JPH03179033A - Molding material and its mixture - Google Patents

Molding material and its mixture

Info

Publication number
JPH03179033A
JPH03179033A JP31769789A JP31769789A JPH03179033A JP H03179033 A JPH03179033 A JP H03179033A JP 31769789 A JP31769789 A JP 31769789A JP 31769789 A JP31769789 A JP 31769789A JP H03179033 A JPH03179033 A JP H03179033A
Authority
JP
Japan
Prior art keywords
molding material
fiber
molding
resin
fibrous reinforcement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31769789A
Other languages
Japanese (ja)
Inventor
Tomohito Koba
木場 友人
Toshiyuki Nakakura
中倉 敏行
Hideo Sakai
坂井 英男
Misao Masuda
益田 操
Chiaki Maruko
千明 丸子
Satoshi Kishi
岸 智
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP31769789A priority Critical patent/JPH03179033A/en
Publication of JPH03179033A publication Critical patent/JPH03179033A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a molding having good fiber dispersibility and high mechanical strengths in spite of containing a fibrous reinforcement in a high concentration by cutting a plate prepared by infiltrating a polybutylene terephthalate resin into a fibrous reinforcement composed of single fibers to form a molding material satisfying specified requirements and using this material. CONSTITUTION:A molding material 20 obtained by preparing a plate of a structure in which a fibrous reinforcement composed of single fibers (filaments) 22 is coated with a polybutylene terephthalate resin 21 (hereinafter referred to as the PBT resin), and the PBT resin is infiltrated into the fibrous reinforcement and cutting this plate filled with the fibrous reinforcement and satisfying the following requirements (1)-(5): (1) the filling ratio of the fibrous reinforcement in the molding material is 50-90wt.%, (2) the length of the fibrous reinforcement is 1-30mm, (3) at least one side (e.g. H) of the molding material 20 is at most 1mm, (4) the specific surface area of the molding material 20 is at least 20cm<2>/g, and (5) the melt flow rate of the PBT resin is 10-100g/10min when measured under conditions of 235 deg.C and 2.16kgf according to JIS K-7210.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は成形材料およびその混合物に関し、詳しくは射
出成形、押出成形、圧1i!戒形等に使用され、成形特
の分散性が良好であって、繊維の破断が少なく、機械強
度が大幅に向上した成形品を提供し得る成形材料および
その混合物に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to molding materials and mixtures thereof, and in particular to injection molding, extrusion molding, pressure 1i! The present invention relates to a molding material and a mixture thereof that can be used for molding, etc., and can provide a molded product with good dispersibility in molding, little fiber breakage, and significantly improved mechanical strength.

〔従来の技術〕[Conventional technology]

従来、繊維によって強化された樹脂組成物の製造方法と
しては、次の二つに大別される。
Conventionally, methods for producing fiber-reinforced resin compositions can be roughly divided into the following two types.

■その一つの方法は、ポリブチレンチレフクレート樹脂
(以下単にPBT樹脂と略す)に例えば3an程度の長
さのガラス繊維をトライブレンドしてトライブレンド物
を作り、これを押出機で混練造粒等してベレントにする
方法である。
■One method is to make a tri-blend product by tri-blending glass fibers with a length of, for example, about 3 an into polybutylene lenticulate resin (hereinafter simply referred to as PBT resin), and then kneading and granulating this with an extruder. This is the method to make it Berendt.

■他の一つの方法は、ガラス繊維等の連続体をダイス穿
孔内に通し、押出機で溶融したP[l↑樹脂を上記ダイ
ス穿孔内に導き、前記繊維策を被覆し、冷却後一定長に
切断して円筒状の成形材料を得る方法である。
■Another method is to pass a continuous body such as glass fiber into the die hole, guide the P[l↑resin melted by an extruder into the die hole, cover the fiber material, and after cooling it to a certain length. This is a method to obtain a cylindrical molding material by cutting the material into cylindrical shapes.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記のように得られた成形材料のガラス繊維の充填率は
、■前者の場合、混練時の繊維の分散性の問題から通常
30重量%が上限とされていた。又■後者の場合もダイ
ス穿孔内での繊維引き抜き抵抗の問題から通常が40重
量%が上限とされてる。
In the former case, the upper limit of the glass fiber filling rate of the molding material obtained as described above has usually been set at 30% by weight due to problems with the dispersibility of the fibers during kneading. Also, in the latter case, the upper limit is usually set at 40% by weight due to the problem of fiber pull-out resistance within the die hole.

従って、これ以上の高充填率の成形材料を得ることがで
きないという課題があった。
Therefore, there was a problem that it was not possible to obtain a molding material with a higher filling rate.

また従来、成形材料に用いられる樹脂は成形後の成形品
の物性を考慮して一般に高分子量、即ち低いメルトフロ
レート(以下、rMFRJと略記する)を有しており、
このため■前者の場合には混練時に押出機内バレルとス
クリューとの間で発生する剪断力のために繊維の破断が
起こり、得られる成形材料中の平均繊維長は0.3〜0
.5mと短くなる課題があった。
Furthermore, conventionally, resins used as molding materials generally have a high molecular weight, that is, a low melt fluororate (hereinafter abbreviated as rMFRJ), in consideration of the physical properties of the molded product after molding.
Therefore, in the former case, the fibers break due to the shearing force generated between the extruder barrel and screw during kneading, and the average fiber length in the resulting molding material is 0.3 to 0.
.. There was an issue with the length being shortened to 5m.

一方■後者の場合においても成形材料中の繊維長さは、
成形材料のそれと同一であり、長く保たれているものの
、上記低MFRであること並びに成形材料の形状が一般
に円筒であり、単位重量当りの成形材料の表面積、即ち
比表面積が小さくて押出機供給ゾーンにおけるPBT樹
脂の可塑化に時間を要するため、成形時に繊維が破断し
て成形品中の平均繊維が0.3〜0.5mと短くなるば
かりでなく、繊維の分散不良という課題も生しる。
On the other hand, even in the latter case, the fiber length in the molding material is
Although it is the same as that of the molding material and is maintained for a long time, it has the above-mentioned low MFR, and the shape of the molding material is generally cylindrical, and the surface area of the molding material per unit weight, that is, the specific surface area is small, so it is difficult to feed it to an extruder. Because it takes time to plasticize the PBT resin in the zone, the fibers break during molding, which not only shortens the average fiber in the molded product to 0.3 to 0.5 m, but also causes the problem of poor fiber dispersion. Ru.

以上にように従来技術では、繊維の充填率、破損、分散
性の面から繊維の補強効果を十分に発揮し得ないという
tlI題があった。
As described above, the prior art has the problem of not being able to fully demonstrate the reinforcing effect of fibers in terms of fiber filling rate, breakage, and dispersibility.

そこで、本発明の目的は、繊維補強材を高濃度に充填し
ているにも拘らず、成形時の繊維分散性が良好であり、
繊維の破断が少なく、繊維強度が大幅に向上した成形品
が得られる成形材料およびその混合物を提供することに
ある。
Therefore, the object of the present invention is to achieve good fiber dispersibility during molding despite being filled with a high concentration of fiber reinforcing material.
It is an object of the present invention to provide a molding material and a mixture thereof that allow a molded article with less fiber breakage and significantly improved fiber strength to be obtained.

〔課題を解決するための手段〕[Means to solve the problem]

本発明者は上記課題を解決すべく鋭意検討した結果、成
形時に押出機内で発生するm維分散不良、あるいは繊維
破断の課題は成形材料中の樹脂のMFR及び比表面積と
密接な関係にあり、またこれらのMFR及び比表面積を
一定条件を満足するように設定することにより、成形品
の物性を損なうことなく、成形時の繊維分散性が良好で
あり、繊維の破断が少なく、機械補強が大幅に向上する
ことを見出し、本発明を完成するに至ったものである。
As a result of intensive studies to solve the above problems, the present inventor found that the problem of poor dispersion of m-fibers or fiber breakage that occurs in the extruder during molding is closely related to the MFR and specific surface area of the resin in the molding material. In addition, by setting these MFR and specific surface area to satisfy certain conditions, fiber dispersibility during molding is good, there is little fiber breakage, and mechanical reinforcement is significantly improved without impairing the physical properties of the molded product. The present invention has been completed based on the discovery that the present invention can be improved.

即ち、本発明の係る成形材料は、単繊維(フィラメント
)から構成される繊維状補強材がPBT樹脂によって被
覆され、且つ該PBT樹脂が繊維状補強材中に含浸され
ている構成の板状体を得、前記繊維状補強材が充填され
ている該板状体を切断して得られる成形材料において、 (i)該成形材料に対する繊維状補強材の充填率が50
重量%以上90重量%以下、 (ii )該繊維状補強材の長さが1〜30m、(ii
i)該板状体の少なくとも一辺が1III11以下、(
iv)該成形材料の比表面積が20cm” / g以上
(v)該PBT樹脂のMFRが、JIS K 7210
に基づき試験温度235“C1試験荷重2.16kgf
の条件で測定した時に10 g /10分以上long
/10分以下であることを特徴とする。
That is, the molding material according to the present invention is a plate-like body having a structure in which a fibrous reinforcing material made of single fibers (filaments) is covered with a PBT resin, and the PBT resin is impregnated into the fibrous reinforcing material. and cutting the plate-shaped body filled with the fibrous reinforcing material, (i) the filling ratio of the fibrous reinforcing material to the molding material is 50
% by weight or more and 90% by weight or less, (ii) the length of the fibrous reinforcing material is 1 to 30 m, (ii)
i) At least one side of the plate-like body is 1III11 or less, (
iv) The specific surface area of the molding material is 20 cm"/g or more. (v) The MFR of the PBT resin meets JIS K 7210.
Based on test temperature 235"C1 test load 2.16kgf
10 g/10 minutes or longer when measured under the conditions of
/10 minutes or less.

また本発明の係わる成形材料混合物は、上記の成形材料
と繊維未強化PBT樹脂とからなり、該線維未強化PH
丁樹脂のMFI?が前記成形材料であるPBT樹脂の門
Fl?の0.05〜1(fj(同一条件下で測定)であ
ることを特徴とする。
Further, the molding material mixture according to the present invention is composed of the above-mentioned molding material and a fiber-unreinforced PBT resin,
MFI of resin? is the PBT resin gate Fl? which is the molding material. 0.05 to 1 (fj (measured under the same conditions)).

以下、本発明について詳説する。The present invention will be explained in detail below.

始めに、本発明の成形材料の一例を第1図及び第2図に
基き説明する。同図において、20は成形材料、21は
PBT樹脂、22は単繊維である。
First, an example of the molding material of the present invention will be explained based on FIGS. 1 and 2. In the figure, 20 is a molding material, 21 is a PBT resin, and 22 is a single fiber.

Lは成形材料の長さ、即ち繊維長であり、1.0〜30
Mであるm  1.0mm未満では繊維長が短く十分な
補強効果が得られず、逆に30amを越えるとホッパー
内でブリッジ化等を引き起こし成形が困難となるので好
ましくない。
L is the length of the molding material, that is, the fiber length, and is 1.0 to 30
If m is less than 1.0 mm, the fiber length is short and a sufficient reinforcing effect cannot be obtained, whereas if it exceeds 30 am, bridging etc. occur in the hopper, making molding difficult, which is not preferable.

W及び11は各々成形材料の幅及び厚さであり、次式の
比表面積が一定値以上になるように決定される。
W and 11 are the width and thickness of the molding material, respectively, and are determined so that the specific surface area of the following formula is greater than or equal to a certain value.

LXlf  Xll  X  P 式中L;成形材料の長さ(cm) m:成形材料の幅 (cub) H:成形材料の厚さ(cm) P:成形材料の比重(g/c+7) なお、幅と長さの内、少なくとも一方を1.Om+a以
下、好ましくは0.5餉未満とすることは比表面積を大
きく設定する上で好ましい。
LXlf Xll At least one of the lengths is 1. It is preferable to set the specific surface area to be less than Om+a, preferably less than 0.5 in order to set a large specific surface area.

本発明において、比表面積は20cffl/g以上、好
ましくは30crl/ g 、より好ましくは40c1
1!/g以上である。比表面積が20cj/g未満では
射出成形や押出成形等の成形特に、押出機内において成
形材料中のPBT樹脂が溶融状態となる迄に長時間を要
し、押出機供給ゾーンにおいて、繊維分散不良、繊維破
断等の問題が起こり好ましくない。
In the present invention, the specific surface area is 20 cffl/g or more, preferably 30 crl/g, more preferably 40 cfl/g.
1! /g or more. If the specific surface area is less than 20cj/g, it will take a long time for the PBT resin in the molding material to reach a molten state in the extruder, especially during injection molding, extrusion molding, etc., resulting in poor fiber dispersion and poor fiber dispersion in the extruder supply zone. This is not preferable as it may cause problems such as fiber breakage.

尚、厚さHに関してはホッパー内分級、取扱い性の面か
らはO,1am以上に設定することが好ましい。
Note that the thickness H is preferably set to 0.1 am or more from the viewpoint of classification in the hopper and ease of handling.

本発明に用いられるPBT樹脂の1lFflは、JIS
 K7210に基づき試験温度235℃、試験荷重2.
16kgfの条件(以下、「本発明の測定条件」という
)で測定した時に、10g/10分以上100g/10
分以下である。100 g /10分を越えると得られ
る成形品の111械強度が大巾に低下するため好ましく
ない。
1lFfl of the PBT resin used in the present invention is JIS
Based on K7210, test temperature: 235°C, test load: 2.
When measured under the conditions of 16 kgf (hereinafter referred to as "measurement conditions of the present invention"), 100 g/10 for 10 g/10 minutes or more
minutes or less. If it exceeds 100 g/10 minutes, the 111 mechanical strength of the obtained molded product will be significantly reduced, which is not preferable.

又10g/10分未満では成形特の繊維分散不良、繊維
の破断が起こり繊維の補強効果をt員なうので好ましく
ない。なお一般にPBT樹脂のMFRは本発明の測定条
件で測定した場合、5〜120g/10分の範囲にある
。即ち、本発明者は一般のMFRの範囲で、他の本発明
の要件との関係で特定のMFRの範囲を見出したのであ
る。
Further, if it is less than 10 g/10 minutes, it is not preferable because poor fiber dispersion during molding and fiber breakage occur, which impairs the reinforcing effect of the fibers. In general, the MFR of PBT resin is in the range of 5 to 120 g/10 minutes when measured under the measurement conditions of the present invention. That is, the inventor found a specific MFR range within the general MFR range in relation to other requirements of the present invention.

本発明に用いる繊維状補強材の種類としては、E−ガラ
ス、S−ガラス等のガラス繊維、ポリアクリルニトリル
系、ピッチ系、レーヨン系等の炭素繊維、デュポン社の
「ケブラー」 (商標)に代表される芳香族ポリアミド
繊維、日本カーボン社の「ニカロンJ (商標)等の炭
化ケイ素繊維、金B繊維等が挙げられる。これらの繊維
状補強材は、単独或いは組合せて用いることができる。
The types of fibrous reinforcing materials used in the present invention include glass fibers such as E-glass and S-glass, carbon fibers such as polyacrylonitrile, pitch, and rayon, and DuPont's "Kevlar" (trademark). Typical examples include aromatic polyamide fibers, silicon carbide fibers such as "Nicalon J (trademark)" manufactured by Nippon Carbon Co., Ltd., gold B fibers, etc. These fibrous reinforcing materials can be used alone or in combination.

本発明において繊維径は繊維の種類によっても異なるが
、例えばガラス繊維の場合、通常5〜25μmであるが
、機械特性の面からは細い方が好ましい、また繊維状補
強材を表面処理することはPBT樹脂との接着性の面か
ら好ましく、例えばガラス繊維の場合、シラン系、チタ
ネート系カップリング剤で処理することは特に好ましい
In the present invention, the fiber diameter varies depending on the type of fiber, but for example, in the case of glass fiber, it is usually 5 to 25 μm, but from the viewpoint of mechanical properties, a thinner one is preferable, and it is not possible to surface-treat the fibrous reinforcing material. It is preferable from the viewpoint of adhesiveness with PBT resin, and for example, in the case of glass fiber, it is particularly preferable to treat it with a silane-based or titanate-based coupling agent.

本発明において成形材料中の繊維状補強剤の充填率は、
50重量%以上90重量%以下である。50重貴兄未満
では本発明の効果である繊維の高充填化の特徴が発揮で
きず、また後述するマスターバッチとして用いる場合経
済性の面からみても好ましくない、一方、90重景気を
越えると単繊維の表面をPOT樹脂で十分被覆すること
ができず好ましくない。
In the present invention, the filling rate of the fibrous reinforcing agent in the molding material is
It is 50% by weight or more and 90% by weight or less. If it is less than 50 years old, the characteristic of high fiber filling, which is the effect of the present invention, cannot be exhibited, and it is also unfavorable from an economic point of view when used as a masterbatch, which will be described later. This is not preferable because the surface of the fiber cannot be sufficiently covered with the POT resin.

本発明に係る成形材料は、単繊維(フィラメント〉から
構成される繊維状補強材がPCT樹脂によって被覆され
、且つ該PBT樹脂が繊維状補強材中に含浸されている
構成の板状体を得、前記151i維状補強材が充填され
ている該板状体を一定長に切断することにより得られる
The molding material according to the present invention provides a plate-like body having a structure in which a fibrous reinforcing material made of single fibers (filaments) is covered with a PCT resin, and the PBT resin is impregnated into the fibrous reinforcing material. , is obtained by cutting the plate-shaped body filled with the 151i fibrous reinforcing material into a certain length.

本発明においては、前記繊維状補強材の構成単位である
単繊維(フィラメント)の90%以上の表面が、前記P
BT樹脂で被覆されている成形材ギ4を得ることが好ま
しい。
In the present invention, the surface of 90% or more of the single fibers (filaments) that are the constituent units of the fibrous reinforcing material is
It is preferable to obtain a molded material 4 coated with BT resin.

本発明において、繊維状補強材中にPBT樹脂を含浸し
て繊維の構成単位である単繊維(フィラメント)の表面
をPBT樹脂で被覆する方法は、特に限定されない0例
えば、熔融状態のPBT樹脂を繊維状補強材に含浸させ
る溶融含浸方法、粉末状のPBT樹脂を空気中に浮遊、
または水などの液体中に懸濁させた状態で含浸させる流
動床法が挙げられる。
In the present invention, the method of impregnating PBT resin into the fibrous reinforcing material and coating the surface of single fibers (filaments), which are the constituent units of fibers, with PBT resin is not particularly limited. Melt impregnation method for impregnating fibrous reinforcing material, suspending powdered PBT resin in the air,
Another example is a fluidized bed method in which the material is impregnated in a suspended state in a liquid such as water.

溶融含浸法の代表的な例は特開昭61mm229534
号、同61mm229535号、同61mm22953
6号及び特願昭61216253号に開示されている。
A typical example of the melt impregnation method is JP-A-61-229534.
No. 61mm229535, No.61mm22953
No. 6 and Japanese Patent Application No. 61216253.

本発明で採用可能な溶融含浸法の一例を第3図に基き説
明する。
An example of the melt impregnation method that can be employed in the present invention will be explained based on FIG. 3.

複数のボビンIから引き出された長ti l1ffのロ
ーピング2を、整列器3で一方向に整列させた後、張力
調整ロール4.5.6を通過させて繊維シート7とする
。なお本発明のおいては一方向に整列させた繊維シート
以外に、織布等の多方向連続繊維を用いることもできる
Ropings 2 of length til1ff drawn from a plurality of bobbins I are aligned in one direction by an aligner 3, and then passed through tension adjustment rolls 4.5.6 to form a fiber sheet 7. In addition to the fiber sheet aligned in one direction, multidirectional continuous fibers such as woven fabric can also be used in the present invention.

一方、押出機(図示せず)で加熱溶融した樹脂をダイ8
を経由して、加熱ロール9で加熱される下ベル)10の
表面に塗布する。上ベル目2は加熱ロール11で加熱さ
れる。
On the other hand, the extruder (not shown) heats and melts the resin into a die 8.
It is applied to the surface of the lower bell (10) heated by a heating roll 9. The upper bell 2 is heated by a heating roll 11.

次いで、前記シート7は、下ベル)10と上ベルト12
の間に挟まれた状態で、加熱された含浸ロール13の間
を、張力をかけながら通過する。
Next, the seat 7 has a lower belt (10) and an upper belt (12).
It passes between the heated impregnating rolls 13 while being held under tension.

このようにして得られた連続繊維/ POT柑脂の複合
体14は、そのまま或いは必要により所望の厚みになる
ように必要枚数を積層・熱圧した後、所望の幅に繊維と
平行にスリシタ17でスリットした後、所望の長さに繊
維と直角方向に切断[18で切断することにより、角形
状の成形材料20を得ることができる。なお第3図にお
いて、15.16は引取用ロールである。
The continuous fiber/POT citrus composite 14 obtained in this way may be used as it is or, if necessary, after laminating and hot pressing the required number of sheets to obtain the desired thickness, the composite material 14 may be sliced in parallel with the fibers to a desired width. After slitting at step 18, the material is cut into a desired length in a direction perpendicular to the fibers [18] to obtain a rectangular molding material 20. In addition, in FIG. 3, 15 and 16 are rolls for take-up.

上記積層・熱圧する方法としては、例えば当該複合体1
4の表面をPBT樹脂の軟化点以上に加熱後積層するか
、或いは積層後加熱炉内で当該樹脂の軟化点以上に加熱
する0次いで当該複合体14を冷ニップロール間を通過
させる等して加圧下に当該樹脂の固化温度以下まで冷却
する。
As the method of laminating and hot pressing, for example, the composite 1
The surface of PBT resin 4 is heated to a temperature above the softening point of the PBT resin and then laminated, or the composite 14 is heated to a temperature above the softening point of the resin in a heating furnace after lamination. The resin is cooled under pressure to a temperature below the solidification temperature of the resin.

このようにして得られた成形材料は、そのまま、或いは
所望の繊維充填率になるように繊維未強化PBT樹脂と
トライブレンドすることにより成形材料混合物を得、所
謂マスターバッチとして用いることにより、射出成形、
押出成形に供せられる。
The molding material thus obtained can be used as it is or by tri-blending with fiber-unreinforced PBT resin to obtain a desired fiber filling rate to obtain a molding material mixture and using it as a so-called masterbatch for injection molding. ,
Subjected to extrusion molding.

当該成形材料と繊維未強化PBT樹脂とのブレンド比に
制約は特になく、当該混合物を成形して得られる成形品
の繊維充填率の設定値によって決定されるべきである。
There are no particular restrictions on the blend ratio of the molding material and the non-fiber-reinforced PBT resin, and it should be determined by the set value of the fiber filling rate of the molded product obtained by molding the mixture.

本発明に用いられる繊維未強化樹脂のMFRは、本発明
の測定条件において前記の成形材料中のPBT樹脂MP
Rの0.05〜1倍である。1倍を越えると成形品の物
性が大きく低下するため好ましくなく、また0、05倍
未満では成形品中の繊維分散不良や繊維破損が起こり、
本発明の効果を発揮できないため好ましくない。
The MFR of the fiber-unreinforced resin used in the present invention is the PBT resin MP in the molding material described above under the measurement conditions of the present invention.
It is 0.05 to 1 times R. If it exceeds 1 times, it is not preferable because the physical properties of the molded product will greatly deteriorate, and if it is less than 0.05 times, fiber dispersion in the molded product will be poor and fiber breakage will occur.
This is not preferable because the effects of the present invention cannot be exhibited.

なお、上記成形材料または成形材料混合物は、上記射出
成形、押出成形以外に、例えば圧縮成形にも適用できる
。この圧縮成形に適用する場合においても、成形材料の
形状が板状体、即ち鱗片状であるから金型との密着が良
い、また比表面積が大きいため、材料中の樹脂熔融時間
が早く、従来法と比較して短時間に成形ができる。この
場合従来の成形材料が通常円筒状であるのに対し、当該
材料は鱗片状であり、金型上での位置設定が容易である
という副次的効果がある。
Note that the above-mentioned molding material or molding material mixture can be applied to, for example, compression molding in addition to the above-mentioned injection molding and extrusion molding. When applied to this compression molding, the molding material has a plate-like shape, that is, a scale, so it adheres well to the mold, and because the specific surface area is large, the resin in the material melts quickly, which is faster than before. Molding can be done in a shorter time compared to the method. In this case, whereas conventional molding materials are usually cylindrical, the material is scale-like, and has the secondary effect of being easier to position on the mold.

〔実施例〕〔Example〕

以下、本発明の実施例について説明するが、本発明の範
囲でこれらの実施例によって’FIIK的に解されるも
のではない。
Examples of the present invention will be described below, but these examples are not to be interpreted in a 'FIIK' manner within the scope of the present invention.

実施例1 第3図に示す装置を用い、PBT樹脂とガラス繊維から
、次のようにして成形材料を得た。PBT柑脂(7) 
?IFRハ、JIS K 7210ニ基づき試験温度2
35°C1試験荷重2.16kgfの条件で測定した時
に58g710分である。
Example 1 Using the apparatus shown in FIG. 3, a molding material was obtained from PBT resin and glass fiber in the following manner. PBT citrus (7)
? IFR c, test temperature 2 based on JIS K 7210
The weight was 58g and 710 minutes when measured at 35°C and a test load of 2.16kgf.

100本のボビン1から引き出されたガラス繊維(Ia
Ii維径13μm、収束本数1600本)ノローヒンク
2100本を、整列器3で一方向に整列させた後、張力
調整ロール4.5.6を通過させて200mm幅の繊維
シート7とした。
Glass fibers drawn from 100 bobbins 1 (Ia
After aligning 2100 noro hinks (Ii fiber diameter 13 μm, number of converged fibers 1600) in one direction with an aligner 3, they were passed through a tension adjustment roll 4.5.6 to form a fiber sheet 7 with a width of 200 mm.

一方、押出機(図示せず)で250″Cに加熱溶融した
PBT樹脂をダイ8を経由して、下ベルト用ロール9(
ここでは2本、9゛は加熱せず)で280°Cに加熱さ
れた下ベル目0の表面に145μmの厚みで塗布した。
On the other hand, PBT resin heated and melted at 250"C with an extruder (not shown) is passed through a die 8 to a lower belt roll 9 (
Here, two coats were coated to a thickness of 145 μm on the surface of the lower bell 0, which had been heated to 280°C (without heating at 9°).

次いで前記シート7を、下ベル目0と上ベルト12(2
本の上ベルト用ロール11で280 ’Cに加熱されて
いる。尚ロール11゛ は加熱しない。)に挟んだ状態
で280℃に加熱された径240Mの3木の含?iロー
ル13の間を、115kgの張力をかけながら50cm
/分の速度で通過させた。
Next, the sheet 7 is attached to the lower belt 0 and the upper belt 12 (2
It is heated to 280'C by the book top belt roll 11. Note that roll 11 is not heated. ) containing three pieces of wood with a diameter of 240M heated to 280℃ while being sandwiched between them. 50cm between i-rolls 13 while applying a tension of 115kg.
It passed at a speed of /min.

このようにして得られたガラス繊維/ PBT樹脂複合
体14はlOOoCまで冷却された後、引取用ロール1
5.16で引き取った後、スリッタ17で幅5帥間隔で
スリットした後、切断機18で長さ3帥に切断して厚み
0.24m、ガラス繊維充填率70重量%の成形材ネ4
を得た。
The glass fiber/PBT resin composite 14 thus obtained is cooled to lOOoC, and then transferred to the take-up roll 1.
5. After taking it in step 16, it is slit at 5-width intervals with a slitter 17, and then cut into 3-width lengths with a cutter 18 to form a molded material 4 with a thickness of 0.24 m and a glass fiber filling rate of 70% by weight.
I got it.

得られた成形材料の比表面積を求めたところ57C艷/
gであった。
The specific surface area of the obtained molding material was found to be 57C/
It was g.

次いで当該成形材$443重量部と繊維未強化PBT樹
脂(門PR= 8 g 710分)57M量部をドライ
ブレドして成形材ネ4混合物を得、射出成形機を用いて
ガラス繊維充填率30重量%の成形品を作成した。
Next, $443 parts by weight of the molding material and 57M parts of non-fiber-reinforced PBT resin (PR = 8 g, 710 minutes) were dry-blended to obtain a mixture of molding materials, and a glass fiber filling rate of 30 was obtained using an injection molding machine. A molded article of % by weight was created.

成形品の断面を走査型電子顕微鏡で観察したが、繊維の
分散性は良好であり、またブロッキング化等の現象は見
られなかった。
When the cross section of the molded article was observed using a scanning electron microscope, the dispersibility of the fibers was good and no phenomena such as blocking were observed.

また当該成形品を用いてアイシフト?41撃強度、平均
繊維長を測定した。結果を表1に示す。
Is there an eye shift using the molded product? 41 impact strength and average fiber length were measured. The results are shown in Table 1.

従来技術品と比較して射出成形時の繊維の折を員が少な
く、アイゾツト衝撃強度も大巾に向上した。
Compared to conventional products, there is less fiber folding during injection molding, and the Izot impact strength has also been greatly improved.

実施例2 ベルトへのPBT柑脂塗布厚みを210μmに変えた以
外は実施例1と同様に処理して繊維充填率50%の成形
材料を得た。ついで、得られた成形材料をそのまま実施
例1と同様に成形して繊維充填率50%の成形品を得た
Example 2 A molding material with a fiber filling rate of 50% was obtained in the same manner as in Example 1, except that the thickness of PBT citrus applied to the belt was changed to 210 μm. Then, the obtained molding material was molded as it was in the same manner as in Example 1 to obtain a molded product with a fiber filling rate of 50%.

成形品の断面を走査型電子顕微鏡で観察したが、繊維の
分散性は良好であり、またブロッキング化等の現象は見
られなかった。また当該成形品を用いてアイゾツト衝撃
強度、平均繊維長を測定した。結果を表1に示す。
When the cross section of the molded article was observed using a scanning electron microscope, the dispersibility of the fibers was good and no phenomena such as blocking were observed. In addition, Izot impact strength and average fiber length were measured using the molded product. The results are shown in Table 1.

比較例1 本発明の測定条件におけるMFRが8g/10分である
PBT柑脂を用いた以外は実施例1と同様にしてガラス
臥維充填率70重量%、比表面積が57cffl/gの
成形材料を得た。
Comparative Example 1 A molding material with a glass fiber filling rate of 70% by weight and a specific surface area of 57 cffl/g was prepared in the same manner as in Example 1, except that PBT citrus with an MFR of 8 g/10 minutes under the measurement conditions of the present invention was used. I got it.

次いで当該成形材料43重量部と実施例1で用いた繊維
未強化PBT樹脂57重量部をトライブレンドして成形
材料混合物を得、射出成形機を用いて力゛ラス繊維充填
率30重量%の成形品を作成した。
Next, 43 parts by weight of the molding material and 57 parts by weight of the non-fiber-reinforced PBT resin used in Example 1 were tri-blended to obtain a molding material mixture, and molded using an injection molding machine with a glass fiber filling rate of 30% by weight. created a product.

成形品の断面を走査型電子顕微鏡で観察したが、繊維の
分散性は不充分であり、またプロ・ンキング化等の現象
は見られなかった。
When the cross section of the molded article was observed using a scanning electron microscope, the dispersibility of the fibers was insufficient and no phenomena such as protonation were observed.

また当該成形品を用いてアイゾツト衝撃強度、平均繊維
長を測定した。結果を表1に示す。
In addition, Izot impact strength and average fiber length were measured using the molded product. The results are shown in Table 1.

実施例1と比較して射出成形時の繊維の折損が激しく、
アイゾツト衝撃強度も大巾に低下した。
Compared to Example 1, fiber breakage during injection molding was severe;
Izotsu impact strength also decreased significantly.

比較例2 直径3fllII+、長さ300Mの穿孔を有するクロ
スヘツドダイ内に押出機で溶融したPBT樹脂(実施例
1で用いた樹脂と同しもの)を供給した。
Comparative Example 2 A PBT resin (the same resin used in Example 1) melted by an extruder was fed into a crosshead die having a hole with a diameter of 3flII+ and a length of 300M.

一方、実施例1で用いたガラス繊維7本を上記穿孔内に
通し、280’Cに加熱されたクロスヘツド内を通過さ
せながら溶融PBT樹脂と接触させて繊維を樹脂で被覆
した。
On the other hand, the seven glass fibers used in Example 1 were passed through the perforations and brought into contact with the molten PBT resin while passing through a crosshead heated to 280'C to coat the fibers with the resin.

次いで100“C以下に冷却して引き取った後、長さ3
III11に切断して、直径3鴨、ガラス纏維充覗率4
0重量%の円柱形状を有する成形材料を得た。得られた
成形材料の比表面積を求めたところ13aJ/gであっ
た。
Then, after cooling to below 100"C and taking it away, the length of 3
Cut into 11 pieces, diameter 3, glass fiber filled, visibility 4
A molding material having a cylindrical shape of 0% by weight was obtained. The specific surface area of the molding material obtained was determined to be 13 aJ/g.

次いで得られた成形材料を表1に示すようにトライブレ
ンド後、実施例1で用いた射出成形機によってガラス繊
維充填率30!1ffi%の成形品を作成した。成形品
の断面を走査型電子8Ji微鏡で観察したが、繊維の分
散性は不充分であり、またブロッキング化等の現象が観
察された。
Next, the obtained molding material was triblended as shown in Table 1, and then a molded product with a glass fiber filling rate of 30 to 1 ffi% was produced using the injection molding machine used in Example 1. When the cross section of the molded article was observed using a scanning electron 8Ji microscope, the dispersibility of the fibers was insufficient and phenomena such as blocking were observed.

また当該成形品を用いてアイゾツNJi%?強度、平均
繊維長を測定した。結果を表1に示す。
Also, using the molded product, Izotsu NJi%? Strength and average fiber length were measured. The results are shown in Table 1.

実施例1と比較して射出成形時の繊維折損が激しく、そ
の結果アイゾツト衝撃強度も大きく低下した。
Compared to Example 1, fiber breakage during injection molding was severe, and as a result, the Izot impact strength was also significantly reduced.

実施例3〜4 実施例1において、表1に示すPIIT樹脂に代えて、
実施例1と同様にして成形材料を1)た。次いで表1に
示す割合で繊維未強化PBT樹脂とトライブレンド後、
成形して表1に示す成形品を得た。
Examples 3 to 4 In Example 1, instead of the PIIT resin shown in Table 1,
1) A molding material was prepared in the same manner as in Example 1. Then, after tri-blending with fiber-unreinforced PBT resin in the proportions shown in Table 1,
The molded products shown in Table 1 were obtained by molding.

当該成形品を用いてアイゾツト衝撃強度、平均繊維長を
測定した。結果を表1に示す。
Izot impact strength and average fiber length were measured using the molded product. The results are shown in Table 1.

比較例3 実施例1において、表1に示すPBT樹脂に代えて、実
施例1と同様にして成形材料を得た。次いで表1に示す
割合で繊維未強化PBT樹脂とトライブレンド後、成形
して表1に示す成形品を得た。
Comparative Example 3 A molding material was obtained in the same manner as in Example 1, except that the PBT resin shown in Table 1 was used in Example 1. Next, the mixture was triblended with non-fiber-reinforced PBT resin in the proportions shown in Table 1, and then molded to obtain the molded products shown in Table 1.

当該成形品を用いてアイゾツト衝撃強度、平均繊維長を
測定した。結果を表1に示す。
Izot impact strength and average fiber length were measured using the molded product. The results are shown in Table 1.

実施例5 実施例1で得た成形材料を、繊維未強化PBT樹脂とト
ライブレンドして繊維充填律が30%になるように調整
した。このトライブレンド物を通常の押出成形機を用い
て、直径30fflIllφの丸棒の成形品を得た。
Example 5 The molding material obtained in Example 1 was triblended with a non-fiber-reinforced PBT resin to adjust the fiber filling law to 30%. This triblend product was molded into a round bar with a diameter of 30 fflIllφ using a conventional extrusion molding machine.

この成形品の断面を走査型電子顕微鏡で観察したが、繊
維の分散性は良好であり、またブロッキング化等の現象
は見られなかった。
When the cross section of this molded article was observed using a scanning electron microscope, the dispersibility of the fibers was good and no phenomena such as blocking were observed.

実施例6 離型剤(FREKOTE44 ;米国FREKOTE 
Inc、製)を塗布した第4図に示す雌金型30内に実
施例1で得た成形材料20を300 g均一に置いた後
、上記離型剤を塗布した雄金型31をセットした。
Example 6 Mold release agent (FREKOTE44; American FREKOTE)
After placing 300 g of the molding material 20 obtained in Example 1 uniformly in the female mold 30 shown in FIG. .

次いで260°Cに加熱した加熱炉内に上記金型を金型
温度が240℃になる迄放置した後、素早く常温の加圧
板を有する圧縮成形機内に移し、50kg/cJの圧力
で20分間加圧して、300X 300x 2.Om+
sの成形品を得た。
Next, the mold was left in a heating furnace heated to 260°C until the mold temperature reached 240°C, and then quickly transferred to a compression molding machine equipped with a pressure plate at room temperature and subjected to a pressure of 50 kg/cJ for 20 minutes. Press 300x 300x 2. Om+
A molded article of s was obtained.

成形品の表面を肉眼で観察したが、繊維が表面に浮き出
ることもなく、良好に繊維が分散しており、良好な表面
光沢を有していた。
When the surface of the molded product was visually observed, it was found that the fibers were well dispersed without any fibers protruding from the surface, and the molded product had good surface gloss.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、繊維補強材を高濃度に充填しているに
も拘らず、成形特の繊維分散性が良好であり、繊維の折
損や破断が少なく、機械強度が大幅に向上した成形品が
得られる成形材料及びその混合物を提供することができ
る。
According to the present invention, despite being filled with a high concentration of fiber reinforcing material, the molded product has good fiber dispersibility during molding, less fiber breakage and breakage, and significantly improved mechanical strength. A molding material and a mixture thereof can be provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の成形材料の構造の一例を示す斜視図、
第2図は成形材料の部分拡大図、第3図は本発明の成形
材料を製造する装置の一例を示す概略図、第4図は本発
明が適用される圧縮成形用の金型の一例を示す斜視図で
ある。 20:成形材料 21:ポリブチレンテレフタレート樹脂22:単繊罐 30:雌金型 31:雄金型
FIG. 1 is a perspective view showing an example of the structure of the molding material of the present invention;
Fig. 2 is a partially enlarged view of the molding material, Fig. 3 is a schematic diagram showing an example of an apparatus for manufacturing the molding material of the present invention, and Fig. 4 is an example of a mold for compression molding to which the present invention is applied. FIG. 20: Molding material 21: Polybutylene terephthalate resin 22: Single fiber can 30: Female mold 31: Male mold

Claims (1)

【特許請求の範囲】 1、単繊維(フィラメント)から構成される繊維状補強
材がポリブチレンテレフタレート樹脂によって被覆され
、且つ該ポリブチレンテレフタレート樹脂が繊維状補強
材中に含浸されている構成の板状体を得、前記繊維状補
強材が充填されている該板状体を切断して得られる成形
材料において、(i)該成形材料に対する繊維状補強材
の充填率が50重量%以上90重量%以下、 (ii)該繊維状補強材の長さが1〜30mm、(ii
i)該板状体の少なくとも一辺が1mm以下、(iv)
該成形材料の比表面積が20cm^2/g以上(v)該
ポリブチレンテレフタレート樹脂のメルトフロレートが
JISK7210に基づき試験温度235℃、試験荷重
2.16kgfの条件で測定した時に10g/10分以
上100g/10分以下 であることを特徴とする成形材料。 2、請求項1記載の成形材料と繊維未強化樹脂とからな
り、該繊維未強化樹脂のメルトフロレートが前記樹脂の
メルトフロレート0.05〜1倍(同一条件下で測定)
であることを特徴とする成形材料混合物。
[Claims] 1. A board having a structure in which a fibrous reinforcing material made of single fibers (filaments) is covered with a polybutylene terephthalate resin, and the polybutylene terephthalate resin is impregnated into the fibrous reinforcing material. In the molding material obtained by obtaining a shaped body and cutting the plate-shaped body filled with the fibrous reinforcing material, (i) the filling rate of the fibrous reinforcing material with respect to the molding material is 50% by weight or more and 90% by weight; % or less, (ii) the length of the fibrous reinforcing material is 1 to 30 mm, (ii
i) at least one side of the plate-like body is 1 mm or less; (iv)
The specific surface area of the molding material is 20 cm^2/g or more (v) The melt fluorate of the polybutylene terephthalate resin is 10 g/10 minutes or more when measured at a test temperature of 235°C and a test load of 2.16 kgf based on JIS K7210. A molding material characterized in that it is 100g/10 minutes or less. 2. Comprising the molding material according to claim 1 and a fiber-unreinforced resin, the melt fluor rate of the fiber-unreinforced resin is 0.05 to 1 times the melt fluor rate of the resin (measured under the same conditions).
A molding material mixture characterized in that it is
JP31769789A 1989-12-08 1989-12-08 Molding material and its mixture Pending JPH03179033A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31769789A JPH03179033A (en) 1989-12-08 1989-12-08 Molding material and its mixture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31769789A JPH03179033A (en) 1989-12-08 1989-12-08 Molding material and its mixture

Publications (1)

Publication Number Publication Date
JPH03179033A true JPH03179033A (en) 1991-08-05

Family

ID=18091019

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31769789A Pending JPH03179033A (en) 1989-12-08 1989-12-08 Molding material and its mixture

Country Status (1)

Country Link
JP (1) JPH03179033A (en)

Similar Documents

Publication Publication Date Title
US6093359A (en) Reinforced thermoplastic composite systems
KR920001646B1 (en) Maruko chiaki
KR20140040846A (en) Method for manufacturing molded article by low-pressure molding
KR20140107304A (en) Method for producing molded article and molded article
JP5608818B2 (en) Carbon fiber composite material, molded product using the same, and production method thereof
EP3195995B1 (en) Production method for fiber-reinforced thermoplastic resin composite material
JP2646028B2 (en) Molding materials and mixtures thereof
JP2623282B2 (en) Molding material
JPH03179033A (en) Molding material and its mixture
JPH0365311A (en) Carbon fiber chop
JPH0623742A (en) Continuous glass fiber reinforced thermoplastic resin pellet and production thereof
JPH03179035A (en) Molding material and its mixture
JP2646027B2 (en) Molding material
JPH03179034A (en) Molding material and its mixture
US20220119606A1 (en) Process for producing a fiber composite
JP2646029B2 (en) Molding materials and mixtures thereof
JPH03179032A (en) Molding material and its mixture
JPH08309748A (en) Molding material
JP3210694B2 (en) Method for producing fiber-reinforced composite material
JP3638292B2 (en) Fiber reinforced thermoplastic resin molding
JPH03230943A (en) Production of long-fiber reinforced thermoplastic resin composition and producing equipment therefor
JPH0246056B2 (en)
JPH0647740A (en) Continuous glass filament thermoplastic resin pellet
JP2748604B2 (en) Method for producing fiber-reinforced thermoplastic resin molded article
JPH0347711A (en) Structural body of fiber-reinforced thermoplastic resin pellet