JPH0550434A - Continuous preparation of rod-shaped fiber-reinforced resin material and apparatus thereof - Google Patents

Continuous preparation of rod-shaped fiber-reinforced resin material and apparatus thereof

Info

Publication number
JPH0550434A
JPH0550434A JP4021820A JP2182092A JPH0550434A JP H0550434 A JPH0550434 A JP H0550434A JP 4021820 A JP4021820 A JP 4021820A JP 2182092 A JP2182092 A JP 2182092A JP H0550434 A JPH0550434 A JP H0550434A
Authority
JP
Japan
Prior art keywords
fiber
rod
sheet
thermoplastic resin
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4021820A
Other languages
Japanese (ja)
Inventor
Toshiyuki Nakakura
敏行 中倉
Hideo Sakai
英男 坂井
Tomohito Koba
友人 木場
Misao Masuda
操 益田
Satoshi Kishi
智 岸
Chiaki Maruko
千明 丸子
Hiroshi Tanabe
浩史 田邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP4021820A priority Critical patent/JPH0550434A/en
Publication of JPH0550434A publication Critical patent/JPH0550434A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prepare continuously a rod-like fiber-reinforced resin material almost free from voids and if necessary, with high fiber content by preparing at first a sheet-like resin with a required fiber content and molding it into a rod-like shape. CONSTITUTION:A rod-like fiber-reinforced resin material wherein a reinforcing fiber is impregnated with a thermoplastic resin is prepd. In this case, the thermoplastic resin in a fiber-reinforced thermoplastic resin sheet 14 wherein a reinforcing fiber 7 arranged into a sheet-like shape is impregnated with a thermoplastic resin, is made into a softened condition by means of heating rollers 13. Thereafter, the reinforcing fiber impregnated with the thermoplastic resin is passed through a groove provided on a molding roll 30 by every specified number of filaments under tension.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はロッド状繊維補強樹脂材
の連続製造方法及びその装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a continuous manufacturing method of rod-shaped fiber-reinforced resin material and its apparatus.

【0002】[0002]

【従来の技術】繊維補強樹脂をロッド状に連続的に製造
する方法としては電線被覆方式が広く知られている。す
なわち、押出機に取り付けられたクロスヘッド内を複数
の補強用繊維が通過する間にこの補強用繊維中に溶融樹
脂を含浸させ、次いで冷却後に引き取るものである。
2. Description of the Related Art An electric wire coating method is widely known as a method for continuously producing a fiber-reinforced resin in a rod shape. That is, the molten resin is impregnated in the reinforcing fibers while the reinforcing fibers pass through the crosshead attached to the extruder, and then the reinforcing fibers are taken out after cooling.

【0003】[0003]

【発明が解決しようとする課題】しかしながら前記の方
法では、含浸と賦形を同時に行う為、得られるロッド表
面側の繊維は、熱可塑性樹脂で含浸されるものの、中央
部の繊維は脱泡が不十分な為に含浸樹脂の不良となり、
その結果、得られたロッド状樹脂材の物性が低下すると
いう問題があった。又、繊維含有率の高いロッド状樹脂
材を得ようとするとクロスヘッド内で繊維の破断が生じ
てしまう為、通常得られるロッド状樹脂材の繊維含有率
は50wt%が限度であり、これ以上の繊維を含有する
ロッド状樹脂材を製造することは困難であるという問題
があった。
However, in the above method, since impregnation and shaping are performed at the same time, the fibers on the rod surface side obtained are impregnated with the thermoplastic resin, but the fibers in the central portion are not defoamed. Since it is insufficient, the impregnated resin becomes defective,
As a result, there is a problem that the physical properties of the obtained rod-shaped resin material deteriorate. Further, when trying to obtain a rod-shaped resin material having a high fiber content, the fiber is broken in the crosshead. Therefore, the fiber content of the rod-shaped resin material that is usually obtained is limited to 50 wt% or more. There is a problem in that it is difficult to manufacture the rod-shaped resin material containing the above fiber.

【0004】また、熱硬化性樹脂に見られる様に、樹脂
を含ませた補強繊維を孔の中に通してロッドを得るとい
う、いわゆる引き抜き成形を熱可塑性樹脂に応用する方
式も考えられるが繊維が孔の中で切れてしまい長時間運
転が出来ないという不都合が生じる。
Further, as seen in thermosetting resins, a method in which so-called pultrusion molding is applied to a thermoplastic resin, in which a reinforcing fiber containing resin is passed through a hole to obtain a rod, is also conceivable. Is cut in the hole, which causes the inconvenience that it cannot be operated for a long time.

【0005】そこで、本発明は樹脂の含浸性が良好であ
り、且つ、高い繊維含有率である、ロッド状繊維補強樹
脂材を連続的に製造する方法及びその装置を提供するこ
とを技術課題とする。
Therefore, the present invention aims to provide a method and an apparatus for continuously producing a rod-shaped fiber-reinforced resin material having a good resin impregnation property and a high fiber content. To do.

【0006】[0006]

【課題を解決するための手段】本発明者らは上記課題を
解決すべく鋭意検討を重ねた結果、含浸と賦形を別々に
行うことにより、繊維含有率が高く、且つ、樹脂の含浸
が良好であることを見い出し本発明に至ったものであ
り、本発明の方法は、補強用繊維に熱可塑性樹脂を含浸
させたロッド状繊維補強樹脂材を製造する方法におい
て、シート状に配列された補強用繊維に熱可塑性樹脂を
含浸させた繊維補強熱可塑性樹脂シートを、熱可塑性樹
脂を軟化状態にした後に、ロールに設けられた溝中に、
熱可塑性樹脂に含浸された補強用繊維を、所定の本数づ
つ張力下に通過させることを特徴とする。
Means for Solving the Problems As a result of intensive studies to solve the above problems, the present inventors have found that the fiber content is high and the resin is impregnated by performing impregnation and shaping separately. The present invention has been found to be good, and the method of the present invention is arranged in a sheet shape in a method for producing a rod-shaped fiber-reinforced resin material in which a reinforcing fiber is impregnated with a thermoplastic resin. Fiber reinforced thermoplastic resin sheet impregnated with a thermoplastic resin reinforcing fiber, after the thermoplastic resin in a softened state, in the groove provided in the roll,
The reinforcing fiber impregnated with the thermoplastic resin is characterized in that a predetermined number of the reinforcing fibers are passed under tension.

【0007】本発明に係るロッド状繊維補強樹脂材の連
続製造方法の好ましい実施態様は、シート状に配列され
た補強用繊維に熱可塑性樹脂を含浸させた繊維補強熱可
塑性樹脂シートの繊維含有率が60〜85重量%で、そ
の厚さが0.1〜0.5mmであり、かつ繊維補強熱可
塑性樹脂シートのボイド率が吸水率の指標で5%以下で
あることを特徴とする。
A preferred embodiment of the continuous method for producing a rod-shaped fiber-reinforced resin material according to the present invention is a fiber-reinforced thermoplastic resin sheet obtained by impregnating a reinforcing fiber arranged in a sheet with a thermoplastic resin. Is 60 to 85% by weight, the thickness is 0.1 to 0.5 mm, and the void ratio of the fiber-reinforced thermoplastic resin sheet is 5% or less as an index of water absorption.

【0008】本発明に係るロッド状繊維補強樹脂材の製
造方法において、シート状に配列された補強用繊維に熱
可塑性樹脂を含浸させた繊維補強熱可塑性樹脂シート
を、製造する装置の直後で、まだ熱可塑性樹脂が軟化状
態にあるうちにシート状物をロッド状に賦形する賦形部
と、ロッド状に形成された樹脂材を引取る引取部を具備
した装置を設置して使用する場合と、予め製造を行った
シート状に配列された補強用繊維に熱可塑性樹脂を含浸
させた繊維補強熱可塑性樹脂シートを巻出す巻出部、繊
維補強熱可塑性樹脂シートを繊維方向に一定巾に切り裂
く裁断部、切り裂かれたシートを予熱して熱可塑性樹脂
を軟化状態にする予熱部、熱可塑性樹脂を軟化状態にし
た後にシート状物をロッド状に賦形する賦形部、ロッド
状に形成された樹脂材を引取る引取部を具備した装置を
使用する場合とがあり、いずれの場合でも本発明の効果
を発揮することが出来る。
In the method for producing a rod-shaped fiber-reinforced resin material according to the present invention, immediately after an apparatus for producing a fiber-reinforced thermoplastic resin sheet obtained by impregnating a reinforcing fiber arranged in a sheet with a thermoplastic resin, When installing and using a device equipped with a shaping part that shapes the sheet-like material into a rod shape while the thermoplastic resin is still in a softened state, and a take-up part that receives the resin material formed into a rod shape And an unwinding part for unwinding a fiber-reinforced thermoplastic resin sheet obtained by impregnating a prefabricated reinforcing fiber arranged in a sheet with a thermoplastic resin, and a fiber-reinforced thermoplastic resin sheet with a constant width in the fiber direction. Cut part to cut, preheat part to preheat the cut sheet to soften the thermoplastic resin, shaping part to shape the sheet material into rod shape after softening the thermoplastic resin, forming into rod shape Resin That there is a case of using a device having a take-off Ru take-off section, it is possible to exhibit the effect of the present invention in any case.

【0009】[0009]

【具体的構成】以下、本発明について詳説する。本発明
においてロッドとは所謂棒状であり、その断面が定形、
不定形何れであっても良く、円形、だ円形、角形等その
形状は問わない。円形断面であればその直径は1.5m
mから4mmが望ましい。楕円形断面であればその短径
は1.5mm以上で長径は4mm以下が望ましい。角形
断面であればその短辺は1.5mm以上で長辺は4mm
以下が望ましい。
Concrete Structure The present invention will be described in detail below. In the present invention, the rod is a so-called rod shape, the cross section of which is a fixed shape,
The shape may be any shape, and the shape such as a circle, an ellipse, or a square is not limited. If the cross section is circular, the diameter is 1.5m
m to 4 mm is desirable. In the case of an elliptical cross section, the short diameter is preferably 1.5 mm or more and the long diameter is preferably 4 mm or less. If it has a rectangular cross section, its short side is 1.5 mm or more and its long side is 4 mm.
The following is desirable.

【0010】この範囲を外れた1.5mm未満の場合
は、賦形時に繊維切れが起き易くなり、また、4mmを
越える場合はロッド形状に賦形する時に冷却時間を十分
に取らないとロッドの中心部が冷え切れずにロッド形状
が保て無いので、製造速度を遅くしなければならず生産
性が低下することと、射出成形用のペレットにする場合
ロッドが太いと繊維の分散が悪くなり強度のばらつきが
大きくなる等の問題が発生し易くなる。
If it is less than 1.5 mm outside this range, fiber breakage is likely to occur during shaping, and if it exceeds 4 mm, the rod must be cooled sufficiently when shaping into a rod shape. Since the center part does not cool completely and the rod shape cannot be maintained, the production speed must be slowed down and the productivity decreases, and when using pellets for injection molding, if the rod is thick, fiber dispersion will be poor. Problems such as large variations in strength tend to occur.

【0011】又、本発明において、複数の連続繊維と
は、繊維を構成するフィラメントの集合体であるロービ
ング、ヤーン、トウという名称で知られているものを複
数用いるもので、フィラメントが充分長くて、使用する
条件下で溶融熱可塑性樹脂塗膜に接して引張るのに充分
な強さを有するものである。好ましい材料としては、ガ
ラス繊維、炭素繊維、高弾性の合成樹脂繊維が挙げられ
るが、無機繊維の炭化ケイ素繊維やアルミナ繊維、チタ
ン繊維、ボロン繊維、ステンレス等の金属繊維を用いる
こともできる。
In the present invention, a plurality of continuous fibers are those which are known as rovings, yarns and tows, which are aggregates of filaments constituting the fibers, and the filaments are sufficiently long. It has sufficient strength to pull on the molten thermoplastic resin coating film under the conditions of use. Examples of preferable materials include glass fibers, carbon fibers, and highly elastic synthetic resin fibers, but inorganic fibers such as silicon carbide fibers, alumina fibers, titanium fibers, boron fibers, and stainless metal fibers can also be used.

【0012】補強繊維のフィラメントの径は5〜20ミ
クロンが通常使用されており、このフィラメントを20
0〜12000本を束ねたトウを、製造する繊維補強熱
可塑性樹脂シートの巾に合わせて必要本数使用する。
The diameter of the filament of the reinforcing fiber is usually 5 to 20 μm.
The required number of tows obtained by bundling 0 to 12000 are used according to the width of the fiber-reinforced thermoplastic resin sheet to be produced.

【0013】合成樹脂繊維は、含浸する熱可塑性樹脂と
接着性を有するように表面処理されていることが好まし
く、更に使用する熱可塑性樹脂の溶融温度で強度等の性
能が変化しないことが必要である。合成樹脂繊維として
は、例えばアラミド繊維(登録商標「ケプラー」等)が
挙げられる。
The synthetic resin fiber is preferably surface-treated so as to have adhesiveness with the impregnated thermoplastic resin, and it is necessary that the performance such as strength does not change with the melting temperature of the thermoplastic resin used. is there. Examples of the synthetic resin fiber include aramid fiber (registered trademark “Kepler” and the like).

【0014】前記ガラス繊維や炭素繊維は、使用する熱
可塑性樹脂に合せて樹脂との接着性を向上させるために
繊維表面にシラン系やチタン系のカプリング剤等の表面
処理剤を塗布することが好ましい。またロービングやト
ウが取扱時にほぐれないように集束剤を用いることは取
扱い上好ましい。
The glass fiber or carbon fiber may be coated with a surface treatment agent such as a silane-based or titanium-based coupling agent on the surface of the fiber in order to improve the adhesiveness with the resin in accordance with the thermoplastic resin used. preferable. In addition, it is preferable in terms of handling to use a sizing agent so that the roving or tow is not loosened during handling.

【0015】又、本発明で用いられる熱可塑性樹脂は、
ポリスチレン、ポリ塩化ビニル、高密度ポリエチレン、
ポリプロピレン、ナイロン、ポリカーボネート、ポリブ
チレンテレフタレート、ポリエチレンテレフタレート、
熱可塑性ポリイミド、ポリエーテルスルフォン、ポリサ
ルフォン、ポリエーテルイミド(商標「ULTE
M」)、ポリエーテルエーテルケトン等が挙げられる。
これらの樹脂を用いる場合、予め乾燥を行うのが好まし
く、また繊維との接着向上の目的で樹脂にチタン系等の
カプリング剤を添加することは更に好ましい。
The thermoplastic resin used in the present invention is
Polystyrene, polyvinyl chloride, high density polyethylene,
Polypropylene, nylon, polycarbonate, polybutylene terephthalate, polyethylene terephthalate,
Thermoplastic polyimide, polyether sulfone, polysulfone, polyetherimide (trademark "ULTE
M "), polyether ether ketone, and the like.
When these resins are used, it is preferable to dry them in advance, and it is more preferable to add a coupling agent such as titanium to the resin for the purpose of improving the adhesion with the fiber.

【0016】一方向に配列した前記繊維に上記熱可塑性
樹脂を含浸してシート状に形成するには通常公知の方法
は全て利用できる。例えば、熱可塑性樹脂を溶融状態で
繊維に含浸させる溶融含浸法、粉末状の熱可塑性樹脂を
空気等の気体中に浮遊、または水などの液体中に懸濁さ
せた状態で含浸させる流動床法などが挙げられる。
For forming the sheet by impregnating the above-mentioned fibers arranged in one direction with the above-mentioned thermoplastic resin, all known methods can be used. For example, a melt impregnation method of impregnating fibers with a thermoplastic resin in a molten state, a fluidized bed method of impregnating a powdery thermoplastic resin in a state of being suspended in a gas such as air or suspended in a liquid such as water And so on.

【0017】この様な方法で製造される繊維補強熱可塑
性樹脂シートの繊維含有率は60〜85重量%が望まし
い。繊維含有率が低いと物性が十分に発現しないし、逆
に繊維含有率が高すぎると繊維に対する樹脂の含浸が悪
くなり物性が低下するなどの問題が発生する。
The fiber content of the fiber-reinforced thermoplastic resin sheet produced by such a method is preferably 60 to 85% by weight. If the fiber content is low, the physical properties are not sufficiently expressed, and conversely, if the fiber content is too high, the impregnation of the resin into the fiber is deteriorated and the physical properties are deteriorated.

【0018】繊維補強熱可塑性樹脂シートの厚さは0.
1〜0.5mmが望ましい。0.1mm未満のシートの
場合は、収束数の少ないフィラメント径の細い補強繊維
を使用する必要があるが、繊維補強熱可塑性樹脂シート
製造時に細い繊維が切れ易くシートを均一に仕上げるの
が困難であり、さらに、ロッド製造時にも溝内で繊維の
フィラメント切れが起き、切れたフィラメントが溝中に
堆積し運転継続が困難な状況になることが多い等の問題
がある。
The thickness of the fiber reinforced thermoplastic resin sheet is 0.
1 to 0.5 mm is desirable. In the case of a sheet of less than 0.1 mm, it is necessary to use a reinforcing fiber having a small filament number and a small filament diameter, but it is difficult to cut the thin fiber during the production of the fiber-reinforced thermoplastic resin sheet, and it is difficult to finish the sheet uniformly. In addition, there is a problem that filament breakage of the fiber occurs in the groove even when the rod is manufactured, and the broken filament is often accumulated in the groove, which makes it difficult to continue the operation.

【0019】また、シートが0.5mmを越える場合は
繊維束の内部まで樹脂が漬み込まずに、含浸が悪くなる
例が多く、ロッドに加工する時に含浸していない繊維が
ロッドの表面に浮き出てロッド品質が低下するという問
題がある。このようにして得られた繊維強化熱可塑性樹
脂シートは、繊維と樹脂濡れが悪いと、繊維と樹脂の界
面に気泡が残る。この様な状態は、ボイドが存在してい
ると一般的には言われている。
When the sheet exceeds 0.5 mm, in many cases the resin is not dipped into the inside of the fiber bundle and impregnation is poor. When the rod is processed, fibers not impregnated on the surface of the rod. There is a problem that the rod quality is raised and the quality of the rod is deteriorated. In the fiber-reinforced thermoplastic resin sheet thus obtained, when the wetting of the fiber and the resin is poor, air bubbles remain at the interface between the fiber and the resin. It is generally said that such a state has a void.

【0020】また、ボイドが少ないほど繊維強化熱可塑
性樹脂シートの機械的強度は高く、繊維強化材料として
は可能な限りボイドを少なくする必要がある。当然のこ
とながら、ボイドの少ない繊維強化熱可塑性樹脂シート
から製造したロッドほど、強度性能が優れており、本発
明に使用する繊維強化熱可塑性樹脂シートはボイドの少
ないものを使うことを前提としている。
Further, the smaller the number of voids, the higher the mechanical strength of the fiber-reinforced thermoplastic resin sheet, and it is necessary for the fiber-reinforced material to have as few voids as possible. As a matter of course, the rod manufactured from the fiber-reinforced thermoplastic resin sheet having less voids has better strength performance, and it is premised that the fiber-reinforced thermoplastic resin sheet used in the present invention has few voids. ..

【0021】このボイドの量を測定する方法として、本
発明では、繊維強化熱可塑性樹脂シートを、界面活性能
力の高い溶剤中に浸漬し、溶剤に漬ける前後の重量変化
を測定する方法を採用した。つまり、重量変化が大きい
ほど、ボイド中に溶剤が浸入する量が多く繊維と樹脂の
密着性が悪く強度が低いと判断できる。
As a method of measuring the amount of the voids, the present invention employs a method of immersing the fiber-reinforced thermoplastic resin sheet in a solvent having a high surface activity and measuring the weight change before and after soaking in the solvent. .. That is, it can be judged that the larger the change in weight, the larger the amount of solvent that penetrates into the voids, and the poorer the adhesion between the fiber and the resin, and the lower the strength.

【0022】本発明ではボイド率を測定した溶剤は、ア
ルコールを20%含有した水を使用した。本発明で定義
したボイド率は以下の通りである。すなわち、
In the present invention, water containing 20% alcohol was used as the solvent whose void fraction was measured. The void ratio defined in the present invention is as follows. That is,

【0023】[0023]

【式1】 ボイド率が5%以上の繊維強化熱可塑性樹脂シートを使
用したロッド状繊維補強樹脂材は繊維と樹脂が均質な状
態にならず強度が低くなり構造材料用途には使用するこ
とが困難である。
[Formula 1] A rod-shaped fiber-reinforced resin material using a fiber-reinforced thermoplastic resin sheet having a void ratio of 5% or more does not have a homogeneous state of fibers and resin and has low strength, which makes it difficult to use for structural material applications.

【0024】この様にして得られたシート状樹脂をロッ
ド状に賦形する方法としては通常公知の方法は全て利用
できる。例えば、熱可塑性樹脂が溶融状態にある間に半
円の溝を有する一対のロール間を圧力下にシート状樹脂
を通過させる方法、シート状樹脂中の繊維に張力を設
け、半円の溝を有する1本のロールに樹脂が溶融状態に
ある間に押し付ける方法などが挙げられる。
As a method for shaping the sheet-shaped resin thus obtained into a rod shape, all of the commonly known methods can be used. For example, a method in which a sheet-shaped resin is passed under pressure between a pair of rolls having a semicircular groove while the thermoplastic resin is in a molten state, tension is applied to fibers in the sheet-shaped resin, and a semicircular groove is formed. A method of pressing the resin while it is in a molten state onto one of the rolls is included.

【0025】ロールに彫り込む溝の形状は、例えば円形
又は楕円形のロッドの場合は、溝の底面が半円形に、角
形断面の場合は、溝の底面を平に加工する必要がある。
溝の深さは繊維束が飛び出さない深さが必要で、賦形し
ようとするロッドの太さの3〜6倍の深さに加工する必
要がある。また、溝の巾は賦形するロッドの太さに対応
して決定されるべきであるが、熱可塑性樹脂は溶融状態
から冷却固化する時に体積収縮するのでこの分を見込ん
で、ロッドの太さより3〜25%大きい巾に彫り込む
が、使用する樹脂に最適な巾を試行の上決定すべきであ
る。
Regarding the shape of the groove to be engraved on the roll, for example, in the case of a rod having a circular shape or an elliptical shape, the bottom surface of the groove needs to be semicircular, and in the case of a rectangular cross section, the bottom surface of the groove needs to be flat.
The depth of the groove is required to prevent the fiber bundle from protruding, and it is necessary to process the groove to a depth 3 to 6 times the thickness of the rod to be shaped. In addition, the width of the groove should be determined according to the thickness of the rod to be shaped, but since the thermoplastic resin shrinks in volume when it cools and solidifies from the molten state, allow this amount, and The width is engraved 3 to 25% larger, but the optimum width for the resin to be used should be determined by trial.

【0026】賦形に要する圧力としては、例えば一対の
賦形ロールを用いる場合、線圧として、好ましくは3〜
10kg/cm2である。線圧が低い場合は繊維束同士
の密着が悪くロッド強度が上がらない。又、線圧が10
kg/cm2を越える場合は、繊維束を構成するフィラ
メントがロール間で切れて、ロールに巻き付き連続運転
に支障をきたす。
The pressure required for shaping is, for example, in the case of using a pair of shaping rolls, linear pressure, preferably 3 to.
It is 10 kg / cm 2 . When the linear pressure is low, the tightness of the fiber bundles is poor and the rod strength does not increase. Also, the linear pressure is 10
If it exceeds kg / cm 2 , the filaments constituting the fiber bundle are broken between the rolls and wound around the rolls, which hinders continuous operation.

【0027】又、一本の賦形ロールを用いる場合、繊維
一本に掛ける張力としては好ましくは4〜12kg/c
2である。張力が低い場合は繊維束同士の密着が悪く
ロッド強度が上がらない。又、張力が12kg/cm2
を越える場合は、繊維束を構成するフィラメントがロー
ル溝に強く擦られて切れて、ロールに巻き付き連続運転
に支障をきたす。
When using one shaping roll, the tension applied to one fiber is preferably 4 to 12 kg / c.
m 2 . If the tension is low, the tightness of the fiber bundles will be poor and the rod strength will not increase. Also, the tension is 12 kg / cm 2.
If it exceeds, the filaments constituting the fiber bundle are strongly rubbed by the roll grooves and broken, and the filaments are wound around the rolls and interfere with continuous operation.

【0028】賦形ロールの温度は賦形性の面からは高温
が望ましいが、高くなりすぎると樹脂の劣化と、離型性
の悪化があり望ましくない。従って、熱可塑性樹脂のガ
ラス転移温度と軟化点の間で決定すべきである。
The temperature of the shaping roll is preferably high from the viewpoint of shaping property, but if it is too high, the resin deteriorates and the releasability deteriorates, which is not desirable. Therefore, a decision should be made between the glass transition temperature and the softening point of the thermoplastic resin.

【0029】例えば、ポリスチレン、ポリプロピレン、
ポリエチレン、AS樹脂、ABS樹脂、ASA樹脂(ポ
リアクリロニトリル・ポリスチレン・ポリアクリル酸エ
ステル)、ポリメチルメタクリレート、ナイロン、ポリ
アセタールであれば60〜80℃、ポリエチレンテレフ
タレート、フッ素樹脂であれば70〜90℃、ポリフェ
ニレンオキシドであれば80〜100℃、ポリカーボネ
ートであれば100〜120℃、ポリフェニレンスルフ
ィド、ポリスルフォンであれば120〜130℃、ポリ
エーテルサルフォンであれば140〜160℃、ポリエ
ーテルエーテルケトンであれば130〜140℃であ
る。
For example, polystyrene, polypropylene,
Polyethylene, AS resin, ABS resin, ASA resin (polyacrylonitrile / polystyrene / polyacrylic acid ester), polymethylmethacrylate, nylon, polyacetal 60 to 80 ° C, polyethylene terephthalate / fluorine resin 70 to 90 ° C, 80 to 100 ° C. for polyphenylene oxide, 100 to 120 ° C. for polycarbonate, 120 to 130 ° C. for polyphenylene sulfide and polysulfone, 140 to 160 ° C. for polyether sulfone, and polyether ether ketone. For example, it is 130-140 degreeC.

【0030】賦形ロールの表面は樹脂の離型性の面から
平滑であることが好ましく、特にテフロン、セラミック
等をコーティングすることは特に好ましい。
The surface of the shaping roll is preferably smooth from the viewpoint of the releasability of the resin, and it is particularly preferable to coat it with Teflon, ceramic or the like.

【0031】シート状樹脂中の繊維を所定の本数づつ賦
形ロールの溝に導く手段を講ずることは好ましい。当該
手段は例えばカッター刃、棒等を一定間隔に並べ、その
間を所定の本数づつ繊維を通過させることにより達せら
れる。
It is preferable to provide a means for guiding the fibers in the sheet-shaped resin into the grooves of the shaping roll in a predetermined number. This means can be achieved, for example, by arranging cutter blades, rods, etc. at regular intervals and passing a predetermined number of fibers between them.

【0032】この様にして得られたロッド状繊維補強樹
脂材はそのまま、例えば釣竿等として用いてもよく、ま
た、フィラメントワインディング、圧縮成形用等の成形
素材として用いることもできる。さらに一定長に切断す
ることにより射出成形用ペレットとして用いることも可
能である。
The rod-shaped fiber-reinforced resin material thus obtained may be used as it is, for example, as a fishing rod or the like, or may be used as a molding material for filament winding, compression molding or the like. Furthermore, it can be used as pellets for injection molding by cutting into a certain length.

【0033】[0033]

【実施態様】次に本発明の詳細を図面に示した代表的実
施例について説明する。尚、下記実施例のうち、図1に
示す繊維繰出部A、供給部B、樹脂含浸部Cについては
特公平2−48907号に示される方法、及び装置によ
った。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The details of the present invention will be described with reference to the typical embodiments shown in the drawings. In the following examples, the fiber feeding part A, the supplying part B, and the resin impregnating part C shown in FIG. 1 were according to the method and apparatus described in JP-B-2-48907.

【0034】図1は本発明の一実施態様を示す概略側面
図、図2はシート状プリプレグをロッド状に賦形する為
の賦形ロールの断面図、図3はシート状プリプレグを賦
形ロールに導く分配器を示す正面図である。
FIG. 1 is a schematic side view showing an embodiment of the present invention, FIG. 2 is a sectional view of a shaping roll for shaping a sheet prepreg into a rod shape, and FIG. 3 is a shaping roll for a sheet prepreg. It is a front view which shows the distributor leading to.

【0035】図1に示す如く、本発明を実施するための
製造装置は、繊維繰出部A、供給部B、樹脂含浸部Cか
らなるシート状樹脂製造部101、賦形102及び引取
部103とから成る。繊維繰出部Aに設けられたボビン
1から繰り出される繊維2は供給部Bの整列器3により
一方向に整列され、ついで張力調整ロール4、5、6を
通過して繊維シート7を形成する。
As shown in FIG. 1, a manufacturing apparatus for carrying out the present invention comprises a sheet-shaped resin manufacturing section 101 comprising a fiber feeding section A, a supply section B, and a resin impregnating section C, a shaping 102 and a take-up section 103. Consists of. The fibers 2 delivered from the bobbin 1 provided in the fiber delivery part A are aligned in one direction by the aligner 3 of the supply part B, and then pass through the tension adjusting rolls 4, 5, 6 to form the fiber sheet 7.

【0036】次に繊維シート7は樹脂含浸部Cに入り、
押出機(図示せず)で可塑化された熱可塑性樹脂をダイ
8を経由して、表面に樹脂の薄膜が塗布された下ベルト
10と接触し、且つ下ベルト10もしくは上ベルト12
を介して加熱ロール13もしくは11に圧接して樹脂を
含浸し、シート状樹脂14を得る。シート状樹脂製造部
101で得られたシート状樹脂14は、ついで樹脂が軟
化状態にある間に賦形部102の分配器20、賦形ロー
ル30を通過してロッド状繊維補強樹脂材50となる。
分配器20は所定の本数のピン21が取り付けられてお
り、ピン間にシート状樹脂14中の繊維を所定の本数づ
つ通すことにより賦形ロール30の表面に設けられた溝
31に繊維束を導くことが容易となる。尚、賦形ロール
30に設けられた溝31に繊維束を導くことが困難でな
い場合には分配器20を省略することは可能である。賦
形ロール30には必要個数の溝31が設けられており、
分配器20で分割されたシート状樹脂14中の繊維束が
張力下に溝中を押圧されながら通過する間にロッド状に
賦形される。この様にして得られたロッド状繊維補強樹
脂材は、次いで冷却部(図示せず)で冷却された後引取
部103によって引取られる。
Next, the fiber sheet 7 enters the resin impregnated portion C,
A thermoplastic resin plasticized by an extruder (not shown) is brought into contact with a lower belt 10 having a resin thin film applied on the surface thereof through a die 8 and the lower belt 10 or the upper belt 12 is provided.
The sheet-shaped resin 14 is obtained by pressure-contacting the heating roll 13 or 11 with the resin impregnated therethrough. The sheet-shaped resin 14 obtained in the sheet-shaped resin manufacturing unit 101 then passes through the distributor 20 and the shaping roll 30 of the shaping unit 102 while the resin is in the softened state, and becomes the rod-shaped fiber-reinforced resin material 50. Become.
A predetermined number of pins 21 are attached to the distributor 20, and a predetermined number of fibers in the sheet-shaped resin 14 are passed between the pins to form a fiber bundle in the grooves 31 provided on the surface of the shaping roll 30. It will be easy to guide. If it is not difficult to guide the fiber bundle to the groove 31 provided in the shaping roll 30, the distributor 20 can be omitted. The shaping roll 30 is provided with a required number of grooves 31,
The fiber bundle in the sheet-shaped resin 14 divided by the distributor 20 is shaped like a rod while passing through the groove while being pressed under tension. The rod-shaped fiber-reinforced resin material thus obtained is then cooled by a cooling unit (not shown) and then taken up by the take-up unit 103.

【0037】図4は本発明の他の実施態様を示す概略図
である。図4に示す様に繊維補強熱可塑性樹脂シートロ
ール200を巻出してガイドロール201を通し、次い
で加熱装置202で熱可塑性樹脂を溶融状態まで加熱す
る。次いで、分配器20から賦形ロール30を通しロッ
ド状繊維補強樹脂材50を引取軸204を経由して、巻
取りロール205で巻取り、本発明のロッド状繊維補強
樹脂材を製造することが出来る。
FIG. 4 is a schematic view showing another embodiment of the present invention. As shown in FIG. 4, a fiber-reinforced thermoplastic resin sheet roll 200 is unwound, passed through a guide roll 201, and then a heating device 202 heats the thermoplastic resin to a molten state. Then, the rod-shaped fiber-reinforced resin material 50 is wound from the distributor 20 through the shaping roll 30 and the take-up shaft 205 via the take-up shaft 204 to manufacture the rod-shaped fiber-reinforced resin material of the present invention. I can.

【0038】分配器20と賦形ロール30は溶融状態に
ある樹脂が冷えて固まらない様に温度制御されていなけ
ればならない。賦形ロール30を出た後は、生産性をあ
げるために、冷却装置を設置して急速にロッド形状を保
持させることも出来る。
The distributor 20 and the shaping roll 30 must be temperature-controlled so that the resin in the molten state will not cool and harden. After leaving the shaping roll 30, it is possible to install a cooling device to rapidly maintain the rod shape in order to improve productivity.

【0039】[0039]

【実施例】以下、本発明を実施例により説明する。 実施例1 図1に示した装置の各部の仕様がボビン数100個、押
出機30mmφ、ロール9、11、13の巾400mm、ロ
ール径240mmφ、上下ベルト10、 12の厚み0.
5mm、巾350mmであるものを用いた。
EXAMPLES The present invention will be described below with reference to examples. Example 1 The specifications of each part of the apparatus shown in FIG. 1 are 100 bobbins, extruder 30 mmφ, rolls 9, 11 and 13 width 400 mm, roll diameter 240 mmφ, upper and lower belts 10 and 12 thickness 0.
The one having a width of 5 mm and a width of 350 mm was used.

【0040】又、分配器20は径が1mmのピン21をピ
ン軸間8mmのピッチで26本並べたものを、又、賦形ロ
ール30はロール径が100mmφ、長さ240mmのロー
ルに径2mmの半円の溝31を中心間が8mmとなる様に2
5ヶ設けたものを用いた。
The distributor 20 comprises 26 pins 21 each having a diameter of 1 mm arranged at a pitch of 8 mm between the pin axes, and the shaping roll 30 has a roll diameter of 100 mmφ and a length of 240 mm and a diameter of 2 mm. Set the semi-circular groove 31 of 2 so that the distance between the centers is 8 mm.
The thing which provided 5 pieces was used.

【0041】ボビン1から引き出されたガラス繊維10
0本を整列器3で一方向に整列させた後、張力調整ロー
ル4、5、6を通過させて200mm巾の繊維シート7と
した。
Glass fiber 10 drawn from bobbin 1
After aligning 0 pieces in one direction by the aligner 3, the tension adjusting rolls 4, 5 and 6 were passed to obtain a fiber sheet 7 having a width of 200 mm.

【0042】一方、押出機(図示せず)で200℃に加
熱溶融したポリプロピレンをダイ8を経由して、下ベル
ト用ロールで240℃に加熱された下ベルト10の表面
に70μm の厚みで塗布した。ついで前記シートを下ベ
ルトと、上ベルト用ロール11で加熱された上ベルト1
2にはさんだ状態で240℃に加熱された含浸ロール1
1と13の間を図1に示す状態で400kgの張力を掛
けながら 1m/分の速度で通過させた。この様にして
ポリプロピレンをガラス繊維に含浸させたシート状プリ
プレグは、次いで該プリプレグ中のガラス繊維を4本づ
つに分けた状態で分配器20のピン21の間を通す。次
いで、巾2.3mm、深さ10mmの溝を彫り込んだ賦
形ロールを通した。この時、分配器と賦形ロールは70
℃に温度コントロールを行った。賦形ロールを通した時
の繊維束1本当りの張力は4kgであった。
On the other hand, polypropylene melted at 200 ° C. by an extruder (not shown) is applied to the surface of the lower belt 10 heated at 240 ° C. by a lower belt roll at a thickness of 70 μm through a die 8. did. Then, the above-mentioned sheet is used as a lower belt and an upper belt 1 heated by an upper belt roll 11.
Impregnation roll 1 heated to 240 ℃ sandwiched between 2
In the state shown in FIG. 1, 400 kg of tension was applied between 1 and 13 at a speed of 1 m / min. The sheet-like prepreg in which the glass fiber is impregnated with polypropylene in this manner is then passed between the pins 21 of the distributor 20 in a state where the glass fiber in the prepreg is divided into four pieces. Then, it was passed through a shaping roll in which a groove having a width of 2.3 mm and a depth of 10 mm was engraved. At this time, the distributor and the shaping roll are 70
Temperature control was performed at ℃. The tension per fiber bundle passed through the shaping roll was 4 kg.

【0043】このようにして得たロッド状繊維補強樹脂
材は冷却後引取部103の引取ロール15、16、17
で引き取られ、巻取軸18に巻き取った。
The rod-shaped fiber-reinforced resin material thus obtained is cooled and the take-up rolls 15, 16, 17 of the take-up section 103 are cooled.
And was wound on the winding shaft 18.

【0044】連続10時間運転を行った後も繊維が切れ
る等の製造上の問題は発生しなかった。次いで、分配器
20と賦形ロール30を取り外して繊維補強熱可塑性樹
脂シートをボイド率測定用として製造した。
Even after the continuous operation for 10 hours, there was no problem in production such as fiber breakage. Next, the distributor 20 and the shaping roll 30 were removed, and a fiber-reinforced thermoplastic resin sheet was manufactured for measuring the void ratio.

【0045】繊維補強熱可塑性樹脂シートの繊維含有率
及びボイド率の測定結果は各々、70Wt%、0.2%
であった。また、得られたロッド状繊維補強樹脂材の引
張強度は120kg/mm2であった。
The fiber content and void content of the fiber reinforced thermoplastic resin sheet were measured to be 70 Wt% and 0.2%, respectively.
Met. The tensile strength of the obtained rod-shaped fiber-reinforced resin material was 120 kg / mm 2 .

【0046】さらに、ロッド状繊維補強樹脂材を10m
mの長さに切断し射出成形用のマスターペレットとし
た。このマスターペレットと射出成形用のポリプロピレ
ン樹脂と混合し繊維含有率が30%の射出成形材料と
し、通常の射出成形機により成形を行い成形品を得た。
この成形品の引張強度は1100kg/cm2、アイゾ
ット衝撃強度は25kg・cm/cmであった。
Further, a rod-shaped fiber reinforced resin material is added to 10 m.
It was cut into a length of m to obtain a master pellet for injection molding. The master pellets and polypropylene resin for injection molding were mixed to obtain an injection molding material having a fiber content of 30%, and the mixture was molded by an ordinary injection molding machine to obtain a molded product.
The tensile strength and the Izod impact strength of this molded product were 1100 kg / cm 2 and 25 kg · cm / cm, respectively.

【0047】実施例2 ガラス繊維100本を炭素繊維140本に、ポリプロピ
レンをポリカーボネートに変え、また、押出機での溶融
温度を200℃から290℃に、加熱温度を240℃か
ら310℃に変えた以外は実施例1と同様に処理してシ
ート状樹脂を得た。ついで、この樹脂中の繊維を6本づ
つ分けて分配器に通し、又、賦形ロールの温度を180
℃に変えた以外は実施例1と同様に処理してロッド状繊
維補強樹脂材を得た。
Example 2 100 glass fibers were changed to 140 carbon fibers, polypropylene was changed to polycarbonate, and the melting temperature in the extruder was changed from 200 ° C to 290 ° C and the heating temperature was changed from 240 ° C to 310 ° C. A sheet-shaped resin was obtained by the same procedure as in Example 1 except for the above. Then, the fibers in the resin are divided into 6 pieces and passed through a distributor, and the temperature of the shaping roll is set to 180.
A rod-shaped fiber reinforced resin material was obtained by the same treatment as in Example 1 except that the temperature was changed to ° C.

【0048】次いで実施例1と同様に分配器20と賦形
ロール30を取り外して繊維補強熱可塑性樹脂シートを
ボイド率測定用として製造した。この様にして得られ
た、繊維補強熱可塑性樹脂シートの繊維含有率及びボイ
ド率の測定結果は各々、60Wt%、5.2%であっ
た。
Then, in the same manner as in Example 1, the distributor 20 and the shaping roll 30 were removed, and a fiber-reinforced thermoplastic resin sheet was manufactured for measuring the void ratio. The measurement results of the fiber content rate and the void rate of the fiber-reinforced thermoplastic resin sheet thus obtained were 60 Wt% and 5.2%, respectively.

【0049】また、得られたロッド状繊維補強樹脂材の
引張強度は180kg/mm2であった。さらに、実施
例1と同様に、ロッド状繊維補強樹脂材を10mmの長
さに切断し射出成形用のマスターペレットとした。この
マスターペレットと射出成形用のポリカーボネート樹脂
と混合し繊維含有率が30%の射出成形材料とし、通常
の射出成形機により成形を行い成形品を得た。この成形
品の引張強度は1400kg/cm2、アイゾット衝撃
強度は29kg・cm/cmであった。
The tensile strength of the obtained rod-shaped fiber-reinforced resin material was 180 kg / mm 2 . Further, as in Example 1, the rod-shaped fiber-reinforced resin material was cut into a length of 10 mm to obtain a master pellet for injection molding. The master pellets were mixed with a polycarbonate resin for injection molding to obtain an injection molding material having a fiber content of 30%, and molding was carried out by an ordinary injection molding machine to obtain a molded product. The tensile strength of this molded product was 1400 kg / cm 2 , and the Izod impact strength was 29 kg · cm / cm.

【0050】実施例3 分配器20と賦形ロール30を取り外した以外は実施例
1と同様な条件で繊維補強熱可塑性樹脂シートを製造し
た。このシートの繊維含有率及びボイド率の測定結果は
各々、70Wt%、0.2%であった。
Example 3 A fiber-reinforced thermoplastic resin sheet was produced under the same conditions as in Example 1 except that the distributor 20 and the shaping roll 30 were removed. The measurement results of the fiber content rate and the void rate of this sheet were 70 Wt% and 0.2%, respectively.

【0051】次いで、繊維補強熱可塑性樹脂シート20
0をガイドロール201に通し、230℃に加熱された
加熱装置を2m/分の速度で通し、実施例1と全く同様
な分配器20と賦形ロール30を通し引取りロール20
4により引き取りながらロッド状繊維補強樹脂材205
を得た。
Next, the fiber-reinforced thermoplastic resin sheet 20.
0 through a guide roll 201, a heating device heated to 230 ° C. at a speed of 2 m / min, a distributor 20 and a shaping roll 30 which are exactly the same as those in Example 1, and a take-up roll 20.
The rod-shaped fiber reinforced resin material 205 while being taken up by 4
Got

【0052】この様にして得られたロッド状繊維補強樹
脂材の引張強度は122kg/mm2であった。さら
に、実施例1と同様にロッド状繊維補強樹脂材を10m
mの長さに切断し射出成形用のマスターペレットとし
た。このマスターペレットと射出成形用のポリプロピレ
ン樹脂と混合し繊維含有率が30%の射出成形材料と
し、通常の射出成形機により成形を行い成形品を得た。
この成形品の引張強度は1100kg/cm2、アイゾ
ット衝撃強度は26kg・cm/cmであった。
The tensile strength of the rod-shaped fiber-reinforced resin material thus obtained was 122 kg / mm 2 . Further, as in Example 1, the rod-shaped fiber reinforced resin material was set to 10 m.
It was cut into a length of m to obtain a master pellet for injection molding. The master pellets and polypropylene resin for injection molding were mixed to obtain an injection molding material having a fiber content of 30%, and the mixture was molded by an ordinary injection molding machine to obtain a molded product.
The tensile strength of this molded product was 1100 kg / cm 2 , and the Izod impact strength was 26 kg · cm / cm.

【0053】比較例1 直径2mm、長さ300mmの穿孔を有するクロスヘッ
ドダイ内に押出機で溶融したポリプロピレンを供給し
た。一方、実施例1で用いたガラス繊維5本を上記穿孔
内に通し、220℃に加熱されたクロスヘッド内を通過
させながら溶融ポリプロピレンを接触させた後、引き取
ってWf60%のロッド状繊維補強樹脂材を得ようとし
たが、繊維がクロスヘッドの穿孔内で切断してしまい、
順調に引き取ることができなかった。そこでガラス繊維
の本数を4本に減らして上記操作を行って繊維を樹脂で
被覆した後、冷却して直径2mmのロッドを得た。得ら
れたロッド状繊維補強樹脂材の繊維含有率及びボイド率
の測定結果は、各々50Wt%、5.2%であった。
Comparative Example 1 Polypropylene melted by an extruder was fed into a crosshead die having a hole having a diameter of 2 mm and a length of 300 mm. On the other hand, five glass fibers used in Example 1 were passed through the perforations, and molten polypropylene was contacted while passing through a crosshead heated to 220 ° C., and then taken out to obtain a rod-shaped fiber-reinforced resin having a Wf of 60%. I tried to get the material, but the fibers cut in the perforations in the crosshead,
I couldn't pick it up smoothly. Therefore, the number of glass fibers was reduced to four, the above operations were performed to coat the fibers with a resin, and then the glass was cooled to obtain a rod having a diameter of 2 mm. The measurement results of the fiber content and the void ratio of the obtained rod-shaped fiber-reinforced resin material were 50 Wt% and 5.2%, respectively.

【0054】また、このロッド状繊維補強樹脂材の引張
強度は48kg/mm2であった。さらに、ロッド状繊
維補強樹脂材を10mmの長さに切断し射出成形用のマ
スターペレットとした。このマスターペレットと射出成
形用のポリプロピレン樹脂と混合し繊維含有率が30%
の射出成形材料とし、通常の射出成形機により成形を行
い成形品を得た。この成形品の引張強度は700kg/
cm2、アイゾット衝撃強度は15kg・cm/cmで
あった。
The tensile strength of this rod-shaped fiber-reinforced resin material was 48 kg / mm 2 . Further, the rod-shaped fiber-reinforced resin material was cut into a length of 10 mm to obtain a master pellet for injection molding. By mixing this master pellet with polypropylene resin for injection molding, the fiber content is 30%
Using an ordinary injection molding machine, a molded product was obtained. The tensile strength of this molded product is 700 kg /
The cm 2 and Izod impact strength were 15 kg · cm / cm.

【0055】比較例2 繊維シートを含浸ロール11と13の間を70kgの張
力をかけた外は、実施例1と同様にしてロッド状繊維補
強樹脂材と繊維補強熱可塑性樹脂シートを製造した。ロ
ッド状繊維補強材を製造する時の繊維束1本当りの張力
は0.7kg/cm2であった。
Comparative Example 2 A rod-shaped fiber-reinforced resin material and a fiber-reinforced thermoplastic resin sheet were produced in the same manner as in Example 1 except that a tension of 70 kg was applied between the impregnating rolls 11 and 13 for the fiber sheet. The tension per fiber bundle at the time of producing the rod-shaped fiber reinforcing material was 0.7 kg / cm 2 .

【0056】この様にして得られた繊維補強熱可塑性樹
脂シートの繊維含有率及びボイド率の測定結果は各々、
60Wt%、5.2%であった。また、得られたロッド
状繊維補強樹脂材の引張強度は60kg/mm2であっ
た。さらに、ロッド状繊維補強樹脂材を10mmの長さ
に切断し射出成形用のマスターペレットとした。このマ
スターペレットと射出成形用のポリプロピレン樹脂と混
合し繊維含有率が30%の射出成形材料とし、通常の射
出成形機により成形を行い成形品を得た。この成形品の
引張強度は10kg/cm2、アイゾット衝撃強度は1
5kg・cm/cmであった。
The measurement results of the fiber content and void ratio of the fiber-reinforced thermoplastic resin sheet thus obtained are as follows:
It was 60 Wt% and 5.2%. The tensile strength of the obtained rod-shaped fiber-reinforced resin material was 60 kg / mm 2 . Further, the rod-shaped fiber-reinforced resin material was cut into a length of 10 mm to obtain a master pellet for injection molding. The master pellets and polypropylene resin for injection molding were mixed to obtain an injection molding material having a fiber content of 30%, and the mixture was molded by an ordinary injection molding machine to obtain a molded product. The tensile strength of this molded product is 10 kg / cm 2 , and the Izod impact strength is 1.
It was 5 kg · cm / cm.

【0057】比較例3 分配器20と賦形ロール30の代わりに、図5に示した
直径2mmの孔301が25箇所ある引き抜き金型30
0を取り付けて、孔301に溶融熱可塑性樹脂補強繊維
に含浸され一定巾で裂かれたシート状樹脂302を通し
て、ロッド状繊維補強樹脂材50とする以外は、実施例
1と同様にしてロッド状繊維補強樹脂材を製造した。製
造を始めて、10分後に25個の孔の内3箇所で繊維が
切れて運転の継続が出来なくなった。
Comparative Example 3 Instead of the distributor 20 and the shaping roll 30, a drawing die 30 having 25 holes 2 mm in diameter shown in FIG.
In the same manner as in Example 1, except that the rod-shaped fiber-reinforced resin material 50 was obtained by attaching 0 and passing the sheet-shaped resin 302 impregnated with the molten thermoplastic resin-reinforced fiber into the hole 301 and split with a certain width. A fiber reinforced resin material was manufactured. After 10 minutes from the start of the production, the fiber was cut at 3 of the 25 holes and the operation could not be continued.

【0058】[0058]

【発明の効果】以上の如く、本発明によれば、含浸性が
良好であり、かつ所望の繊維含有率を有するシート状樹
脂を製造した後に、更にロッド状に賦形する為、ボイド
がほとんどなく、かつ必要があれば高繊維含有率を有す
るロッド状繊維補強樹脂材が連続的に得られるという効
果を発揮する。
As described above, according to the present invention, since a sheet-shaped resin having a good impregnation property and having a desired fiber content is manufactured and then shaped into a rod, almost no voids are formed. The rod-shaped fiber-reinforced resin material having a high fiber content can be continuously obtained without the need and if necessary.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施態様を示す概略側面図である。FIG. 1 is a schematic side view showing an embodiment of the present invention.

【図2】シート状樹脂をロッド状に賦形するための賦形
ロールの断面図である。
FIG. 2 is a cross-sectional view of a shaping roll for shaping a sheet-shaped resin into a rod shape.

【図3】シート状樹脂を賦形ロールに導く分配器を示す
正面図である。
FIG. 3 is a front view showing a distributor that guides the sheet-shaped resin to a shaping roll.

【図4】本発明の他の一実施態様を示す概念図である。FIG. 4 is a conceptual diagram showing another embodiment of the present invention.

【図5】引き抜き成形用金型で、シート状樹脂をロッド
状に賦形している概念図である。
FIG. 5 is a conceptual diagram in which a sheet-shaped resin is formed into a rod shape in a pultrusion molding die.

【符号の説明】[Explanation of symbols]

A 繊維繰出部 B 供給部 C 樹脂含浸部 1 ボビン 2 繊維 3 整列器 4 張力調整ロール 5 張力調整ロール 6 張力調整ロール 7 繊維シート 8 ダイ 9 ガイドロール 10 下ベルト 11 加熱ロール 12 上ベルト 13 加熱ロール 14 シート状樹脂 15 取引ロール 16 取引ロール 17 ガイドロール 18 巻取軸 20 分配器 21 ピン 30 賦形ロール 31 溝 50 ロッド状繊維補強樹脂材 101 シート状樹脂製造部 102 賦形部 103 引取部 200 繊維補強熱可塑性樹脂シート 201 ガイドロール 202 加熱装置 204 引取ロール 205 巻取ロール 300 引抜成形用金型 301 ロッド形成用の孔 302 一定巾で裂かれたシート状樹脂 A Fiber feeding section B Supply section C Resin impregnation section 1 Bobbin 2 Fiber 3 Aligner 4 Tension adjusting roll 5 Tension adjusting roll 6 Tension adjusting roll 7 Fiber sheet 8 Die 9 Guide roll 10 Lower belt 11 Heating roll 12 Upper belt 13 Heating roll 14 sheet resin 15 transaction roll 16 transaction roll 17 guide roll 18 winding shaft 20 distributor 21 pin 30 shaping roll 31 groove 50 rod-shaped fiber reinforced resin material 101 sheet-shaped resin manufacturing unit 102 shaping unit 103 take-up unit 200 fiber Reinforcement thermoplastic resin sheet 201 Guide roll 202 Heating device 204 Take-up roll 205 Wind-up roll 300 Pultrusion molding die 301 Rod-forming hole 302 Sheet-shaped resin torn in a certain width

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 B29L 31:06 4F (72)発明者 益田 操 神奈川県横浜市栄区笠間町1190番地 三井 東圧化学株式会社内 (72)発明者 岸 智 神奈川県横浜市栄区笠間町1190番地 三井 東圧化学株式会社内 (72)発明者 丸子 千明 神奈川県横浜市栄区笠間町1190番地 三井 東圧化学株式会社内 (72)発明者 田邉 浩史 神奈川県横浜市栄区笠間町1190番地 三井 東圧化学株式会社内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification number Reference number within the agency FI Technical indication location B29L 31:06 4F (72) Inventor Misao Masuda 1190 Kasamacho, Sakae-ku, Yokohama-shi, Kanagawa Mitsui Toatsu Chemical (72) Inventor Satoshi Kishi 1190 Kasama-cho, Sakae-ku, Yokohama-shi, Kanagawa Mitsui Toatsu Chemical Co., Ltd. (72) Inventor Chiaki Maruko 1190, Kasama-cho, Sakae-ku, Yokohama, Kanagawa Mitsui Toatsu Chem., Ltd. ( 72) Inventor Hiroshi Tanabe 1190 Kasama-cho, Sakae-ku, Yokohama-shi, Kanagawa Mitsui Toatsu Chemical Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】補強用繊維に熱可塑性樹脂を含浸させたロ
ッド状繊維補強樹脂材を製造する方法において、シート
状に配列された補強用繊維に熱可塑性樹脂を含浸させた
繊維補強熱可塑性樹脂シートを、熱可塑性樹脂を軟化状
態にした後に、ロールに設けられた溝中に、熱可塑性樹
脂に含浸された補強用繊維を、所定の本数づつ張力下に
通過させることを特徴とするロッド状繊維補強樹脂材の
連続製造方法。
1. A method for producing a rod-shaped fiber-reinforced resin material in which reinforcing fibers are impregnated with a thermoplastic resin, wherein the reinforcing fibers arranged in a sheet shape are impregnated with the thermoplastic resin. A rod-shaped sheet characterized by allowing a reinforcing fiber impregnated with a thermoplastic resin to pass under tension in a predetermined number in a groove provided in a roll after the sheet is made into a softened state of the thermoplastic resin. Continuous production method of fiber-reinforced resin material.
【請求項2】シート状に配列された補強用繊維に熱可塑
性樹脂を含浸させた繊維補強熱可塑性樹脂シートの繊維
含有率が60〜85重量%で、その厚さが0.1〜0.
5mmであり、かつ繊維補強熱可塑性樹脂シートのボイ
ド率が吸水率の指標で5%以下であることを特徴とする
請求項1記載のロッド状繊維補強樹脂材の連続製造方
法。
2. A fiber-reinforced thermoplastic resin sheet obtained by impregnating a reinforcing fiber arranged in a sheet with a thermoplastic resin has a fiber content of 60 to 85% by weight and a thickness of 0.1 to 0.
2. The continuous method for producing a rod-shaped fiber-reinforced resin material according to claim 1, wherein the fiber-reinforced thermoplastic resin sheet has a void ratio of 5 mm or less as an index of water absorption of 5% or less.
【請求項3】補強用繊維に熱可塑性樹脂を含浸させたロ
ッド状繊維補強樹脂材を製造する装置において、複数の
繊維を繰り出す繊維繰出部と、繊維を一方向に引揃えて
シート状と成す手段を有する供給部と、補強用繊維に熱
可塑性樹脂を含浸する含浸部と、樹脂が含浸されたシー
ト状樹脂をロッド状に賦形する賦形部と、ロッド状樹脂
を引取る引取部を具備することを特徴とするロッド状繊
維補強樹脂材の連続製造装置。
3. An apparatus for producing a rod-shaped fiber-reinforced resin material in which reinforcing fibers are impregnated with a thermoplastic resin, wherein a fiber feeding portion for feeding a plurality of fibers and fibers are aligned in one direction to form a sheet. A supply unit having means, an impregnation unit for impregnating the reinforcing fiber with the thermoplastic resin, a shaping unit for shaping the sheet-shaped resin impregnated with the resin into a rod shape, and a take-up unit for taking the rod-shaped resin. An apparatus for continuously producing a rod-shaped fiber-reinforced resin material, comprising:
【請求項4】含浸部が、複数の加熱ロールの間をS字状
に通過する一対のベルト、ベルトを加熱する為の複数の
加熱ロール、下ベルト表面に溶融熱可塑性樹脂を塗布す
る押出機及びダイ、並びに加熱ロールを駆動する駆動機
構から構成され、かつ賦形部が含浸部の直後に設けられ
た溝を有する賦形ロールから構成されることを特徴とす
る請求項3記載のロッド状繊維補強樹脂材の連続製造装
置。
4. An impregnating section, a pair of belts passing in an S-shape between a plurality of heating rolls, a plurality of heating rolls for heating the belts, and an extruder for applying a molten thermoplastic resin to the lower belt surface. 4. The rod shape according to claim 3, comprising a die, a driving mechanism for driving the heating roll, and the shaping section having a shaping roller having a groove provided immediately after the impregnating section. Continuous production equipment for fiber reinforced resin materials.
【請求項5】補強用繊維に熱可塑性樹脂を含浸させたロ
ッド状繊維補強材を製造する装置において、補強繊維に
熱可塑性樹脂が含浸されたシートを巻出す巻出部と、繊
維補強熱可塑性樹脂シートを繊維方向に一定巾に切り裂
く裁断部と、切り裂かれたシートを予熱して熱可塑性樹
脂を軟化状態にする予熱部と、軟化したシートをロッド
状に賦形する賦形部と、ロッド状繊維補強樹脂材を引取
る引取部を具備することを特徴とするロッド状繊維補強
樹脂材の連続製造装置。
5. An apparatus for producing a rod-shaped fiber reinforcing material in which reinforcing fibers are impregnated with a thermoplastic resin, and an unwinding part for unwinding a sheet in which the reinforcing fibers are impregnated with the thermoplastic resin, and a fiber-reinforced thermoplastic material. A cutting portion that cuts the resin sheet into a certain width in the fiber direction, a preheating portion that preheats the cut sheet to soften the thermoplastic resin, a shaping portion that shapes the softened sheet into a rod shape, and a rod. An apparatus for continuously producing a rod-shaped fiber-reinforced resin material, comprising: a take-up section for taking the fiber-shaped fiber-reinforced resin material.
JP4021820A 1991-01-11 1992-01-10 Continuous preparation of rod-shaped fiber-reinforced resin material and apparatus thereof Pending JPH0550434A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4021820A JPH0550434A (en) 1991-01-11 1992-01-10 Continuous preparation of rod-shaped fiber-reinforced resin material and apparatus thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP3-13647 1991-01-11
JP1364791 1991-01-11
JP4021820A JPH0550434A (en) 1991-01-11 1992-01-10 Continuous preparation of rod-shaped fiber-reinforced resin material and apparatus thereof

Publications (1)

Publication Number Publication Date
JPH0550434A true JPH0550434A (en) 1993-03-02

Family

ID=26349470

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4021820A Pending JPH0550434A (en) 1991-01-11 1992-01-10 Continuous preparation of rod-shaped fiber-reinforced resin material and apparatus thereof

Country Status (1)

Country Link
JP (1) JPH0550434A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012510385A (en) * 2008-11-28 2012-05-10 ヘクセル ランフォルセマン A novel intermediate material with constant width for the production of composite parts by direct method
JP2017505853A (en) * 2014-02-13 2017-02-23 アルケマ フランス Process for producing thermoplastic polymer pre-impregnated fiber material using an aqueous dispersion of polymer
JP2017507045A (en) * 2014-02-13 2017-03-16 アルケマ フランス Method for producing thermoplastic polymer pre-impregnated fiber material in a fluidized bed
WO2020217929A1 (en) 2019-04-25 2020-10-29 東レ株式会社 Fiber-reinforced thermoplastic resin filament for 3d printer, and molded article thereof
CN113230458A (en) * 2021-05-06 2021-08-10 北京欧亚铂瑞科技有限公司 High-light-transmittance fiber resin composite material for repairing machinable dental pile crown and preparation method thereof
WO2022075265A1 (en) 2020-10-06 2022-04-14 倉敷紡績株式会社 Fiber-reinforced resin pultruded article and method for producing same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012510385A (en) * 2008-11-28 2012-05-10 ヘクセル ランフォルセマン A novel intermediate material with constant width for the production of composite parts by direct method
JP2017505853A (en) * 2014-02-13 2017-02-23 アルケマ フランス Process for producing thermoplastic polymer pre-impregnated fiber material using an aqueous dispersion of polymer
JP2017507045A (en) * 2014-02-13 2017-03-16 アルケマ フランス Method for producing thermoplastic polymer pre-impregnated fiber material in a fluidized bed
WO2020217929A1 (en) 2019-04-25 2020-10-29 東レ株式会社 Fiber-reinforced thermoplastic resin filament for 3d printer, and molded article thereof
WO2022075265A1 (en) 2020-10-06 2022-04-14 倉敷紡績株式会社 Fiber-reinforced resin pultruded article and method for producing same
CN113230458A (en) * 2021-05-06 2021-08-10 北京欧亚铂瑞科技有限公司 High-light-transmittance fiber resin composite material for repairing machinable dental pile crown and preparation method thereof
CN113230458B (en) * 2021-05-06 2023-03-17 北京欧亚铂瑞科技有限公司 High-light-transmittance fiber resin composite material for repairing machinable dental pile crown and preparation method thereof

Similar Documents

Publication Publication Date Title
US5068142A (en) Fiber-reinforced polymeric resin composite material and process for producing same
US6517654B1 (en) Process for the production of fiber-reinforced semi-finished articles made of thermoplastics of medium to high viscosity
US10676845B2 (en) Continuous fiber reinforced thermoplastic rod and pultrusion method for its manufacture
US5520867A (en) Method of manufaturing a resin structure reinforced with long fibers
JPH07251437A (en) Method and device for manufacture of long fiber reinforced thermoplastic composite material
KR101731686B1 (en) Solidified fibre bundles
EP0125472B1 (en) Process for preparing shaped objects of poly(arylene sulfide) and product thereof
KR920001646B1 (en) Maruko chiaki
JPH0371258B2 (en)
JPH0732495A (en) Manufacture of long fiber-reinforced thermoplastic resin composition
JPS61229535A (en) Method and device for manufacturing fiber reinforced resin sheet
JPH0550434A (en) Continuous preparation of rod-shaped fiber-reinforced resin material and apparatus thereof
EP0303499A1 (en) Preformed yarn useful for forming composite articles and process of producing same
JPH11130882A (en) Yarn prepreg and its preparation
JPH0724830A (en) Production of thermoplastic unidirectional prepreg sheet
KR950013673B1 (en) Method and device for continudusly forming rod-lire fiber-reinforced resin material
JP4555455B2 (en) Drawing method of unidirectional fiber reinforced plastic
JP2623282B2 (en) Molding material
JPH05278126A (en) Forming material of fiber reinforced thermoplastic resin
JPS61229534A (en) Method and device for manufacturing fiber reinforced resin sheet
KR100286965B1 (en) Granules made of fiber reinforced thermoplastic
JP2001129827A (en) Long fiber pellet, and method and apparatus for manufacturing it
JPH0691637A (en) Manufacture of pellet composed of fiber bundle coated with thermoplastic resin and device for coating fiber bundle with thermoplastic resin
JPS61229536A (en) Method and apparatus for producing fiber-reinforced resin sheet
JPS621527A (en) Method of molding resin sheet