JPH0347711A - Structural body of fiber-reinforced thermoplastic resin pellet - Google Patents

Structural body of fiber-reinforced thermoplastic resin pellet

Info

Publication number
JPH0347711A
JPH0347711A JP31414589A JP31414589A JPH0347711A JP H0347711 A JPH0347711 A JP H0347711A JP 31414589 A JP31414589 A JP 31414589A JP 31414589 A JP31414589 A JP 31414589A JP H0347711 A JPH0347711 A JP H0347711A
Authority
JP
Japan
Prior art keywords
fiber
thermoplastic resin
fibers
reinforced thermoplastic
pellet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31414589A
Other languages
Japanese (ja)
Inventor
Naoyuki Murakami
村上 直行
Teruo Katayose
照雄 片寄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP31414589A priority Critical patent/JPH0347711A/en
Publication of JPH0347711A publication Critical patent/JPH0347711A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a structural body of a fiber-reinforced thermoplastic resin pellet which can provide an extrusion-molded and injection-molded product superior in surface smoothness or mechanical physical properties, by a method wherein a fiber-reinforced thermoplastic resin sheet, which is comprised of specific thermoplastic resin and a fiber for nonconnection reinforcement and manufactured with a paper making method, is pelletized into a fixed form. CONSTITUTION:A fiber-reinforced sheet, which is comprised of 30-80wt.% thermoplastic resin and 70-20wt.% fiber for nonconnection reinforcement and manufactured with a paper making method, is pelletized into a fixed form. A fiber- reinforced thermoplastic resin sheet is manufactured, for example, of a thermoplastic resin fiber and a fiber for reinforcement with a manufacture of dry type nonwoven fabric, in a paper making technique to be used for manufacturing of a structural body of a fiber-reinforced thermoplastic resin pellet. Then along with melting of a resin fiber by making use of a hot press the resin fiber is integrated with a reinforcing fiber and a pellet structural body in a fixed form is manufactured by processing the sheet with an on-line or off-line hot or cold pelletizer.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、表面平滑性と機械的物性に優れた押出成形品
、射出成形品等を提供しうる繊維強化熱可塑性樹脂ペレ
ット構造体に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a fiber-reinforced thermoplastic resin pellet structure that can provide extrusion molded products, injection molded products, etc. with excellent surface smoothness and mechanical properties. It is.

〔従来技術〕[Prior art]

熱可塑性樹脂と強化用繊維とからなる機械的物性に優れ
た繊維強化熱可塑性樹脂ペレット構造体は、これ迄に種
々検討されてきており、例えば、「ポリプロピレンとア
ミノシラン等のカップリング剤で処理したガラス繊維と
を押出機等を用いて混練してストランドを形成し、続い
て該ストランドを切断して作られたペレット製造体」、
特公昭63−37694号公報、特開昭63−2527
24号公報、米国特許筒4,439,387号明細書等
に記載されているような、「平行に配列され且つ連続し
た強化フィラメント束(ロービング)を熱可塑性樹脂で
含浸・被覆したものを所定の長さに切断するプルトルー
ジョン法(引出成形法)によって作られたベレット構造
体j等が挙げられる。
Various studies have been conducted on fiber-reinforced thermoplastic resin pellet structures with excellent mechanical properties consisting of thermoplastic resin and reinforcing fibers. "A pellet product made by kneading glass fibers with an extruder or the like to form a strand, and then cutting the strand."
Japanese Patent Publication No. 63-37694, Japanese Patent Publication No. 63-2527
No. 24, U.S. Pat. For example, there is a pellet structure j made by the pultrusion method (pultrusion molding method) in which the length is cut.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、これらの繊維強化熱可塑性樹脂ペレット
構造体において、強化用繊維の形態は高集束性のチョツ
プドストランド又はロービングであり、樹脂中への強化
用繊維の均一分散性、溶融樹脂と強化用繊維との均一な
濡れ性共に問題があることから、均一な繊維分布を持つ
成形品を得ることは難しく、表面平滑性は今一つ不足で
あり満足のできるものではない。
However, in these fiber-reinforced thermoplastic resin pellet structures, the reinforcing fibers are in the form of highly focused chopped strands or rovings, and the reinforcing fibers are uniformly dispersed in the resin, and the molten resin and reinforcing fibers are in the form of chopped strands or rovings. Since there are problems with uniform wettability with fibers, it is difficult to obtain molded products with uniform fiber distribution, and the surface smoothness is still insufficient and unsatisfactory.

また、押出機を用いて混練して得られたペレット構造体
は、混練の過程で繊維は切断されていることが多く、該
ペレットを用いて得られる成形品の機械的物性は不良で
ある。
Furthermore, in pellet structures obtained by kneading using an extruder, the fibers are often cut during the kneading process, and the mechanical properties of molded articles obtained using the pellets are poor.

〔課題を解決する為の手段〕[Means to solve problems]

本発明者等は、このような事情に鑑み、鋭意検討した結
果、抄紙法によって作られた繊維強化熱可塑性樹脂シー
トを所定の形状にペレタイズしてなる・繊維強化熱可塑
性樹脂ペレット構造体は、表面平滑性と機械的物性に優
れた押出成形品、射出成形品を提供しうろことを見出し
て本発明を完成した。
In view of these circumstances, the present inventors have made extensive studies and found that a fiber-reinforced thermoplastic resin pellet structure is obtained by pelletizing a fiber-reinforced thermoplastic resin sheet made by a papermaking method into a predetermined shape. The present invention was completed by discovering scales that provide extrusion molded products and injection molded products with excellent surface smoothness and mechanical properties.

すなわち、本発明は、熱可塑性樹脂30〜80重量%、
非連接強化用繊維70〜20重量%とからなる、抄紙法
によって作られた繊維強化樹脂シートを所定の形状にペ
レタイズしてなる繊維強化熱可塑性樹脂ペレット構造体
を提供するものである。
That is, the present invention comprises 30 to 80% by weight of thermoplastic resin,
A fiber-reinforced thermoplastic resin pellet structure is provided by pelletizing a fiber-reinforced resin sheet made by a paper-making method into a predetermined shape and containing 70 to 20% by weight of non-contiguous reinforcing fibers.

本発明に用いる熱可塑性樹脂は、ポリエチレン、ポリプ
ロピレン等のポリオレフィン、ポリスチレン、ゴム補強
ポリスチレン、アクリロニトリル−スチレン共重合体、
ABS樹脂等のスチレン系樹脂、ポリエチレンテレフタ
レート、ポリブチレンテレフタレート等のポリエステル
樹脂、ナイロン6、ナイロン66、ナイロン46等のポ
リアミド樹脂、ポリフェニレンエーテル、変成ポリフェ
ニレンエーテル等のポリエーテル樹脂、ポリオキシメチ
レン、ポリカーボネイト、ボリアリレート、ポリフェニ
レンサルファイド、ポリスルホン、ポリエーテルスルホ
ン、ポリエーテルエーテルケトン、ポリエーテルアミド
等の超耐熱樹脂、ポリカーボネイト/ポリブチレンテレ
フタレート、ポリカーボネイト/ABS、ポリフェニレ
ンエーテル/ポリブチレンテレフタレート、ポリフェニ
レンエーテル/ポリアミド等のブレンド樹脂が挙げられ
る。
Thermoplastic resins used in the present invention include polyolefins such as polyethylene and polypropylene, polystyrene, rubber-reinforced polystyrene, acrylonitrile-styrene copolymers,
Styrene resins such as ABS resins, polyester resins such as polyethylene terephthalate and polybutylene terephthalate, polyamide resins such as nylon 6, nylon 66 and nylon 46, polyether resins such as polyphenylene ether and modified polyphenylene ether, polyoxymethylene, polycarbonate, Super heat-resistant resins such as polyarylate, polyphenylene sulfide, polysulfone, polyether sulfone, polyether ether ketone, polyether amide, blends of polycarbonate/polybutylene terephthalate, polycarbonate/ABS, polyphenylene ether/polybutylene terephthalate, polyphenylene ether/polyamide, etc. Examples include resin.

本発明に用いる熱可塑性樹脂は基本的には何でもよいが
、繊維強化の効果が顕著である点では結晶性の熱可塑性
樹脂、その中でも汎用性の熱可塑性樹脂がよく、安価な
樹脂材料という点では樹脂の重合段階でパウダー又は顆
粒状のものがよい。
Basically, any thermoplastic resin can be used in the present invention, but crystalline thermoplastic resins, especially general-purpose thermoplastic resins, are good because they have a remarkable fiber-reinforcing effect, and they are inexpensive resin materials. In this case, it is preferable to use a powder or granule in the resin polymerization stage.

好ましくは、本発明に用いる熱可塑性樹脂は、ポリエチ
レン、ポリプロピレン等のポリオレフィン:ポリエチレ
ンテレフタレート、ポリブチレンテレフタレート等のポ
リエステル樹脂:ナイロン6、ナイロン66、ナイロン
46等のポリアミド樹脂:ポリフェニレンエーテル、変
性ポリフェニレンエーテル等のポリエーテル樹脂:ポリ
オキシメチレン、ポリカーボネート、ポリフェニレンサ
ルファイド又はこれらの樹脂のブレンド樹脂である。
Preferably, the thermoplastic resin used in the present invention includes: polyolefins such as polyethylene and polypropylene; polyester resins such as polyethylene terephthalate and polybutylene terephthalate; polyamide resins such as nylon 6, nylon 66, and nylon 46; polyphenylene ether, modified polyphenylene ether, etc. Polyether resin: polyoxymethylene, polycarbonate, polyphenylene sulfide, or a blend resin of these resins.

本発明に用いる強化用繊維は、本発明に用いる熱可塑性
樹脂の引張弾性率よりも高い弾性率を持つものであれば
何でも良く、例えば、ガラス繊維、カーボン繊維、セラ
ミック繊維、鉱物繊維等の無機繊維、ステンレス、黄銅
等の金属繊維、超高分子量ポリエチレン繊維、ポリオキ
シメチレン繊維、ポリビニルアルコール繊維、液晶性芳
香族ポリエステル繊維、ポリエチレンテレフタレート繊
維、ポリ−p−フェニレンテレフタルアミド繊維、ポリ
−m−フェニレンイソフタルアミド繊維等のアラミド繊
維、ポリフェニレンベンゾチアゾール繊維、ポリアクリ
ロニトリル繊維、セルローズ繊維等の有機繊維等が挙げ
られる。
The reinforcing fibers used in the present invention may be of any type as long as they have a tensile modulus higher than the tensile modulus of the thermoplastic resin used in the present invention, such as inorganic fibers such as glass fibers, carbon fibers, ceramic fibers, and mineral fibers. Fibers, metal fibers such as stainless steel and brass, ultra-high molecular weight polyethylene fibers, polyoxymethylene fibers, polyvinyl alcohol fibers, liquid crystalline aromatic polyester fibers, polyethylene terephthalate fibers, poly-p-phenylene terephthalamide fibers, poly-m-phenylene Examples include aramid fibers such as isophthalamide fibers, organic fibers such as polyphenylene benzothiazole fibers, polyacrylonitrile fibers, and cellulose fibers.

なお、本発明に用いる強化用繊維は、本発明のペレット
構造体に要求される機械的物性、耐熱性、該ペレット構
造体を構成する熱可塑性樹脂との組合せ等を考慮して選
択するが、ガラス繊維、カーボン繊維、セラミック繊維
、鉱物繊維等の無機繊維、ステンレス、黄銅等の金属繊
維、液晶芳香族ポリエステル繊維、ポリーp−フェニレ
ンテレフタルアミドm維、ポリ−m−フェニレンイソフ
タルアミド繊維、ポリフェニレンベンゾチアゾール繊維
等が好ましい。
The reinforcing fibers used in the present invention are selected in consideration of the mechanical properties and heat resistance required for the pellet structure of the present invention, the combination with the thermoplastic resin constituting the pellet structure, etc. Inorganic fibers such as glass fibers, carbon fibers, ceramic fibers, mineral fibers, metal fibers such as stainless steel and brass, liquid crystal aromatic polyester fibers, poly p-phenylene terephthalamide m fibers, poly-m-phenylene isophthalamide fibers, polyphenylene benzo fibers Thiazole fibers and the like are preferred.

強化用繊維の径は、3〜20μmであるが、3μm未満
ではペレットを作る過程で該繊維の分散が困難であり、
20μ−を越えるときは折れ易く好ましくない0強化用
繊維の長さは3〜20mmであり、大部分の強化用繊維
が3閣未満の場合には成形物の繊維強化効果は認められ
ず、又、20III11を越える長さではペレットの最
大長を越えてしまうので意味がない。
The diameter of the reinforcing fibers is 3 to 20 μm, but if it is less than 3 μm, it is difficult to disperse the fibers in the process of making pellets.
When the length exceeds 20 μ-, it is undesirable because it is easy to break. The length of the reinforcing fibers is 3 to 20 mm. If the length of most of the reinforcing fibers is less than 3 mm, no fiber reinforcing effect is observed in the molded product, or , 20III11 is meaningless since it exceeds the maximum length of the pellet.

強化用繊維の量は、20〜70重量%、好ましくは30
〜50重量%であり、20重量%未満では繊維の強化効
果は余り認められず、70重量%を越えると押出成形品
等の成形物は脆くなるので好ましくない。
The amount of reinforcing fibers is between 20 and 70% by weight, preferably 30% by weight.
If the content is less than 20% by weight, no significant effect of reinforcing the fibers will be observed, and if it exceeds 70% by weight, the molded product such as an extrusion molded product will become brittle, which is not preferable.

本発明にいう非連接強化用繊維とは、熱可塑性樹脂中に
所定の長さ(3〜20閣)を有する繊維が束の状態で存
在しているのではなく、実質的にほぐれた状態、より好
ましくは実質的に1本1本はぐれた状態で存在している
ものをいうが、該繊維が少なくとも部分的に絡み合った
状態で存在するものでも構わない。
The unconnected reinforcing fibers referred to in the present invention refer to fibers having a predetermined length (3 to 20 min) in a thermoplastic resin that are not present in a bundle, but are substantially unraveled. More preferably, the fibers are present in a state in which the fibers are substantially separated one by one, but the fibers may be present in a state in which the fibers are at least partially entangled.

繊維強化熱可塑性樹脂ペレット構造体の形状は、その断
面が円形又は楕円形の円柱状、その断面が三角形、矩形
、多角形のいわゆる柱状が一般的であるが、必要に応じ
て円柱等が複数組合さった開部分を持つ形状のものでも
よいが、その等体積球相当径は3〜8mm、好ましくは
4〜6III+11その長さは3〜20IIIIlであ
り、好ましくは5〜10+nmである。
The shape of the fiber-reinforced thermoplastic resin pellet structure is generally a columnar shape with a circular or elliptical cross section, or a so-called columnar shape with a triangular, rectangular, or polygonal cross section, but if necessary, it may have a plurality of cylinders etc. It may have a shape with combined openings, but its equivalent sphere equivalent diameter is 3 to 8 mm, preferably 4 to 6III+11, and its length is 3 to 20III, preferably 5 to 10+ nm.

なお、本発明にいう当体積球相当径とは、ペレット構造
体の体積を球の体積に換算した際のその球の直径をいう
In addition, the equivalent volume sphere diameter as used in the present invention refers to the diameter of a sphere when the volume of the pellet structure is converted to the volume of the sphere.

ペレット構造体のサイズを決定する因子である等体積球
相当径とその長さが前記の範囲を外れる時には、押出機
、射出成形機等を用いて該構造体を溶融・混練する際、
条件によってはスクリュー部分でベレットの詰まり、吐
出変動等を生じたりすることがあり、特に等体積球相当
径と長さが共に大きい場合には、成形特強化用繊維が折
れ易くなる傾向があるので、溶融・混練の条件を選択す
ることが望ましい。
When the equivalent sphere diameter and its length, which are factors that determine the size of the pellet structure, are outside the above range, when melting and kneading the structure using an extruder, injection molding machine, etc.,
Depending on the conditions, pellet clogging or discharge fluctuations may occur in the screw part, and especially when the equal volume sphere equivalent diameter and length are both large, the molding special reinforcing fibers tend to break easily. It is desirable to select melting and kneading conditions.

本発明のペレット構造体には、機械的物性及び(又は)
表面平滑性等を改良する目的で、各種の充填剤を添加す
ることができる。
The pellet structure of the present invention has mechanical properties and/or
Various fillers can be added for the purpose of improving surface smoothness and the like.

充填剤の例としては、炭酸カルシウム、炭酸マグネシウ
ム、水酸化アルミニウム、水酸化マグネシウム、酸化亜
鉛、酸化マグネシウム、珪酸アルミニウム、タルク、ウ
オラストナイト、珪酸、珪酸カルシウム、マイカ、ガラ
スバルン、石英バルン、黒鉛、ホウ素、アルミナ、炭化
珪素、炭化ホウ素、ボリア、窒化ホウ素、窒化珪素、シ
リカ、ベリリウム、酸化ベリリウム、窒化アルミニウム
等の無機粉末及びこれらの粉末を表面処理したもの、ア
スベスト、チタン酸カリ、炭素、黒鉛、ホウ素、アルミ
ナ、炭化珪素、炭化ホウ素、ボリア、窒化ホウ素、石英
、シリカ、ベリリウム等の無機ウィスカー、マイクロセ
ルローズ、熱硬化性樹脂の粉末、アラミドバルブ等が挙
げられる。これらの充填剤を二種類以上混合してもよい
Examples of fillers include calcium carbonate, magnesium carbonate, aluminum hydroxide, magnesium hydroxide, zinc oxide, magnesium oxide, aluminum silicate, talc, wollastonite, silicic acid, calcium silicate, mica, glass balloons, quartz balloons, graphite, Inorganic powders such as boron, alumina, silicon carbide, boron carbide, boria, boron nitride, silicon nitride, silica, beryllium, beryllium oxide, aluminum nitride, and surface-treated products of these powders, asbestos, potassium titanate, carbon, graphite , boron, alumina, silicon carbide, boron carbide, boria, boron nitride, quartz, silica, inorganic whiskers such as beryllium, microcellulose, thermosetting resin powder, aramid bulbs, and the like. Two or more types of these fillers may be mixed.

更に、機械的物性を改良する目的で、マレイン化処理等
によって官能基を導入して接着性を付与した熱可塑性樹
脂を必要量配合してもよい。
Furthermore, for the purpose of improving mechanical properties, a necessary amount of a thermoplastic resin to which a functional group has been introduced by maleation treatment or the like to impart adhesiveness may be blended.

また、機械的物性を改良する別の手段として、ベレット
成形の過程でシラン等のカップリング剤を用いてもよい
Furthermore, as another means of improving mechanical properties, a coupling agent such as silane may be used during the pellet molding process.

成形用ペレット中の強化用繊維の配向程度によって機械
的物性は影響を受け、ランダム配向のものよりは一軸配
向のものが機械的物性は優れている。
Mechanical properties are affected by the degree of orientation of the reinforcing fibers in the molding pellet, and uniaxially oriented pellets have better mechanical properties than randomly oriented pellets.

成形品の表面平滑性を付与する為に、機械的物性を損わ
ない範囲で、主たる強化用繊維よりも短い強化用繊維を
併用してもよい。
In order to impart surface smoothness to the molded article, reinforcing fibers shorter than the main reinforcing fibers may be used in combination within a range that does not impair mechanical properties.

本発明の繊維強化熱可塑性樹脂ペレット構造体に、難燃
剤、熱安定剤、酸化防止剤、紫外線吸収剤(防止剤)、
滑剤、着色剤等の各種安定剤をペレット構造体を用いた
成形品の表面平滑性と機械的物性を損わない範囲で添加
することができる。
The fiber-reinforced thermoplastic resin pellet structure of the present invention includes flame retardants, heat stabilizers, antioxidants, ultraviolet absorbers (inhibitors),
Various stabilizers such as lubricants and colorants can be added to the extent that they do not impair the surface smoothness and mechanical properties of the molded product using the pellet structure.

本発明の繊維強化熱可塑性樹脂ペレット構造体の製造に
用いられる抄紙技術は、例えば、熱可塑性樹脂繊維と強
化用繊維とから、乾式不織布の製造法によって、繊維強
化熱可塑性樹脂シートを製造し、次いで、ホットプレス
を用いて該樹脂繊維を溶融すると共に強化用繊維と一体
化したシートを、オンライン又はオフラインで、ホット
又はコールドペレタイザーに掛けて所定の形状のペレッ
ト構造体を製造する方法がある。
The papermaking technology used to manufacture the fiber-reinforced thermoplastic resin pellet structure of the present invention includes, for example, manufacturing a fiber-reinforced thermoplastic resin sheet from thermoplastic resin fibers and reinforcing fibers by a dry nonwoven fabric manufacturing method, Next, there is a method of manufacturing a pellet structure of a predetermined shape by melting the resin fibers using a hot press and applying the sheet integrated with reinforcing fibers to a hot or cold pelletizer online or offline.

また、特開昭57−28135号公報、特開昭58−5
9224号公報等に記載されているように、粉末状熱可
塑性樹脂と強化用繊維とから、湿式不織布の製造法によ
って、繊維強化熱可塑性樹脂シートを製造し、オンライ
ン又はオフラインでベルトプレス等のホットプレスを用
いて、該樹脂を溶融すると共に強化用繊維と結合一体化
したシートを、オンライン又はオフラインで、ホット又
はコールドベレタイザーに掛けて所定の形状のペレット
構造体を製造する方法がある。湿式不織布の製造法とし
ては、水平型長網(短1i1)式、傾斜型長網(短網)
式、円網式、吸引型円網式(例えばロトフォーマー)及
びこれらのコンビネイションが上げられる。
Also, JP-A-57-28135, JP-A-58-5
As described in Japanese Patent Application No. 9224, etc., a fiber-reinforced thermoplastic resin sheet is manufactured from a powdered thermoplastic resin and reinforcing fibers by a wet-laid nonwoven fabric manufacturing method, and then heated online or offline using a belt press or the like. There is a method of manufacturing a pellet structure of a predetermined shape by melting the resin using a press and applying a sheet formed by bonding and integrating reinforcing fibers to a hot or cold beletizer, either online or offline. Wet-processed nonwoven fabric manufacturing methods include horizontal fourdrinier (short 1i1) method and inclined fourdrinier (short mesh) method.
Examples include the cylinder type, cylinder type, suction type cylinder type (for example, rotoformer), and combinations thereof.

いずれの製造方法を採用するにしても、例えば、0.5
 m以上の厚みのシートを作成する場合には、シート原
反を複数枚積層してホットプレスを通すことになる。
Regardless of which manufacturing method is adopted, for example, 0.5
When producing a sheet with a thickness of m or more, a plurality of original sheets are laminated and passed through a hot press.

シートを積層する際に、スキン層とコア層の補強繊維の
配合割合を変えたり、あるいはスキン層とコア層で異な
った熱可塑性樹脂を用いることが出来る。
When laminating sheets, it is possible to change the blending ratio of reinforcing fibers in the skin layer and core layer, or to use different thermoplastic resins in the skin layer and core layer.

表面平滑性と機械的物性に優れた押出成形品、射出成形
品等を提供しろる為には、繊維強化熱可塑性樹脂ペレッ
ト構造体中の強化用繊維の分散性は良好な程よい。
In order to provide extrusion molded products, injection molded products, etc. with excellent surface smoothness and mechanical properties, the better the dispersibility of the reinforcing fibers in the fiber-reinforced thermoplastic resin pellet structure, the better.

強化用繊維の分散性に優れた繊維強化熱可塑性樹脂ペレ
ットを製造するには、(1)強化用繊維の嵩密度を上げ
るために用いられている集束剤を完全に除去すること、
その手段としては、例えば、水溶性の集束剤で固められ
ている強化用繊維のチョツプドストランドの場合、先ず
該チョツプドストランドを高濃度の集束剤除去液に浸漬
後、デツカ、バルブレスフィルター等を用いて脱水濃縮
し、続いて、濃縮脱水されたチョツプドストランドスラ
リーを水で希釈後、ハイミキサー、薄刃ビーター等を用
いて解繊する方法が挙げられるが、解繊処理のポイント
は、繊維の切断、再凝集、絡み合いを生じない条件を選
択することである。
In order to produce fiber-reinforced thermoplastic resin pellets with excellent dispersibility of reinforcing fibers, (1) completely remove the sizing agent used to increase the bulk density of reinforcing fibers;
For example, in the case of chopped strands of reinforcing fibers that have been hardened with a water-soluble sizing agent, the chopped strands are first immersed in a highly concentrated sizing agent removal solution, and then filtered through a deck or valveless filter. An example of this method is to dehydrate and concentrate the slurry using a high-speed mixer, thin-blade beater, etc., then dilute the concentrated and dehydrated chopped strand slurry with water, and then defibrate it using a high mixer, thin-blade beater, etc. , to select conditions that do not cause fiber cutting, reagglomeration, or entanglement.

また、更に重要なことは、(2)解繊処理した強化用繊
維と熱可塑性樹脂(通常パウダー)とを、ウェブ形成に
至る迄均一分散状態に保持すること、その手段としては
、例えば、■抄紙工程では、−般的に後段はどスラリー
濃度を低くするが、分散剤、増粘剤等の抄紙助剤濃度は
低くならないように、好ましくは一定濃度を維持するよ
うにすること、■ウェブ形成時のスラリー濃度は極力低
くすること、■ポンプ、配管等を含むスラリー輸送ライ
ンにおいて、強化用繊維が凝集したり絡み合ったりしな
いよう工夫することが挙げられる。
What is even more important is (2) maintaining the defibrated reinforcing fibers and thermoplastic resin (usually powder) in a uniformly dispersed state until the web is formed. In the papermaking process, the slurry concentration is generally lowered in the later stage, but the concentration of papermaking aids such as dispersants and thickeners is preferably maintained at a constant concentration so as not to decrease; The slurry concentration at the time of formation should be kept as low as possible, and (1) measures should be taken to prevent reinforcing fibers from agglomerating or entangling in the slurry transport line, including pumps, piping, etc.

〔実施例〕〔Example〕

次に本発明を実施例によって更に詳細に説明するが、こ
れに限定されるものではない。
Next, the present invention will be explained in more detail with reference to examples, but the present invention is not limited thereto.

実施例1 (a) MFI 14のポリプロピレン粉末と、このポ
リプロピレンに対してアミン型の非イオン界面活性剤を
0.2重量%添加してなる3、0重量%のスラリー水、
(b)繊維径10μm 、繊維長13mmのガラス繊維
からなる強化用繊維と、この強化用繊維に対してポリエ
チレングリコールエステル型の分散剤を0.15重量%
添加してなる1、0重量%の強化用繊維スラリー水を夫
々調製した後、(a) : (b)を1=3の割合で混
合して、ポリプロピレン50重量%と強化用強繊維50
重量%とからなる1、5重量%のスラリー水を作成し、
次いでこのスラリー水をポリエチレングリコールエステ
ル型の分散剤を0.03重量%含む水で希釈してスラリ
ー濃度0.4重量%とじた後、手抄きシートマシンを用
いて坪量260gのウェブを作成した。
Example 1 (a) Polypropylene powder with an MFI of 14 and 3.0% by weight slurry water prepared by adding 0.2% by weight of an amine-type nonionic surfactant to the polypropylene;
(b) A reinforcing fiber made of glass fiber with a fiber diameter of 10 μm and a fiber length of 13 mm, and 0.15% by weight of a polyethylene glycol ester type dispersant based on the reinforcing fiber.
After preparing 1 and 0% by weight of reinforcing fiber slurry water, (a) and (b) were mixed in a ratio of 1=3 to obtain 50% by weight of polypropylene and 50% by weight of reinforcing strong fibers.
Create a 1.5% by weight slurry water consisting of
Next, this slurry water was diluted with water containing 0.03% by weight of a polyethylene glycol ester type dispersant to obtain a slurry concentration of 0.4% by weight, and then a web with a basis weight of 260 g was created using a hand sheet machine. did.

なお、強化用繊維の解繊処理は、以下の要領で行った。Note that the reinforcing fibers were defibrated in the following manner.

繊維径lOp醜、繊維長13mmのガラス繊維をラウリ
ルエーテル型の浸透剤(集束剤除去)を0.5重量%含
む水に10重量%投入して、10重量%の強化用繊維ス
ラリー水を作成し、次いで、バルブレスフィルターを用
いて該スラリー水を脱水濃縮して、水分約50重量%を
含む強化用繊維のケークを作成し、該ケークを水で希釈
して、再び10重量%の強化用繊維スラリー水とし、ハ
イミキサーで短時間処理後、更に水で希釈して該スラリ
ー水の濃度を5重量%とした後、薄刃ビータ−を用いて
解繊処理を行った。
Add 10% by weight of glass fibers with a fiber diameter of 1Op and a fiber length of 13mm to water containing 0.5% by weight of a lauryl ether type penetrant (removal of sizing agent) to create a 10% by weight reinforcing fiber slurry water. Then, the slurry water is dehydrated and concentrated using a valveless filter to create a cake of reinforcing fibers containing about 50% by weight of water, and the cake is diluted with water to again contain 10% by weight of reinforcing fibers. The fiber slurry water was treated for a short time with a high mixer, and then further diluted with water to make the concentration of the slurry water 5% by weight, and then defibrated using a thin-blade beater.

このスラリー水をベースとして、強化用繊維に対してポ
リエチレングリコールエステル型の分散剤を0.15重
量%含む1.0重量%の強化用繊維スラリー水を調製し
た。この際、該シートマシンでの撹拌の程度を調節して
地合の異なるウェブを三種類作成した。
Based on this slurry water, a 1.0% by weight reinforcing fiber slurry water containing 0.15% by weight of a polyethylene glycol ester type dispersant based on the reinforcing fibers was prepared. At this time, three types of webs with different textures were created by adjusting the degree of agitation in the sheet machine.

次いでこのウェブを10枚積層してプレスを用いて脱水
し、引続き120’Cで1時間乾燥した後、シート成形
プレスを用いて、温度200″C1圧力10kg/ct
Aの条件で16分間加熱し、続いて温度15°C1圧力
15kg/c−の条件で20分間冷却して厚さ2鵬の繊
維強化熱可塑性樹脂シートを作成した。
Next, 10 sheets of this web were laminated and dehydrated using a press, and then dried at 120'C for 1 hour, and then heated at a temperature of 200'C1 pressure of 10kg/ct using a sheet forming press.
It was heated for 16 minutes under the conditions of A, and then cooled for 20 minutes at a temperature of 15° C. and a pressure of 15 kg/c to produce a fiber-reinforced thermoplastic resin sheet with a thickness of 2 mm.

このシートをコールド型シートペレタイザーに掛けて、
6nuX 6nuX 2no++ (厚さ)のベレット
構造体を作った。次いでこのペレット構造体を用いて、
第1表に示す射出条件で120mm X 80mm X
 3 m。
Hang this sheet on a cold sheet pelletizer,
A pellet structure of 6nuX 6nuX 2no++ (thickness) was made. Next, using this pellet structure,
120mm x 80mm x under the injection conditions shown in Table 1
3 m.

(厚さ)の成形板を作成した。A molded plate of (thickness) was created.

これに用いたベレット構造体の特性と、射出成形板の表
面平滑性と機械的物性は第2表に示す通りである。
The characteristics of the pellet structure used here, and the surface smoothness and mechanical properties of the injection molded plate are shown in Table 2.

以下余白 部を加えたものとした以外は、実施例1と全く同じ条件
でシート及びペレット構造体を成形した後射出成形板を
作成した。これに用いたベレット構造体の特性と、射出
成形板の表面平滑性と機械的物性は第3表に示す通りで
ある。
A sheet and pellet structure were molded under exactly the same conditions as in Example 1, except that a blank space was added, and then an injection molded plate was created. The characteristics of the pellet structure used here, and the surface smoothness and mechanical properties of the injection molded plate are shown in Table 3.

第   3   表 実施例3 実施例2に於いて、ウェブを10枚積層してプレスを用
いて脱水する際に、シランカップリング剤を樹脂とガラ
ス繊維とを合せた重量に対して2部スプレィ添加した以
外は、実施例1と全く同じ条件でシート及びベレット構
造体を成形した後射出成形板を作成した。
Table 3 Example 3 In Example 2, when 10 webs were laminated and dehydrated using a press, 2 parts of the silane coupling agent was added by spraying based on the combined weight of the resin and glass fibers. The sheet and pellet structures were molded under the same conditions as in Example 1, except for the following conditions, and then an injection molded plate was created.

これに用いたペレット構造体の特性と、射出成形板の表
面平滑性と機械的物性はM4表に示す通第 表 (注)表面平滑性は、JIS K 7105に定める反
射法による像鮮明度を測定したものであり、その反射角
は45度、光学櫛の幅は0.5 mmである。
The characteristics of the pellet structure used for this, and the surface smoothness and mechanical properties of the injection molded plate are shown in Table M4. The reflection angle was 45 degrees and the width of the optical comb was 0.5 mm.

射出成形板の表面平滑性は、9〜12%であるが、後述
の比較例1の射出成形板の表面平滑性は6%であり、本
発明になるペレット構造体を用いて成形した射出成形板
は、従来のものに比較して50〜100%表面平滑性は
改良されている。
The surface smoothness of the injection molded plate is 9 to 12%, but the surface smoothness of the injection molded plate of Comparative Example 1, which will be described later, is 6%. The surface smoothness of the plate is improved by 50-100% compared to conventional plates.

実施例2 実施例1のMF114のポリプロピレン粉末を、MF1
14のポリプロピレン粉末100部に対してMF16の
接着性ポリプロピレン(商品名: ADMER)25り
である。
Example 2 The polypropylene powder of MF114 of Example 1 was converted into MF1
MF16 adhesive polypropylene (trade name: ADMER) is 25 parts per 100 parts of polypropylene powder of MF14.

実施例4 実施例1のMF114のポリプロピレン粉末を、MF1
14のポリプロピレン粉末100部に対してシラン処理
水酸化アルミニウム10部を加えたものとした以外は、
実施例1と全く同じ条件でシート及びペレット構造体を
成形した後射出成形板を作成した。
Example 4 The polypropylene powder of MF114 of Example 1 was converted into MF1
Except that 10 parts of silanized aluminum hydroxide was added to 100 parts of polypropylene powder of No. 14.
After molding the sheet and pellet structures under exactly the same conditions as in Example 1, an injection molded plate was created.

これに用いたベレット構造体の特性と、射出成形板の表
面平滑性と機械的物性は第5表に示す通りである。
The characteristics of the pellet structure used here, and the surface smoothness and mechanical properties of the injection molded plate are shown in Table 5.

以下余白 第 5 表 第 表 実施例5 実施例1の手抄きシートマシンに変えて、長編抄紙機を
用いてウェブを製造した以外は、実施例1と全く同じ条
件でシート及びペレット構造体を成形した後射出成形板
を作成した。
Table 5 Table Example 5 Sheet and pellet structures were produced under exactly the same conditions as in Example 1, except that the web was produced using a long paper machine instead of the hand sheet machine in Example 1. After molding, an injection molded plate was created.

因みに、成形プレス後のシートの引張り強さのMD/T
D比は2.7であった。
Incidentally, MD/T of the tensile strength of the sheet after forming press
The D ratio was 2.7.

これに用いたペレット構造体の特性と、射出成形板の表
面平滑性と機械的物性は第6表に示す通りである。
The properties of the pellet structure used here, the surface smoothness and mechanical properties of the injection molded plate are shown in Table 6.

以下余白 比較例1 市販の、ガラス繊維強化ポリプロピレン(ガラス繊維径
13μm、同長さ4.5 mm、配合量(公称)30重
量%、押出機による混練品)のペレット構造体を用いて
、実施例1と全く同じ条件で射出成形板を作成した。こ
れに用いたペレット構造体の特性と、射出成形板の表面
平滑性と機械的物性は第7表に示す通りである。
Comparative Example 1 Comparative example 1 was carried out using a commercially available pellet structure of glass fiber reinforced polypropylene (glass fiber diameter 13 μm, same length 4.5 mm, blending amount (nominal) 30% by weight, product kneaded by an extruder). An injection molded plate was produced under exactly the same conditions as in Example 1. The properties of the pellet structure used here, and the surface smoothness and mechanical properties of the injection molded plate are shown in Table 7.

比較例2 市販の、プルトルージョン法によって作られたポリプロ
ピレンとガラス繊維(繊維径19μ■、繊維長13II
1ml、配合量(公称)50重量%)とからなるペレッ
ト構造体を用いて、第8表に示す射出条件で120mm
 x 80mm X 3 ttm (厚さ)の成形板を
作成した。
Comparative Example 2 Commercially available polypropylene and glass fibers made by the pultrusion method (fiber diameter 19μ■, fiber length 13II)
1ml, blending amount (nominal) 50% by weight), under the injection conditions shown in Table 8, 120mm
A molded plate of x 80 mm x 3 ttm (thickness) was created.

第   8   表 これに用いたペレット構造体の特性と、射出成形板の表
面平滑性と機械的物性は第9表に示す通りである。
Table 8 The properties of the pellet structure used here, the surface smoothness and mechanical properties of the injection molded plate are as shown in Table 9.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明になる抄紙法によって作ら
れた繊維強化熱可塑性樹脂ペレット構造体は、表面平滑
性と機械的物性に優れた押出成形品、射出成形品等を提
供できるので、表面平滑性と機械的物性とのバランスが
重要視される分野の製品、例えば自動車部品、家電部品
、その他産業用及び民生用機器類で外側に出る部分等の
製品として有用であり、その工業的利用価値は高いもの
である。
As explained above, the fiber-reinforced thermoplastic resin pellet structure made by the papermaking method of the present invention can provide extrusion molded products, injection molded products, etc. with excellent surface smoothness and mechanical properties, so the surface It is useful as a product in fields where the balance between smoothness and mechanical properties is important, such as automobile parts, home appliance parts, and other parts that are exposed to the outside of industrial and consumer equipment, and its industrial use The value is high.

Claims (1)

【特許請求の範囲】[Claims] 1、熱可塑性樹脂30〜80重量%、非連接強化用繊維
70〜20重量%とからなる、抄紙法によって作られた
繊維強化熱可塑性樹脂シートを所定の形状にペレタイズ
してなる繊維強化熱可塑性樹脂ペレット構造体。
1. Fiber-reinforced thermoplastic made by pelletizing a fiber-reinforced thermoplastic resin sheet made by a papermaking method into a predetermined shape, consisting of 30-80% by weight of thermoplastic resin and 70-20% by weight of non-contiguous reinforcing fibers. Resin pellet structure.
JP31414589A 1989-04-12 1989-12-05 Structural body of fiber-reinforced thermoplastic resin pellet Pending JPH0347711A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31414589A JPH0347711A (en) 1989-04-12 1989-12-05 Structural body of fiber-reinforced thermoplastic resin pellet

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP9065889 1989-04-12
JP1-90658 1989-04-12
JP31414589A JPH0347711A (en) 1989-04-12 1989-12-05 Structural body of fiber-reinforced thermoplastic resin pellet

Publications (1)

Publication Number Publication Date
JPH0347711A true JPH0347711A (en) 1991-02-28

Family

ID=26432112

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31414589A Pending JPH0347711A (en) 1989-04-12 1989-12-05 Structural body of fiber-reinforced thermoplastic resin pellet

Country Status (1)

Country Link
JP (1) JPH0347711A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0624854U (en) * 1992-08-31 1994-04-05 本田技研工業株式会社 Tool for correcting valve seat surface
US7482402B2 (en) 2005-05-17 2009-01-27 Exxonmobil Research And Engineering Company Fiber reinforced polypropylene compositions
US8100197B2 (en) 2004-12-21 2012-01-24 C. & E. Fein Gmbh Method and device for the production of bores

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0624854U (en) * 1992-08-31 1994-04-05 本田技研工業株式会社 Tool for correcting valve seat surface
US8100197B2 (en) 2004-12-21 2012-01-24 C. & E. Fein Gmbh Method and device for the production of bores
US7482402B2 (en) 2005-05-17 2009-01-27 Exxonmobil Research And Engineering Company Fiber reinforced polypropylene compositions

Similar Documents

Publication Publication Date Title
AU740119B2 (en) Reinforced thermoplastic composite systems
EP3279249B1 (en) Method for preparing a porous fiber-reinforced composite
WO2007097436A1 (en) Fiber-reinforced thermoplastic resin molded article, molding material, and method for production of the molded article
JPH04300923A (en) Fiber-filled thermoplastic material made by wet lay-up and aqueous dispersion for preparing the material
US10850454B2 (en) Porous single resin fiber composite material and method for manufacturing porous single resin fiber composite material
JP2011190549A (en) Fiber-mixed mat-shaped molded product and fiber-reinforced molded product
JP2016104843A (en) Sheet for fiber-reinforced plastic molded body and molding method thereof
JPH0347711A (en) Structural body of fiber-reinforced thermoplastic resin pellet
JPH037307A (en) Pellet structure of fiber reinforced thermoplastic resin
JPH0411579B2 (en)
WO2018232500A1 (en) Method for producing thermoplastic sheet molding compounds reinforced with cellulosic filaments and related products
JPS6218429A (en) Production of ceramic fiber-containing composite plastic molding
JPH0411577B2 (en)
JP6493147B2 (en) Nonwoven fabric, method for producing nonwoven fabric, and fiber-reinforced plastic molded body
JP6353691B2 (en) Glass wool composite thermoplastic resin composition, method for producing the same, and molded product.
WO1993017856A1 (en) Low density fiber reinforced polymeric composites
JP2867087B2 (en) Polypropylene fiber and fiber reinforced cement molding
WO2003093354A1 (en) Method of manufacturing a composite material_
JPH02167345A (en) Fiber reinforced thermoplastic resin sheet having excellent uniformity of mechanical property and chemical resistance
KR102200957B1 (en) Porous fiber reinforced composite material
JPS63248857A (en) Conjugated granular material of fiber and resin and production thereof
WO2023074842A1 (en) Method for manufacturing pulp-fiber-containing resin pellet and method for manufacturing molded body
EP0386266A1 (en) Fiber-reinforced thermoplastic resin sheet or pellet
JPH08183878A (en) Thermoplastic resin composition and molding made therefrom
JPS5962112A (en) Preparation of carbon fiber reinforced thermoplastic resin molded product