JPH08309748A - Molding material - Google Patents

Molding material

Info

Publication number
JPH08309748A
JPH08309748A JP17551896A JP17551896A JPH08309748A JP H08309748 A JPH08309748 A JP H08309748A JP 17551896 A JP17551896 A JP 17551896A JP 17551896 A JP17551896 A JP 17551896A JP H08309748 A JPH08309748 A JP H08309748A
Authority
JP
Japan
Prior art keywords
molding material
fiber
thermoplastic resin
fibers
reinforcing material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17551896A
Other languages
Japanese (ja)
Inventor
Tomohito Koba
友人 木場
Toshiyuki Nakakura
敏行 中倉
Hideo Sakai
英男 坂井
Satoshi Kishi
智 岸
Chiaki Maruko
千明 丸子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP17551896A priority Critical patent/JPH08309748A/en
Publication of JPH08309748A publication Critical patent/JPH08309748A/en
Pending legal-status Critical Current

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

PURPOSE: To provide a molding material which can be used for the manufacture of a molding containing fibers as a reinforcing material in high density but highly dispersible in the case of injection molding, and besides, with significantly improved mechanical strength, especially impact strength, and almost free from fiber breakage. CONSTITUTION: This molding material A consists of a fibrous reinforcing material comprising a single fiber C and a thermoplastic resin B, with which an area between the single fibers C as the constituent unit of the fibrous reinforcing material, is impregnated, by application of the resin B to the periphery of the single fiber C. The molding material A is of the angular or columnar shape, and the fibrous reinforcing material packed in the molding material is equivalent to at least, 50wt.% and 90wt.% or lower. In addition, the fibrous reinforcing material is continuously arranged almost in parallel with an axial direction over the entire length of the molding material A. Further, the surface equivalent to 90% or higher of the single fiber C as the constituent unit of the fibrous reinforcing material is covered by the thermoplastic resin B, and every piece of the single fiber C is ideally dispersed in the thermoplastic resin B.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、成形用材料に関
し、詳しくは補強材である繊維を高濃度に含有している
にも拘らず成形時の分散性が良好であって、更に繊維の
折損が少なく機械強度、特に衝撃強度が大幅に向上した
成形品を提供し得る射出成形に用いて便利な成形用材料
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a molding material, and more particularly, it has good dispersibility at the time of molding despite containing a fiber as a reinforcing material in a high concentration, and further has a breakage of the fiber. The present invention relates to a molding material that is convenient for use in injection molding and that can provide a molded product having a significantly improved mechanical strength, particularly, an impact strength.

【0002】[0002]

【従来の技術】従来、繊維強化熱可塑性樹脂組成物とし
ては、熱可塑性樹脂に例えば3mm長程度のガラス繊維
をドライブレンドし、押出機で混練してペレット化され
たものがほとんどである。
2. Description of the Related Art Conventionally, most fiber-reinforced thermoplastic resin compositions are those obtained by dry-blending a thermoplastic resin with glass fibers having a length of, for example, about 3 mm, kneading it with an extruder and pelletizing it.

【0003】しかし、このようなドライブレンド物を押
出機で混練するとガラス繊維がブリッジング、マッティ
ング化する傾向にあり、繊維の分散が不十分となり、又
繊維の折損が起こり約0.3mm長に中央部をもつ正規
分布した長さで不規則に配列する等補強効果が減じる問
題が生ずる。
However, when such a dry blend is kneaded with an extruder, the glass fibers tend to be bridging and matting, the dispersion of the fibers becomes insufficient, and the fibers break, resulting in a length of about 0.3 mm. There is a problem that the reinforcing effect is reduced by irregularly arranging in a normally distributed length having a central portion.

【0004】さらに上記分散の問題からガラス繊維の充
填率は30重量%が通常上限であり、これ以上の高充填
率の成形用材料を得ようとすると混練時の繊維の分散が
困難となり、充填効果が得られなかった。
Further, due to the above-mentioned problem of dispersion, the glass fiber filling rate is usually 30% by weight at the upper limit, and if an attempt is made to obtain a molding material having a higher filling rate than this, it will be difficult to disperse the fibers during kneading, and the filling rate will increase. The effect was not obtained.

【0005】一方、前記問題点を解決する為、ガラス繊
維等を熱可塑性樹脂で被覆する方法が提案されている。
例えば、特公昭49−41105号や実開昭60−62
912号には、ガラス繊維等の連続体をダイス穿孔内に
通し、一方押出機で溶融した熱可塑性樹脂を上記ダイス
穿孔内に導き前記繊維束を被覆し、冷却後一定長に切断
して円柱状の射出成形材料を得ようとするものである。
On the other hand, in order to solve the above problems, a method of coating glass fiber or the like with a thermoplastic resin has been proposed.
For example, Japanese Examined Patent Publication No. 49-41105 and Shokai No. 60-62
In No. 912, a continuous body of glass fiber or the like is passed through a die perforation, while a thermoplastic resin melted by an extruder is introduced into the die perforation to coat the fiber bundle, and after cooling, cut into a certain length to form a circle. It is intended to obtain a columnar injection molding material.

【0006】しかしこの方法では、補強繊維が成形材料
の中心に集合する傾向にあり、繊維束の内層に存在する
単繊維(フィラメント)表面は樹脂で被覆されておら
ず、従って射出成形時の繊維の分散が悪く、繊維が折損
し射出成形前の繊維長を保持できない為、その補強効果
は未だ満足の行くものではない。
However, in this method, the reinforcing fibers tend to aggregate in the center of the molding material, and the surface of the single fibers (filaments) existing in the inner layer of the fiber bundle is not covered with the resin, so that the fibers at the time of injection molding are Is not well dispersed, the fibers are broken and the fiber length before injection molding cannot be maintained, so that the reinforcing effect is not yet satisfactory.

【0007】さらに上記方法によれば、ダイス穿孔内で
ガラス繊維が溶融樹脂に接触する際、ガラス繊維表面に
大きな剪断力がかかり、この剪断力はダイス穿孔内での
繊維の占有率の上昇と共に増加し、ついには繊維がダイ
ス穿孔内を通過する際、切断することとなる。このよう
な理由から、通常成形材料中の繊維充填率の上限は50
重量%といわれ、これ以上の繊維充填率を有する成形材
料が得られないという問題がある。
Further, according to the above method, when the glass fiber comes into contact with the molten resin in the die punching, a large shearing force is applied to the surface of the glass fiber, and this shearing force increases with the occupancy rate of the fiber in the die punching. Increase and eventually break as the fiber passes through the die perforations. For this reason, the upper limit of the fiber filling rate in the molding material is usually 50.
It is said to be% by weight, and there is a problem that a molding material having a fiber filling rate higher than this cannot be obtained.

【0008】また、上記繊維の分散性の問題から、補強
繊維の充填率には限界があり、50重量%を超えると実
際上射出成形が困難となる等、未だ満足の行く射出成形
材料は得られていない。
Further, due to the above-mentioned problem of dispersibility of the fiber, the filling rate of the reinforcing fiber is limited, and when it exceeds 50% by weight, injection molding becomes practically difficult, so that a satisfactory injection molding material can be obtained. Has not been done.

【0009】[0009]

【発明が解決しようとする課題】そこで本発明は、補強
材である繊維を高濃度に含有しているにも拘らず射出成
形時の分散性が良好であり、繊維の折損が少なく、機械
強度、特に衝撃強度が大幅に向上した成形品を提供し得
る成形用材料を提供することを課題とする。
Therefore, the present invention has good dispersibility at the time of injection molding in spite of containing a fiber as a reinforcing material in a high concentration, and has little breakage of the fiber and mechanical strength. In particular, it is an object to provide a molding material capable of providing a molded product having a significantly improved impact strength.

【0010】[0010]

【課題を解決するための手段】本発明者らは、上記目的
を達成するため鋭意検討を重ねた結果、本発明に至った
ものであり、本発明に係る成形用材料は、熱可塑性樹脂
と繊維状補強材とより成る成形用材料において、該繊維
状補強材の充填率が50重量%以上90重量%以下であ
り、且つ前記繊維状補強が当該成形用材料の全長にわた
って軸方向に略々平行に連続して配置しており、さらに
当該繊維補強材の構成単位である単繊維(フィラメン
ト)の90%以上の表面が前記熱可塑性樹脂によって被
覆されていることを特徴とする。
Means for Solving the Problems The inventors of the present invention have achieved the present invention as a result of extensive studies to achieve the above object, and the molding material according to the present invention is a thermoplastic resin. In a molding material comprising a fibrous reinforcing material, a filling rate of the fibrous reinforcing material is 50% by weight or more and 90% by weight or less, and the fibrous reinforcing material is substantially axially formed over the entire length of the molding material. The fibers are arranged continuously in parallel, and 90% or more of the surfaces of the single fibers (filaments) that are the constituent units of the fiber reinforcement are covered with the thermoplastic resin.

【0011】[0011]

【発明の実施の形態】以下、本発明について詳述する。
先ず、この成形用材料の代表的構造を第1図及び第2図
に基き説明する。第1図及び第2図は本発明の成形用材
料の構造を示す部分拡大斜視図であり、第1図は角形状
(方形)を有するものを示し、第2図は円柱形状を有す
るものを示す。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in detail below.
First, a typical structure of this molding material will be described with reference to FIGS. 1 and 2. 1 and 2 are partially enlarged perspective views showing the structure of the molding material of the present invention. FIG. 1 shows one having a square shape (rectangular shape), and FIG. 2 shows one having a cylindrical shape. Show.

【0012】図において、Aは成形用材料、Bは熱可塑
性樹脂、Cは単繊維である。Lは成形用材料の長さ、即
ち繊維長であり、1.0〜10mmが好ましい。1.0
mm未満では繊維長が短く十分な補強効果が期待でき
ず、逆に10mmを超えるとホッパー内でのブリッジ化
等の問題から成形が困難となるので好ましくない。
In the figure, A is a molding material, B is a thermoplastic resin, and C is a single fiber. L is the length of the molding material, that is, the fiber length, and is preferably 1.0 to 10 mm. 1.0
If it is less than 10 mm, the fiber length is short and a sufficient reinforcing effect cannot be expected. On the contrary, if it exceeds 10 mm, molding becomes difficult due to problems such as bridging in the hopper, which is not preferable.

【0013】一方、W、H、Dは各々幅、高さ、直径で
あり、特に指定はないがスクリューへの食い込み等の面
から、W=1〜10mm、H=0.1〜5mm、D=
0.5〜5mmφが好ましい。
On the other hand, W, H, and D are width, height, and diameter, respectively. Although not specified, W = 1 to 10 mm, H = 0.1 to 5 mm, D from the viewpoint of biting into the screw. =
0.5-5 mmφ is preferable.

【0014】本発明に用いる繊維状補強材の種類として
は、E−ガラス、S−ガラス等のガラス繊維、ポリアク
リルニトリル系、ピッチ系、レーヨン系等の炭素繊維、
デュポン社のケブラーに代表される芳香族ポリアミド繊
維、日本カーボン社のニカロン等の炭化ケイ素繊維、金
属繊維等が挙げられる。これらの繊維状補強材は、単独
或いは組合せて用いられる。
The types of fibrous reinforcing material used in the present invention include glass fibers such as E-glass and S-glass, carbon fibers such as polyacrylonitrile-based, pitch-based and rayon-based fibers.
Examples thereof include aromatic polyamide fibers represented by Kevlar manufactured by DuPont, silicon carbide fibers such as Nicalon manufactured by Nippon Carbon Co., Ltd., and metallic fibers. These fibrous reinforcing materials may be used alone or in combination.

【0015】又、繊維径は繊維の種類によっても異なる
が、例えばガラス繊維の場合、通常5〜25μmである
が、機械特性の面からは細い方が好ましい。繊維状補強
材を表面処理することは熱可塑性樹脂との接着性の面か
ら好ましく、例えばガラス繊維の場合、シラン系、チタ
ネート系カップリング剤で処理することは特に好まし
い。
Although the fiber diameter varies depending on the type of the fiber, for example, in the case of glass fiber, it is usually 5 to 25 μm, but it is preferable that it is thin from the viewpoint of mechanical characteristics. The surface treatment of the fibrous reinforcing material is preferable from the viewpoint of adhesiveness to a thermoplastic resin. In the case of glass fiber, for example, it is particularly preferable to treat the fibrous reinforcing material with a silane-based or titanate-based coupling agent.

【0016】本発明に用いる熱可塑性樹脂としては、特
に制限はなく、用途に応じて選択すればよい。例えば、
ポリプロピレン、スチレンアクリロニトリル共重合体、
ポリスチレン、アクリロニトリル・ブタジエン・スチレ
ン共重合体(メチルメタクリレート・ブタジエン・スチ
レン、メチルメタクリレート・アクリロニトリル・ブタ
ジエン・スチレン、アクリロニトリル・ブタジエン・α
−メチルスチレン・スチレン共重合体を含む)、ポリフ
ェニレンエーテル(変性PPOを含む)、ポリエチレ
ン、ポリオキシメチレン、ポリカーボネート、ポリアミ
ド、ポリメチルメタクリレート、ポリ塩化ビニル、ポリ
エチレンテレフタレート、ポリブチレンテレフタレー
ト、ポリフェニレンスルフィド、ポリスルフォン、ポリ
エーテルスルフォン、ポリエーテルエーテルケトン、ポ
リエーテルケトン、ポリイミド、ポリエーテルイミド等
が挙げられる。
The thermoplastic resin used in the present invention is not particularly limited and may be selected according to the application. For example,
Polypropylene, styrene acrylonitrile copolymer,
Polystyrene, acrylonitrile / butadiene / styrene copolymer (methyl methacrylate / butadiene / styrene, methyl methacrylate / acrylonitrile / butadiene / styrene, acrylonitrile / butadiene / α
-Including methylstyrene / styrene copolymer), polyphenylene ether (including modified PPO), polyethylene, polyoxymethylene, polycarbonate, polyamide, polymethylmethacrylate, polyvinyl chloride, polyethylene terephthalate, polybutylene terephthalate, polyphenylene sulfide, poly Examples thereof include sulfone, polyether sulfone, polyether ether ketone, polyether ketone, polyimide and polyether imide.

【0017】成形用材料中の繊維状補強材の充填率は、
50重量%以上90重量%以下である。50重量%未満
では本発明の効果である繊維の高充填化の特徴が発揮で
きないこと、又後述するマスターバッチとして用いる場
合、経済性の面からみても好ましくない。
The filling factor of the fibrous reinforcing material in the molding material is
It is 50% by weight or more and 90% by weight or less. If it is less than 50% by weight, the feature of high filling of fibers, which is the effect of the present invention, cannot be exhibited, and if it is used as a masterbatch described later, it is not preferable from the viewpoint of economy.

【0018】一方、90重量%を超えると単繊維の表面
を熱可塑性樹脂で十分被覆することができず、従って射
出成形時、繊維の折損が生ずる為、その補強効果が低下
する為好ましくない。
On the other hand, if it exceeds 90% by weight, the surface of the single fiber cannot be sufficiently covered with the thermoplastic resin, and therefore the fiber is broken during the injection molding, and the reinforcing effect is deteriorated, which is not preferable.

【0019】前記繊維の構成単位である単繊維の90%
以上の表面が上記熱可塑性樹脂樹脂によって被覆され、
単繊維は各々よく樹脂中に分散しており、従って当該成
形用材料の空隙率が10%以下、即ち被覆率が90%以
上と前記繊維は上記樹脂でよく含浸されているものであ
る。
90% of the monofilament which is the constituent unit of the fiber
The above surface is coated with the thermoplastic resin,
The single fibers are well dispersed in the resin, so that the molding material has a porosity of 10% or less, that is, a coverage of 90% or more, and the fibers are well impregnated with the resin.

【0020】本発明の成形用材料は、熱可塑性樹脂で単
繊維表面を被覆した連続繊維/熱可塑性樹脂複合体を一
定長に切断することにより得られる。
The molding material of the present invention can be obtained by cutting a continuous fiber / thermoplastic resin composite in which the surface of a single fiber is coated with a thermoplastic resin, to a predetermined length.

【0021】連続繊維に熱可塑性樹脂を含浸して繊維の
構成単位である単繊維(フィラメント)の表面を熱可塑
性樹脂で被覆する方法としては通常の方法は全て利用で
きる。
As a method of impregnating continuous fibers with a thermoplastic resin and coating the surface of a single fiber (filament) which is a constituent unit of the fiber with the thermoplastic resin, all usual methods can be used.

【0022】例えば、熱可塑性樹脂を溶融状態で繊維状
補強材に含浸させる溶融含浸法、粉末状の熱可塑性樹脂
を空気中に浮遊、または水などの液体中に懸濁させた状
態で含浸させる流動床法が挙げられる。
For example, a melt impregnation method in which a fibrous reinforcing material is impregnated with a thermoplastic resin in a molten state, or a powdery thermoplastic resin is suspended in air or suspended in a liquid such as water for impregnation. The fluidized bed method can be mentioned.

【0023】また溶融含浸法として、特開昭61−22
9534号、同61−229535号、同61−229
536号及び特願昭61−216253号に代表的に示
されているように、溶融樹脂を表面に有する加熱ロール
または加熱ベルトに繊維状補強材を接触させて含浸させ
る方法なども挙げられる。
A melt impregnation method is disclosed in Japanese Patent Laid-Open No. 61-22.
No. 9534, No. 61-229535, No. 61-229.
As typified by Japanese Patent Application No. 536 and Japanese Patent Application No. 61-216253, there may be mentioned a method in which a fibrous reinforcing material is brought into contact with a heating roll or a heating belt having a molten resin on the surface to impregnate it.

【0024】即ち、この方法では複数のボビンより引き
出した一方向長繊維、例えばトウを引揃えた繊維シート
または多方向連続繊維を張力調整ロールにて引取方向に
一定の張力をかける。一方、熱可塑性樹脂は押出機で加
熱溶融させ、ダイから所定の温度に昇温した加熱ロール
表面上の下ベルトに塗布する。次いで前述の繊維シート
または多方向連続繊維を上下一対のベルトにはさまれた
状態で1本または複数の加熱ロール群の間を通過させて
含浸させるものである。
That is, in this method, unidirectional long fibers drawn from a plurality of bobbins, for example, a fiber sheet in which tows are aligned or multidirectional continuous fibers are applied with a constant tension in a pulling direction by a tension adjusting roll. On the other hand, the thermoplastic resin is heated and melted by an extruder, and is applied to a lower belt on a heating roll surface heated to a predetermined temperature from a die. Then, the above-mentioned fiber sheet or multidirectional continuous fibers are sandwiched between a pair of upper and lower belts and passed through one or a plurality of heating roll groups to impregnate them.

【0025】このようにして得た十分に含浸した連続繊
維/熱可塑性樹脂複合体は、そのまま或いは必要により
所望の厚みになるよう必要枚数積層・熱圧した後、所望
の幅に繊維と平行にスリット後、所望の長さに繊維と直
角方向に切断することにより角形状(方形)の成形用材
料を得ることができる。
The sufficiently impregnated continuous fiber / thermoplastic resin composite thus obtained is laminated as it is, or if necessary, after laminating and heat-pressing a required number of sheets so as to have a desired thickness, it is parallel to the fibers in a desired width. After slitting, a rectangular (square) molding material can be obtained by cutting into a desired length in the direction perpendicular to the fibers.

【0026】上記積層・熱圧する方法としては、例えば
当該複合体の表面を熱可塑性樹脂の軟化点以上に加熱
後、積層するか、或いは積層後、加熱炉内で当該樹脂の
軟化点以上に加熱する。
As the method of laminating and hot pressing, for example, the surface of the composite is heated to a temperature above the softening point of the thermoplastic resin and then laminated, or after laminating, it is heated above the softening point of the resin in a heating furnace. To do.

【0027】次いで当該複合体を半円みぞを有する冷ニ
ップロール間を通過させる等して繊維状補強材に張力を
かけた状態で円柱状に賦形して当該樹脂の固化温度以下
まで冷却することにより達せられる。
Then, the composite is passed through a cold nip roll having a semicircular groove to form a columnar shape in a state where tension is applied to the fibrous reinforcing material and cooled to a temperature not higher than the solidification temperature of the resin. Reached by.

【0028】又、円柱形状の成形用材料を得る方法とし
ては、上記含浸後の連続繊維/熱可塑性樹脂複合体を熱
可塑性樹脂の軟化点以上に加熱された円筒形状を有する
ダイス内を引き抜いて賦形し、次いで当該樹脂の固化温
度以下に冷却後、所望の長さに切断する等の方法が挙げ
られる。
As a method of obtaining a cylindrical molding material, the continuous fiber / thermoplastic resin composite after impregnation is drawn out from a die having a cylindrical shape heated above the softening point of the thermoplastic resin. Examples of the method include shaping, then cooling to below the solidification temperature of the resin, and then cutting to a desired length.

【0029】このようにして得られた成形用材料は、そ
のまま或いは所望の繊維充填率になる様、繊維未強化熱
可塑性樹脂とドライブレンドする所謂マスターバッチと
して用いることにより射出成形に供せられる。
The molding material thus obtained is used for injection molding as it is or as a so-called masterbatch which is dry-blended with a fiber-unreinforced thermoplastic resin so as to have a desired fiber filling rate.

【0030】[0030]

【実施例】以下、本発明を実施例及び比較例により具体
的に説明する。 実施例1 ポリプロピレンとガラス繊維から次のようにして成形用
材料を得た。用いた装置の概略を第3図に示す。
The present invention will be described below in more detail with reference to examples and comparative examples. Example 1 A molding material was obtained from polypropylene and glass fibers as follows. FIG. 3 shows an outline of the apparatus used.

【0031】100本のボビン1から引き出されたガラ
ス繊維(繊維径13μm、収束本数1600本)のロー
ビング2・100本を整列器3で一方向に整列させた
後、張力調整ロール4,5,6を通過させて150mm
幅の繊維シート7とした。
2. 100 rovings of glass fiber (fiber diameter 13 μm, number of converging fibers 1600) drawn out from 100 bobbins 1 are aligned in one direction by an aligner 3, and then tension adjusting rolls 4, 5, 150 mm through 6
The width of the fiber sheet 7 was used.

【0032】一方、押出機(図示せず)で210℃に加
熱溶融したポリプロピレンをダイ8を経由して、下ベル
ト用ロール9(ここでは3本)で220℃に加熱された
下ベルト10の表面に105μmの厚みで塗布した。次
いで前記シートを、下ベルトと、上ベルト用ロール11
(ここでは3本)で220℃に加熱された上ベルト12
にはさんだ状態で、220℃に加熱された径240mm
の含浸ロール13(ここでは3本)の間を、150kg
の張力をかけながら50cm/分の速度で通過させた。
このようにして得られたガラス繊維/ポリプロピレン複
合体14は100℃まで冷却後、引取用ロール15,1
6で引き取った後、スリッター17で幅5mm間隔でス
リットした後、切断機18で長さ3mmに切断して厚み
0.25mm、ガラス繊維充填率80重量%の成形用材
料を得た。
On the other hand, polypropylene melted and heated to 210 ° C. by an extruder (not shown) is passed through the die 8 and the lower belt 10 is heated to 220 ° C. by the lower belt roll 9 (here, three rolls). It was applied on the surface to a thickness of 105 μm. Next, the sheet is rolled into a lower belt 11 and an upper belt roll 11
Upper belt 12 heated to 220 ° C (3 here)
The diameter is 240mm, which is heated to 220 ℃ while sandwiched between them.
150 kg between the impregnating rolls 13 (here, 3 rolls)
Was applied at a speed of 50 cm / min.
The glass fiber / polypropylene composite 14 thus obtained was cooled to 100 ° C., and then the take-up rolls 15, 1
After being taken up by 6, the slitter 17 slitted it at intervals of 5 mm and then cut by a cutter 18 into a length of 3 mm to obtain a molding material having a thickness of 0.25 mm and a glass fiber filling rate of 80% by weight.

【0033】得られた成形用材料の切断面の単繊維(フ
ィラメント)の分散状態を走査型電子顕微鏡で観察した
結果、単繊維は樹脂内によく分散されており、且つその
90重量%以上が当該樹脂でよく被覆されていることが
確認された。
As a result of observing the dispersion state of the filaments (filaments) on the cut surface of the obtained molding material with a scanning electron microscope, the filaments were well dispersed in the resin, and 90% by weight or more of them were dispersed. It was confirmed that the resin was well covered.

【0034】次いで当該成形用材料62.5重量部と繊
維未強化ポリプロピレン樹脂37.5重量部をドライブ
レンド後、射出成形機を用いてガラス繊維充填率50重
量%の試験片を作成した。試験片の断面を走査型電子顕
微鏡で観察したが、繊維の分散は良好であり、ブロッキ
ング化等の現象は見られなかった。
Next, 62.5 parts by weight of the molding material and 37.5 parts by weight of fiber-unreinforced polypropylene resin were dry-blended, and a test piece having a glass fiber filling rate of 50% by weight was prepared using an injection molding machine. When the cross section of the test piece was observed with a scanning electron microscope, the dispersion of the fiber was good and no phenomenon such as blocking was observed.

【0035】又、当該試験片を用いてアイゾット衝撃強
度、繊維長を測定した。結果を表1に示すが、繊維長分
布の中央部が約1.5mmと従来技術品と比較して射出
成形時の繊維の折損が少なく、アイゾット衝撃強度が約
2倍となった。
The Izod impact strength and the fiber length were measured using the test piece. The results are shown in Table 1. As shown in Table 1, the central part of the fiber length distribution was about 1.5 mm, which showed less breakage of the fibers during injection molding and about twice the Izod impact strength as compared with the prior art product.

【0036】比較例1 直径3mm、長さ300mmの穿孔を有するクロスヘッ
ドダイ内押出機で溶融したポリプロピレンを供給した。
一方、実施例1で用いたガラス繊維12本を上記穿孔内
に通し、220℃に加熱されたクロスヘッド内を通過さ
せながら溶融ポリプロピレンと接触させた後、引き取っ
てガラス繊維充填率60重量%の成形用材料を得ようと
したが、繊維がクロスヘッドの穿孔内で切断してしま
い、順調に引き取ることができなかった。そこでガラス
繊維の本数を9本に減らして上記操作を行って繊維を樹
脂で被覆した後、100℃以下に冷却して引き取った
後、長さ3mmに切断して直径3mm、ガラス繊維充填
率48重量%の円柱形状を有する成形用材料を得た。得
られた成形用材料の切断面を走査型電子顕微鏡で観察し
て単繊維の分散状態を調べたが、繊維のほとんどが成形
用材料の中央部に束状に存在しており、且つ樹脂で被覆
されている単繊維は当該繊維束の表層のみであり、内層
の単繊維群は全く樹脂で被覆されていなかった。
Comparative Example 1 Polypropylene melted was fed by an extruder in a crosshead die having a hole having a diameter of 3 mm and a length of 300 mm.
On the other hand, the 12 glass fibers used in Example 1 were passed through the perforations, passed through a crosshead heated to 220 ° C. and brought into contact with molten polypropylene, and then taken out to obtain a glass fiber filling rate of 60% by weight. An attempt was made to obtain a molding material, but the fibers were cut inside the perforations of the crosshead, and could not be smoothly collected. Therefore, after reducing the number of glass fibers to 9 and performing the above operation to coat the fibers with a resin, the fibers are cooled to 100 ° C. or lower and taken out, and then cut into a length of 3 mm to have a diameter of 3 mm and a glass fiber filling rate of 48. A molding material having a cylindrical shape of wt% was obtained. The cross section of the obtained molding material was observed with a scanning electron microscope to examine the dispersed state of the single fibers.Most of the fibers were present in a bundle at the center of the molding material, and The coated single fiber was only the surface layer of the fiber bundle, and the single fiber group of the inner layer was not coated with resin at all.

【0037】次いで得られた成形用材料をそのまま実施
例1で用いた射出成形機によってガラス繊維充填率48
重量%の試験片を作成した。試験片の断面を走査型電子
顕微鏡で観察したが、繊維の分散が不十分であり、ブロ
ッキング化の現象が観察された。
Then, the obtained molding material was used as it was by the injection molding machine used in Example 1 to obtain a glass fiber filling rate of 48.
A weight% test piece was prepared. When the cross section of the test piece was observed with a scanning electron microscope, the dispersion of the fibers was insufficient and the phenomenon of blocking was observed.

【0038】又、当該試験片を用いてアイゾット衝撃強
度、繊維長を測定した。結果を表1に示すが、繊維長分
布の中央部が約0.5mmと実施例1と比較して射出成
形時の繊維折損が激しく、その結果アイゾット衝撃強度
も大きく低下した。
The Izod impact strength and the fiber length were measured using the test piece. The results are shown in Table 1. As shown in Table 1, the central portion of the fiber length distribution was about 0.5 mm, and fiber breakage during injection molding was more severe than in Example 1, and as a result, the Izod impact strength was significantly reduced.

【0039】比較例2 実施例1の装置を用いて繊維充填率92%のガラス繊維
/ポリプロピレン複合体を得た後、幅5mm、長さ3m
mの射出成形用材料を得た。得られた成形用材料の切断
面の単繊維の分散状態を走査型電子顕微鏡で観察した結
果、繊維は部分的にブロッキング化し、且つ単繊維の多
くが樹脂で全く被覆されていなかった。
Comparative Example 2 After using the apparatus of Example 1 to obtain a glass fiber / polypropylene composite having a fiber filling rate of 92%, the width was 5 mm and the length was 3 m.
m injection molding material was obtained. As a result of observing the dispersion state of the single fibers on the cut surface of the obtained molding material with a scanning electron microscope, the fibers were partially blocked, and most of the single fibers were not coated with the resin at all.

【0040】次いで当該成形用材料54重量部と繊維未
強化ポリプロピレン樹脂46重量部をドライブレンド
後、射出成形してガラス繊維充填率50重量%の試験片
を得た。試験片の断面を走査型電子顕微鏡で観察した
が、繊維がかなりブロッキング化しており、分散不良で
あった。
Next, 54 parts by weight of the molding material and 46 parts by weight of fiber-unreinforced polypropylene resin were dry blended and injection-molded to obtain a test piece having a glass fiber filling rate of 50% by weight. When the cross section of the test piece was observed with a scanning electron microscope, the fiber was considerably blocked and the dispersion was poor.

【0041】又、当該試験片を用いてアイゾット衝撃強
度、繊維長を測定した。結果を表1に示すが、繊維長分
布の中央部が約0.4mmと成形時の折損が激しく、ア
イゾット衝撃強度も低下した。
Further, the Izod impact strength and the fiber length were measured using the test piece. The results are shown in Table 1. As shown in Table 1, the central portion of the fiber length distribution was about 0.4 mm, and the breakage during molding was severe, and the Izod impact strength was also reduced.

【0042】実施例2〜4 表1に示す繊維、樹脂を用いて実施例1の装置を用いて
複合体を得た。
Examples 2 to 4 By using the fibers and resins shown in Table 1 and using the apparatus of Example 1, composites were obtained.

【0043】次いで幅5mmにスリットした後、表1に
示す長さに切断して成形用材料を得た。次いで表1に示
す割合で繊維未強化樹脂とドライブレンド後、射出成形
して試験片を得て繊維長、アイゾット衝撃強度を測定し
た。
Next, after slitting to a width of 5 mm, it was cut into the length shown in Table 1 to obtain a molding material. Then, after dry blending with the fiber-unreinforced resin in the proportions shown in Table 1, a test piece was obtained by injection molding, and the fiber length and Izod impact strength were measured.

【0044】結果を表1に示す。The results are shown in Table 1.

【0045】[0045]

【表1】 [Table 1]

【0046】[0046]

【発明の効果】本発明によれば、繊維の補強効果が十分
発揮できると共に高充填化が可能であり、且つ成形性が
良好な成形用材料を提供することができる。
According to the present invention, it is possible to provide a molding material which can sufficiently exert the reinforcing effect of fibers, can be highly filled, and has good moldability.

【図面の簡単な説明】[Brief description of drawings]

第1図及び第2図は本発明の成形用材料の構造を示す部
分拡大斜視図、第3図は本発明に係る成形用材料を製造
する装置の一例を示す概略図である。 A:成形用材料 B:熱可塑性樹脂 C:単繊維
1 and 2 are partially enlarged perspective views showing the structure of the molding material of the present invention, and FIG. 3 is a schematic diagram showing an example of an apparatus for producing the molding material according to the present invention. A: Molding material B: Thermoplastic resin C: Single fiber

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】単繊維(フィラメント)から成る繊維状補
強材と、該繊維状補強材の構成単位である単繊維(フィ
ラメント)の周囲に塗布され該単繊維(フィラメント)
間に含浸する熱可塑性樹脂とより成る成形用材料におい
て、該成形用材料は角形状又は円柱形状であり、該成形
用材料中の該繊維状補強材の充填率が50重量%以上9
0重量%以下であり、且つ前記繊維状補強材が当該成形
用材料の全長にわたって軸方向に略々平行に連続して配
置しており、さらに当該繊維補強材の構成単位である単
繊維(フィラメント)の90%以上の表面が前記熱可塑
性樹脂によって被覆され、単繊維(フィラメント)は各
々よく熱可塑性樹脂中に分散していることを特徴とする
成形用材料。
1. A fibrous reinforcing material composed of a monofilament (filament) and a monofilament (filament) applied around a monofilament (filament) which is a constituent unit of the fibrous reinforcing material.
In a molding material comprising a thermoplastic resin impregnated between the molding material, the molding material has a rectangular shape or a cylindrical shape, and the filling rate of the fibrous reinforcing material in the molding material is 50% by weight or more.
0% by weight or less, the fibrous reinforcing material is continuously arranged substantially parallel to the axial direction over the entire length of the molding material, and further, a single fiber (filament) which is a constituent unit of the fiber reinforcing material. 90% or more of the surface is covered with the thermoplastic resin, and the single fibers (filaments) are well dispersed in the thermoplastic resin.
【請求項2】射出成形用材料として用いることを特徴と
する請求項1記載の成形用材料。
2. The molding material according to claim 1, which is used as an injection molding material.
【請求項3】前記形成用材料が溶融含浸法又は流動床法
によって得たものであることを特徴とする請求項1又は
2記載の成形用材料。
3. The molding material according to claim 1 or 2, wherein the molding material is obtained by a melt impregnation method or a fluidized bed method.
JP17551896A 1996-06-14 1996-06-14 Molding material Pending JPH08309748A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17551896A JPH08309748A (en) 1996-06-14 1996-06-14 Molding material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17551896A JPH08309748A (en) 1996-06-14 1996-06-14 Molding material

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP63038869A Division JP2623282B2 (en) 1988-02-22 1988-02-22 Molding material

Publications (1)

Publication Number Publication Date
JPH08309748A true JPH08309748A (en) 1996-11-26

Family

ID=15997465

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17551896A Pending JPH08309748A (en) 1996-06-14 1996-06-14 Molding material

Country Status (1)

Country Link
JP (1) JPH08309748A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006096966A (en) * 2004-09-02 2006-04-13 Daicel Chem Ind Ltd Long fiber-reinforced thermoplastic resin structure, its molding and production method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61229535A (en) * 1985-04-04 1986-10-13 Kouseinou Jushi Shinseizou Gijutsu Kenkyu Kumiai Method and device for manufacturing fiber reinforced resin sheet

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61229535A (en) * 1985-04-04 1986-10-13 Kouseinou Jushi Shinseizou Gijutsu Kenkyu Kumiai Method and device for manufacturing fiber reinforced resin sheet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006096966A (en) * 2004-09-02 2006-04-13 Daicel Chem Ind Ltd Long fiber-reinforced thermoplastic resin structure, its molding and production method thereof

Similar Documents

Publication Publication Date Title
JP5996320B2 (en) Random mat manufacturing method
EP2716433B1 (en) Method for manufacturing compact with sustained isotropy
KR101444631B1 (en) Random mat and fiber reinforced composite material
EP2151418B1 (en) Chopped fiber bundle, molding material, and fiber reinforced plastic, and process for producing them
KR101434076B1 (en) Method for producing pellets from fiber composite materials
US9909253B2 (en) Random mat, shaped product of fiber reinforced composite material, and carbon fiber mat
US9353231B2 (en) Composite base material
KR20140040846A (en) Method for manufacturing molded article by low-pressure molding
JPS62135537A (en) Flexible composite material and production thereof
US5532054A (en) Molding material
JP2623282B2 (en) Molding material
WO2014129497A1 (en) Stampable sheet
JPH08309748A (en) Molding material
JPH0365311A (en) Carbon fiber chop
JP3724067B2 (en) Method for producing composite material and mat-like composite material
JP2646027B2 (en) Molding material
JP2646028B2 (en) Molding materials and mixtures thereof
JP2646029B2 (en) Molding materials and mixtures thereof
JPH03179035A (en) Molding material and its mixture
JPH03179034A (en) Molding material and its mixture
JP2985788B2 (en) Manufacturing method of long fiber reinforced thermoplastic resin molding material
JPH03179033A (en) Molding material and its mixture
JP2000210933A (en) Resin-coated fiber bundle and its manufacture
JPH10316771A (en) Sheet material for composite-fiber-reinforced molding and molding made therefrom
JPH0647740A (en) Continuous glass filament thermoplastic resin pellet