicals Corp Aromatic polycarbonate resin composition and molded product using the same

Similar Documents

Publication Publication Date Title
Lee et al. Rheological and electrical properties of polypropylene/MWCNT composites prepared with MWCNT masterbatch chips
Wen et al. The electrical conductivity of carbon nanotube/carbon black/polypropylene composites prepared through multistage stretching extrusion
Novais et al. The effect of flow type and chemical functionalization on the dispersion of carbon nanofiber agglomerates in polypropylene
Chen et al. Synergistic effect of carbon nanotubes and carbon black on electrical conductivity of PA6/ABS blend
Jimenez et al. Electrically conductive polymer nanocomposites of polymethylmethacrylate and carbon nanofibers prepared by chaotic mixing
Gao et al. Preparation of high performance conductive polymer fibres from double percolated structure
US8048341B2 (en) Nanocarbon-reinforced polymer composite and method of making
KR101309738B1 (en) Polymer/conductive filler composite with high electrical conductivity and the preparation method thereof
KR20110050454A (en) Method for producing composite materials having reduced resistance and comprising carbon nanotubes
WO2017169482A1 (en) Thermoplastic resin composition and method for producing thermoplastic resin composition
CN107099078B (en) Conductive resin composition and plastic molded article using same
Duc et al. Enhanced dispersion of multi walled carbon nanotubes by an extensional batch mixer in polymer/MWCNT nanocomposites
CN115216130A (en) Carbon nano tube modified polycarbonate composite material with high conductivity, high flatness and low micro-pores, and preparation method and product thereof
Mack et al. Twin-screw extrusion of multi walled carbon nanotubes reinforced polycarbonate composites: Investigation of electrical and mechanical properties
KR20100103172A (en) Polymer/carbon nano tube composite with good electronic property and fabrication method for thereof
JP2006193649A (en) Carbon fiber-containing resin molded product
Kim et al. Secondary polymer-induced particle aggregation and its rheological, electrical, and mechanical effects on PLA-based ternary composites
JP2003342476A (en) Conductive resin material
Bongiorno et al. Micro‐injection molding of CNT nanocomposites obtained via compounding process
Tanoue et al. Characterization of polypropylene/magnesium oxide/vapor-grown carbon fiber composites prepared by melt compounding
KR102334670B1 (en) Conductive resin composition and manufacturing method thereof
KR101582590B1 (en) Polymer/Hybrid conductive fillers composite with high electrical conductivity and the preparation
JP6532628B2 (en) Multi-spindle kneader, method of producing nanocomposite using the multi-spindle kneader, and disc type segment used therefor
Deng et al. sPS/PPS/Carbon Nanotube Ternary Composites with Improved Conductivity by Controlled Melt Blending Process
TWI721556B (en) Electrically conductive resin composition and preparation method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100908

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110105

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110427