JP2006096966A - Long fiber-reinforced thermoplastic resin structure, its molding and production method thereof - Google Patents

Long fiber-reinforced thermoplastic resin structure, its molding and production method thereof Download PDF

Info

Publication number
JP2006096966A
JP2006096966A JP2004331621A JP2004331621A JP2006096966A JP 2006096966 A JP2006096966 A JP 2006096966A JP 2004331621 A JP2004331621 A JP 2004331621A JP 2004331621 A JP2004331621 A JP 2004331621A JP 2006096966 A JP2006096966 A JP 2006096966A
Authority
JP
Japan
Prior art keywords
fiber
thermoplastic resin
fibers
reinforced thermoplastic
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004331621A
Other languages
Japanese (ja)
Inventor
Koji Miyazaki
幸治 宮崎
Kazuhiko Saeki
和彦 佐伯
Hiroyasu Ishizawa
宏康 石沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Corp
Original Assignee
Daicel Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Chemical Industries Ltd filed Critical Daicel Chemical Industries Ltd
Priority to JP2004331621A priority Critical patent/JP2006096966A/en
Publication of JP2006096966A publication Critical patent/JP2006096966A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a resin structure that comprises a metal long fiber, raises physical strength and is applied to a molding. <P>SOLUTION: The long fiber-reinforced thermoplastic resin structure comprises 2-45 wt.% of a metal fiber and 10-60 wt.% of at least another kind of a fiber in which the fiber length of both the fibers is 3-100 mm and the fibers are arranged approximately in parallel. The metal fiber and at least one kind of the fiber are opened while being drawn and impregnated with a thermoplastic resin in a molten state. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、金属繊維とその他の繊維の複合繊維により強化された熱可塑性樹脂構造体とその製造方法、及びその成形体更にはその製造方法関するものである。   The present invention relates to a thermoplastic resin structure reinforced with a composite fiber of metal fibers and other fibers, a manufacturing method thereof, a molded body thereof, and a manufacturing method thereof.

長繊維強化熱可塑性樹脂構造体は、長繊維に樹脂を効果的に含浸することにより、熱可塑性樹脂の物性を極めて改善し、その樹脂としての活用範囲を飛躍的に拡大した。その長繊維強化熱可塑性樹脂構造体は特開平3−181528号にも記載があるように、繊維束を引きながら開繊し、溶融した熱可塑性樹脂を含浸させ、賦形して余剰の樹脂を除き、冷却後、適当な長さにカッティングして得られる。該公報には、樹脂を含浸する前に繊維は適切なサイジング剤にてサイジング処理しておくことが、樹脂を含浸する上で重要である由も記載されている。   The long fiber reinforced thermoplastic resin structure has greatly improved the physical properties of the thermoplastic resin by effectively impregnating the long fiber with the resin, and has dramatically expanded the range of use as the resin. As described in JP-A-3-181528, the long fiber reinforced thermoplastic resin structure is opened while drawing a fiber bundle, impregnated with a molten thermoplastic resin, shaped, and excess resin is formed. Except for cooling, it is obtained by cutting to an appropriate length after cooling. This publication also describes the reason why it is important to impregnate the fiber with a suitable sizing agent before impregnating the resin.

また、特開2004−14990号には金属長繊維含有樹脂について、電磁波シールド用樹脂への応用が提案されている。その中で示されているように、樹脂に含有される金属繊維は長繊維であることが電磁波のシールド効果が強いことも示されている。電磁波シールド効果を発現する樹脂は、モバイル型パソコン、携帯電話等のデジタル製品の軽量化を目指した容器の樹脂化への要求は強く、電磁波シールド効果を示し、更に金属と遜色のない強度の樹脂の開発が待たれている。   Japanese Patent Application Laid-Open No. 2004-14990 proposes application of a long metal fiber-containing resin to an electromagnetic wave shielding resin. As shown therein, it is also shown that the metal fiber contained in the resin is a long fiber and has a strong electromagnetic shielding effect. Resins that exhibit electromagnetic shielding effects are strongly demanded for resinization of containers aimed at reducing the weight of digital products such as mobile PCs and mobile phones. Resins exhibiting electromagnetic shielding effects and strength comparable to metals Is waiting for development.

しかし、金属繊維のサイジング処理について現状では、コスト面及び技術面の課題から、サイジング処理をなされた金属繊維の工業生産はなされていない。長繊維強化樹脂構造体の製造に、サイジング処理を行っていない金属繊維束を使用することは、溶融樹脂が、繊維に強い吸着をすることができないため、サイジング処理を施したガラス繊維束を用いた場合と比較して、樹脂として物理的強度を高めることが出来ない。   However, regarding the sizing treatment of metal fibers, at present, industrial production of metal fibers subjected to sizing treatment has not been performed due to cost and technical problems. The use of metal fiber bundles that have not been sized for the production of long fiber reinforced resin structures is because glass resin bundles that have been subjected to sizing treatment cannot be used because the molten resin cannot strongly adsorb fibers. Compared with the case where it had, physical strength as a resin cannot be raised.

従って、樹脂を含浸した金属長繊維ペレットとガラス等の長繊維強化樹脂ペレットを混合することが試みられているが、それぞれのペレットを一旦混合機等で、均一ブレンドしても、そのブレンドされたものを押出機等のホッパー内で溶融する時の攪拌で、比重の重い金属繊維樹脂ペレットは下部に、比重の軽い樹脂ペレットやガラス長繊維強化樹脂ペレットは上部に偏在化して、押出機から押し出されて成形される段階では、両者の繊維が均一に分散した成形体を得ることは出来ていない。
特開平3−181528号公報 特開2004−14990号公報
Therefore, attempts have been made to mix long metal fiber pellets impregnated with resin and long fiber reinforced resin pellets such as glass. When a product is melted in a hopper such as an extruder, metal fiber resin pellets with high specific gravity are unevenly distributed at the bottom, and resin pellets with light specific gravity and long glass fiber reinforced resin pellets are unevenly distributed at the top and extruded from the extruder. At this stage, it is not possible to obtain a molded body in which both fibers are uniformly dispersed.
JP-A-3-181528 JP 2004-14990 A

本発明の目的は、金属長繊維を含有せる樹脂構造体であって、その物理的強度を高め、しかも成形体への応用を可能にすることにある。   An object of the present invention is to provide a resin structure containing a long metal fiber, to increase its physical strength, and to enable application to a molded body.

本発明者は、鋭意検討した結果、金属長繊維とその他の長繊維を同時に引きながら、特化された条件にて、樹脂を含浸することにより上記目的に適合せる長繊維強化熱可塑性樹脂構造体を得ることができることを見出し、本発明を完成するに至った。   As a result of intensive studies, the present inventor has made a long fiber reinforced thermoplastic resin structure adapted to the above purpose by impregnating a resin under specialized conditions while simultaneously drawing metal long fibers and other long fibers. The present invention was completed.

すなはち本発明の目的は、金属繊維が2〜45重量%であり、少なくとも他の1種の繊維が10〜60重量%含み、いずれの繊維も繊維長3〜100mmであり、しかも略並行に配列された長繊維強化熱可塑性樹脂構造体を提供する。   That is, the object of the present invention is that the metal fiber is 2 to 45% by weight, at least one other kind of fiber is 10 to 60% by weight, each fiber has a fiber length of 3 to 100 mm, and substantially parallel. A long fiber reinforced thermoplastic resin structure is provided.

更に本発明の目的は、金属繊維と少なくとも1種の他の繊維を引きながら開繊し、熱可塑性樹脂を溶融状態で含浸させることを特徴とした前記記載の長繊維強化熱可塑性樹脂構造体を提供する。   Further, an object of the present invention is to provide the long fiber reinforced thermoplastic resin structure as described above, wherein the fiber fiber is opened while drawing at least one other fiber and impregnated with a thermoplastic resin in a molten state. provide.

また、本発明の目的は、少なくとも1種の他の繊維がガラス繊維であることを特徴とした前記記載の長繊維強化熱可塑性樹脂構造体を提供する。   Another object of the present invention is to provide the long fiber reinforced thermoplastic resin structure as described above, wherein at least one other fiber is a glass fiber.

更にまた、本発明の目的は、前記記載の長繊維強化熱可塑性樹脂構造体を少なくとも含む材料より成形された長繊維強化熱可塑性樹脂成形体を提供する。   Still another object of the present invention is to provide a long fiber reinforced thermoplastic resin molded article formed from a material containing at least the long fiber reinforced thermoplastic resin structure described above.

また、本発明の目的は、金属繊維及び少なくとも1種の他の繊維に異なるテンションをかけて、それぞれの繊維の開繊幅をおよそ同一にすることを特徴とした金属繊維が2〜45重量%であり、少なくとも他の1種の繊維が10〜60重量%含み、いずれの繊維も繊維長3〜100mmであり、しかも略並行に配列された長繊維強化熱可塑性樹脂構造体の製造方法を提供する。   Another object of the present invention is to provide metal fibers and at least one other fiber with different tensions so that the opening widths of the respective fibers are approximately the same. And a method for producing a long-fiber reinforced thermoplastic resin structure in which at least one other type of fiber is contained in an amount of 10 to 60% by weight, each fiber has a fiber length of 3 to 100 mm, and is arranged substantially in parallel. To do.

更に本発明の目的は、金属繊維及び少なくとも1種の他の繊維の開繊される繊維幅が、5〜50mmであることを特徴とした前記記載の長繊維強化熱可塑性樹脂構造体の製造方法を提供する。   Further, the object of the present invention is to provide a method for producing a long fiber reinforced thermoplastic resin structure as described above, wherein the fiber width of the metal fiber and at least one other fiber is 5 to 50 mm. I will provide a.

また、本発明の目的は、前記記載の長繊維強化熱可塑性樹脂構造体を少なくとも含む材料を使用した長繊維強化熱可塑性樹脂成形体の成形方法を提供する。   Moreover, the objective of this invention provides the shaping | molding method of the long fiber reinforced thermoplastic resin molded object using the material which contains the long fiber reinforced thermoplastic resin structure as described above at least.

更にまた、本発明の目的は、成形する時に使用する押出機等のスクリュウの背圧が10kg/cm2以下で行なうことを特徴とした前記記載の長繊維強化熱可塑性樹脂成形体の成形方法を提供する。 Still another object of the present invention is to provide a method for molding a long fiber reinforced thermoplastic resin molding as described above, wherein the back pressure of a screw of an extruder or the like used for molding is 10 kg / cm 2 or less. provide.

本発明によれば、金属長繊維とその他の長繊維を同時に引きながら、特化された条件にて、樹脂を含浸することにより、長繊維強化熱可塑性樹脂構造体の物理的強度を高め、しかも成形体への応用を可能として、デジタル製品などの筐体の軽量化等を可能とする。   According to the present invention, the physical strength of the long fiber reinforced thermoplastic resin structure is increased by impregnating the resin under specialized conditions while simultaneously drawing the metal long fiber and other long fibers, It can be applied to molded products, and can reduce the weight of housings for digital products.

本発明で用いる金属繊維としては、ステンレス繊維、アルミニウム繊維、ニッケル繊維、銅繊維、黄銅繊維から選ばれる1種又は2種以上のものを挙げられ、なかでも、ステンレス繊維が好ましい。   As a metal fiber used by this invention, the 1 type (s) or 2 or more types chosen from stainless steel fiber, aluminum fiber, nickel fiber, copper fiber, and brass fiber is mentioned, Especially, stainless steel fiber is preferable.

金属以外のその他の繊維としては、使用するマトリックス樹脂よりも弾性率が高い繊維であれば、下記に挙げた繊維に限定されるものではなく、周知のいずれの繊維も強化繊維として使用可能である。例えば、E−ガラス、D−ガラス等のガラス繊維;ポリアクリロニトリル系、ピッチ系、レーヨン系等の炭素繊維;ボロン繊維、鉱物繊維等の無機繊維;超高分子量ポリエチレン繊維、ポリオキシメチレン繊維、ポリビニルアルコール繊維、液晶性芳香族ポリエステル繊維、ポリエチレンテレフタレート繊維、ポリ−p−フェニレンテレフタルアミド繊維、ポリ−m−フェニレンイソフタルアミド繊維等のアラミド繊維、ポリアクリロニトリル繊維、綿、ジュート等のセルロース繊維等の有機繊維などが挙げられる。特に本発明の適用が好ましい繊維は、ガラス繊維又は有機繊維である。   Other fibers other than metals are not limited to the fibers listed below as long as the fibers have a higher modulus of elasticity than the matrix resin used, and any known fiber can be used as the reinforcing fiber. . For example, glass fibers such as E-glass and D-glass; carbon fibers such as polyacrylonitrile, pitch and rayon; inorganic fibers such as boron fibers and mineral fibers; ultrahigh molecular weight polyethylene fibers, polyoxymethylene fibers, polyvinyls Organics such as alcohol fibers, liquid crystalline aromatic polyester fibers, polyethylene terephthalate fibers, poly-p-phenylene terephthalamide fibers, aramid fibers such as poly-m-phenylene isophthalamide fibers, polyacrylonitrile fibers, cellulose fibers such as cotton and jute Examples include fibers. Particularly preferred fibers to which the present invention is applied are glass fibers or organic fibers.

金属繊維の長繊維強化熱可塑性樹脂構造体中での含有量は、2〜45重量%であり、好ましくは、3〜40重量%、特に好ましくは5〜30重量%である。2重量%より少ないと、電磁波シールド効果が得られず、45重量%より多いと、その比重が大きくなり他の樹脂ペレットと混合溶融する段階で分離する。   The content of the metal fiber in the long fiber reinforced thermoplastic resin structure is 2 to 45% by weight, preferably 3 to 40% by weight, particularly preferably 5 to 30% by weight. When the content is less than 2% by weight, the electromagnetic shielding effect cannot be obtained. When the content is more than 45% by weight, the specific gravity increases and the resin pellets are separated and mixed with other resin pellets.

その他の繊維、例えばガラス繊維の含有量は10〜60重量%であり、好ましくは、15〜50重量%、特に好ましくは20〜45重量%である。10重量%より少ないと、樹脂としての物理的強度が充分に得られず、60重量%より多くなると、金属繊維との総計が60重量%をかなり超えることになり、結果として樹脂の含量が不十分であり、充分な含浸が出来ず構造体の物理的強度が不足する。   The content of other fibers, such as glass fibers, is 10 to 60% by weight, preferably 15 to 50% by weight, and particularly preferably 20 to 45% by weight. If the amount is less than 10% by weight, the physical strength as a resin cannot be sufficiently obtained. If the amount exceeds 60% by weight, the total amount of metal fibers exceeds 60% by weight, resulting in a low resin content. It is sufficient and sufficient impregnation is not possible and the physical strength of the structure is insufficient.

長繊維強化熱可塑性樹脂構造体に含まれる長繊維の繊維長は3〜100mmであり、好ましくは、5〜80mmであり、特に好ましくは7〜50mmである。3mm以下では、成形体にする段階で更に繊維が切断されるため、長繊維特有の物理的強度が得られない。また、100mmより長くなると、成形時において、押出機等への取扱いで混合しにくくなり不都合を生ずる可能性が出て来る。   The fiber length of the long fibers contained in the long fiber reinforced thermoplastic resin structure is 3 to 100 mm, preferably 5 to 80 mm, and particularly preferably 7 to 50 mm. If it is 3 mm or less, the fibers are further cut at the stage of forming a molded body, and therefore, the physical strength peculiar to long fibers cannot be obtained. On the other hand, if the length is longer than 100 mm, it may become difficult to mix by handling to an extruder or the like at the time of molding, which may cause inconvenience.

本発明の長繊維強化熱可塑性樹脂は、2種類又はそれ以上の繊維を同時に樹脂含浸する方法も提案するものであり、特に金属繊維とガラス繊維を代表とするその他の繊維を同時に含浸するには金属繊維とその他の繊維が同程度に樹脂含浸しやすい状況を設定してやる必要がある。テンションロールをダブルにすることで初めて、該目的が達成できたもので、それぞれの繊維を同程度に開繊するために、それぞれに適切なテンションがかけられるようになった。それぞれの繊維の開繊状況を開繊幅で表すと、通常5〜50mmであり、好ましくは10〜45mm、特に好ましくは15〜40mmである。開繊幅が5mmに満たないと、充分に樹脂を含浸することはできず、50mmを超えた開繊幅にすると、テンションが高すぎて繊維が切断する可能性がある。   The long fiber reinforced thermoplastic resin of the present invention also proposes a method of impregnating two or more types of fibers simultaneously with resin, in particular, for simultaneously impregnating other fibers typified by metal fibers and glass fibers. It is necessary to set a situation where metal fibers and other fibers are easily impregnated with resin to the same extent. For the first time, the purpose could be achieved by making the tension roll double, and in order to open each fiber to the same extent, appropriate tension can be applied to each. When the opening state of each fiber is represented by the opening width, it is usually 5 to 50 mm, preferably 10 to 45 mm, and particularly preferably 15 to 40 mm. If the spread width is less than 5 mm, the resin cannot be sufficiently impregnated. If the spread width exceeds 50 mm, the tension may be too high and the fiber may be cut.

本発明に使用される長繊維強化熱可塑性樹脂ペレットのマトリックス樹脂は、熱可塑性樹脂であれば全ての樹脂が使用可能である。例えば、一般用ポリスチレン、耐衝撃性ポリスチレン、アクリロニトリル−スチレン共重合体樹脂、アクリロニトリル−ブタジエン−スチレン共重合体樹脂等のポリスチレン系樹脂、ポリエチレン、ポリプロピレン等のポリオレフィン系樹脂、ポリエチレンテレフタレート、ポリブチレンテレフタレート等の熱可塑性ポリエステル系樹脂、ポリカーボネート系樹脂、塩化ビニル、塩素化ポリプロピレン等のハロゲン含有ポリオレフィン樹脂、ナイロン6、ナイロン66、ナイロン46、ナイロン11、ナイロン12等のポリアミド系樹脂、ポリエチルアクリレート樹脂、ポリメチルメタクリレート樹脂等のポリアクリル系樹脂、ポリスルホン酸系樹脂、ポリフェニルエーテル樹脂、ポリアセタール樹脂、液晶性芳香族ポリエステル樹脂、ポリフェニレンサルファイド樹脂、ポリエーテルエーテルケトン樹脂等の汎用樹脂からスーパーエンプラまで全ての熱可塑性樹脂及びこれらの2種類以上からなるアロイ樹脂が使用可能である。アロイを形成する樹脂は、ここに挙げた熱可塑性樹脂に限定されるものではなく、周知の他の熱可塑性樹脂及びそれらの2種類以上のアロイ樹脂が使用可能である。特に本発明の適用が好ましい熱可塑性樹脂としては、安価なポリスチレン系樹脂、ポリオレフィン系樹脂、ハロゲン含有ポリオレフィン系樹脂、更にはナイロン樹脂等を挙げることができる。また、前記した樹脂を2種類以上混合したものも有用である。   As long as the matrix resin of the long fiber reinforced thermoplastic resin pellet used in the present invention is a thermoplastic resin, all resins can be used. For example, general-purpose polystyrene, impact-resistant polystyrene, acrylonitrile-styrene copolymer resin, polystyrene resin such as acrylonitrile-butadiene-styrene copolymer resin, polyolefin resin such as polyethylene and polypropylene, polyethylene terephthalate, polybutylene terephthalate, etc. Thermoplastic polyester resins, polycarbonate resins, halogen-containing polyolefin resins such as vinyl chloride and chlorinated polypropylene, polyamide resins such as nylon 6, nylon 66, nylon 46, nylon 11 and nylon 12, polyethyl acrylate resins, poly Polyacrylic resin such as methyl methacrylate resin, polysulfonic acid resin, polyphenyl ether resin, polyacetal resin, liquid crystalline aromatic polyester resin, poly E double sulfide resins, all thermoplastic resin and alloy resin composed of two or more of these general-purpose resins such as polyether ether ketone resin until super engineering plastics can be used. The resin forming the alloy is not limited to the thermoplastic resins listed here, and other well-known thermoplastic resins and two or more types of these alloys can be used. Particularly preferable thermoplastic resins to which the present invention is applied include inexpensive polystyrene resins, polyolefin resins, halogen-containing polyolefin resins, and nylon resins. Moreover, what mixed two or more types of above-mentioned resin is also useful.

また、目的に応じて所望の特性を付与するため、一般に熱可塑性樹脂に添加される公知の物質、例えば酸化防止剤、耐熱安定剤、紫外線吸収剤等の安定剤、帯電防止剤、難燃剤、難燃助剤、染料や顔料等の着色剤、潤滑剤、可塑剤、結晶化促進剤、結晶核剤等を配合することも可能である。また、ガラスフレーク、マイカ、ガラス粉、ガラスビーズ、タルク、クレー、アルミナ、カーボンブラック、ウォラストナイト等の板状、粉粒状、の無機化合物、ウィスカー等を併用しても良い。   Further, in order to impart desired properties according to the purpose, known substances generally added to thermoplastic resins, for example, stabilizers such as antioxidants, heat stabilizers, ultraviolet absorbers, antistatic agents, flame retardants, It is also possible to blend flame retardant aids, colorants such as dyes and pigments, lubricants, plasticizers, crystallization accelerators, crystal nucleating agents and the like. Further, glass flakes, mica, glass powder, glass beads, talc, clay, alumina, carbon black, wollastonite and other plate-like or powdery inorganic compounds, whiskers and the like may be used in combination.

更に本発明の長繊維強化熱可塑性樹脂構造体を成形するに当たって、その成形方法としては押出成形、射出成形、ブロー成形、押出ブロー成形、射出ブロー成形、インフレーション成形、スタンピングモールド成形、圧縮成形、ビーズ成形等が挙げられる。なかでも、射出成形が好ましい。   Further, in molding the long fiber reinforced thermoplastic resin structure of the present invention, the molding methods include extrusion molding, injection molding, blow molding, extrusion blow molding, injection blow molding, inflation molding, stamping molding, compression molding, and beads. Examples include molding. Of these, injection molding is preferred.

本発明の長繊維強化熱可塑性樹脂構造体は、既にそのペレットに金属繊維とその他の繊維、例えばガラス繊維が混合含浸されているため、成形段階での溶融混合が穏やかな条件にて実施可能であるため、不要な繊維の切断による短繊維化を防ぐことが出来、電磁波シールド効果及び樹脂の強化が充分に行なわれることは有利である。金属繊維含有ペレットとその他繊維、例えばガラス等の強化繊維含有ペレットを混合成形するには、混合機で充分な混合が必要であり、繊維が短くなることにより、目的を達することが難しくなる。例えば、本発明の長繊維強化熱可塑性樹脂構造体を使用して成形する条件として、通常はスクリュウ形式の押出機等が使用されるが、その攪拌強度の指標となる背圧が10kg/cm2以下で行なうことで充分であるし、好ましくは5kg/cm2、特に好ましくは0kg/cm2である。これにより、成形体中の平均繊維長は2mmとすることが出来た。 In the long fiber reinforced thermoplastic resin structure of the present invention, the pellets are already mixed and impregnated with metal fibers and other fibers, such as glass fibers, so that melt mixing in the molding stage can be performed under mild conditions. Therefore, it is possible to prevent shortening of fibers due to unnecessary fiber cutting, and it is advantageous that the electromagnetic wave shielding effect and the resin are sufficiently strengthened. In order to mix and mold metal fiber-containing pellets and other fibers, for example, reinforcing fiber-containing pellets such as glass, sufficient mixing is required with a mixer, and it becomes difficult to achieve the purpose by shortening the fibers. For example, as a condition for molding using the long fiber reinforced thermoplastic resin structure of the present invention, a screw type extruder or the like is usually used, and the back pressure serving as an index of the stirring strength is 10 kg / cm 2. It is sufficient to carry out the following, preferably 5 kg / cm 2 , particularly preferably 0 kg / cm 2 . Thereby, the average fiber length in a molded object was able to be 2 mm.

金属繊維含有ペレットとその他繊維、例えばガラス等の強化繊維含有ペレットを混合成形では、スクリュウの背圧は10kg/cm2より高くすることが必要であり、その結果として、平均繊維長は1mmに満たない。 In mixed molding of metal fiber-containing pellets and other fibers such as glass or other reinforcing fiber-containing pellets, the back pressure of the screw needs to be higher than 10 kg / cm 2 , and as a result, the average fiber length is less than 1 mm. Absent.

以下に実施例に基づいて本発明を詳細に説明するが、本発明は実施例により限定されるものではない。
[実施例使用繊維]
ガラス強化繊維;径17μmのガラス単繊維4000本の束にサイジング処理したもの。
ステンレス繊維;実施例では径11μmのステンレス単繊維1000本の繊維束。比較例では径11μmのステンレス単繊維7000本の繊維束。いずれもサイジング処理はない。通常は、7000本の繊維束が市販されているが、1000本のものは本発明を実施する上で、試作的に作成したものである。
(実施例1)
Hereinafter, the present invention will be described in detail based on examples, but the present invention is not limited to the examples.
[Example fibers used]
Glass reinforced fiber: A sizing treatment of a bundle of 4000 single glass fibers having a diameter of 17 μm.
Stainless steel fiber; in the examples, a bundle of 1000 stainless steel fibers having a diameter of 11 μm. In a comparative example, a fiber bundle of 7000 stainless single fibers having a diameter of 11 μm. Neither is sizing. Normally, 7000 fiber bundles are commercially available, but 1000 were produced on a trial basis in carrying out the present invention.
Example 1

図1に示すような構造の長繊維強化熱可塑性樹脂構造体製造装置を用いた。ステンレス繊維ロービングはケーキ巻きステンレス繊維束1(径11μmのステンレス単繊維1000本の繊維束)から、テンションロール3を通してクロスヘッドダイ6に導いた。ガラス繊維ロービングは、同様にケーキ巻きガラス強化繊維束2(径17μmのガラス単繊維4000本の束にサイジング処理したもの)からテンションロール4を通してクロスヘッドダイ6へ誘導した。ステンレス繊維ロービングはテンションロールにより、開繊幅約20mmになるようにテンションをかけ、またガラス繊維ロービングはテンションロールにより開繊幅約20mmになるようにテンションをかけ、両繊維の1本(1束)づつを重ねるようにして、クロスヘッドダイの入口へと導いた。それぞれの繊維ロービングは4本づつで、樹脂を含浸したロービングは4本となるように実施した。含浸させるナイロン66樹脂は押出機を使用して溶融状態で樹脂供給口5からクロスヘッドダイへ供給された。クロスヘッドダイ入口で合流した両繊維はクロスヘッドダイ内部で樹脂含浸された後、賦形ダイ7で繊維含量50重量%になるように余剰の樹脂を絞り取り、賦形された後、空冷装置8にて冷風冷却された後、引き取り機9を経て、ペレタイザー10によって、長さ約12mmにカッティングされた。得られた長繊維強化樹脂構造体(ペレット)は、ステンレス繊維含有量13重量%であり、ガラス繊維含有量37重量%であった。   A long fiber reinforced thermoplastic resin structure manufacturing apparatus having a structure as shown in FIG. 1 was used. The stainless steel fiber roving was guided from the cake-wrapped stainless steel fiber bundle 1 (fiber bundle of 1000 stainless single fibers having a diameter of 11 μm) to the crosshead die 6 through the tension roll 3. Similarly, the glass fiber roving was guided from the cake-wrapped glass reinforcing fiber bundle 2 (which was sized to a bundle of 4000 single glass fibers having a diameter of 17 μm) to the crosshead die 6 through the tension roll 4. Stainless fiber roving is tensioned with a tension roll so that the opening width is about 20 mm, and glass fiber roving is tensioned with a tension roll so that the opening width is about 20 mm. ) It led to the entrance of the crosshead die so as to pile up one by one. Each fiber roving was carried out so that there were four rovings and four rovings impregnated with resin. The nylon 66 resin to be impregnated was supplied from the resin supply port 5 to the crosshead die in a molten state using an extruder. After both fibers joined at the crosshead die inlet are impregnated with resin inside the crosshead die, excess resin is squeezed out by the shaping die 7 so that the fiber content becomes 50% by weight. After being cooled with cold air at 8, it was cut into a length of about 12 mm by a pelletizer 10 through a take-up machine 9. The obtained long fiber reinforced resin structure (pellet) had a stainless fiber content of 13% by weight and a glass fiber content of 37% by weight.

前記で得られた長繊維強化樹脂構造体46重量部と前記で使用したナイロン66のペレット54重量部をブレンダ−にて、組成均一になるまで混合し、ホッパーを備えた押出機に仕込み、射出成形により成形体を作成した。この長繊維強化樹脂成形体は、ステンレス繊維含量6重量%、ガラス繊維含量17重量%であり、繰返し成形しても繊維含有比率は一定であった。
(比較例1)
46 parts by weight of the long fiber reinforced resin structure obtained above and 54 parts by weight of the nylon 66 pellets used above were mixed in a blender until the composition was uniform, charged into an extruder equipped with a hopper, and injected. A molded body was prepared by molding. This long fiber reinforced resin molded product had a stainless fiber content of 6% by weight and a glass fiber content of 17% by weight, and the fiber content ratio was constant even after repeated molding.
(Comparative Example 1)

図2に示した装置にて、ステンレス繊維樹脂構造体とガラス繊維強化樹脂構造体を別々に製造した。但し、ステンレス繊維束は径11μmのステンレス単繊維7000本の繊維束を使用した。それぞれ、ステンレス繊維含有量50重量%のナイロン66樹脂ペレットとガラス繊維含有量50重量%のナイロン66樹脂ペレットが得られた。   In the apparatus shown in FIG. 2, a stainless fiber resin structure and a glass fiber reinforced resin structure were separately manufactured. However, as the stainless steel fiber bundle, a fiber bundle of 7000 stainless steel single fibers having a diameter of 11 μm was used. A nylon 66 resin pellet having a stainless fiber content of 50% by weight and a nylon 66 resin pellet having a glass fiber content of 50% by weight were obtained.

実施例1と同一組成の成形体を得るために、前記で作成したステンレス繊維含有量50重量%のナイロン66樹脂ペレット12重量部、ガラス繊維含有量50重量%のナイロン66樹脂ペレット34重量部とナイロン66樹脂ペレット54重量部をブレンダ−にて、組成が均一になるまで混合して、実施例1と同様に押出機を使用して射出成形により成形体を作成したが、ステンレス繊維の含量にバラツキが見られた。実施例1と比較例1で射出成形時でのそれぞれの現象を追うために、以下に示す評価試験を試みた。
(評価試験)
In order to obtain a molded product having the same composition as in Example 1, 12 parts by weight of nylon 66 resin pellets having a stainless fiber content of 50% by weight and 34 parts by weight of nylon 66 resin pellets having a glass fiber content of 50% by weight were prepared. 54 parts by weight of nylon 66 resin pellets were mixed with a blender until the composition became uniform, and a molded body was prepared by injection molding using an extruder in the same manner as in Example 1. Variations were seen. In order to follow the respective phenomena at the time of injection molding in Example 1 and Comparative Example 1, the following evaluation tests were tried.
(Evaluation test)

下部にスクリュウ形式の定量フィーダーを備えた容量50リットルのホッパーに表1に示した組成のペレットを25kg投入して、定量フィーダーを駆動し、定量フィーダーから排出されるペレットを初期、中期、後期の3段階で、200gづつ各3個、合計で9個のサンプリングを実施して、それぞれサンプリングされたものを種別のペレットに分割して、それぞれの種のペレットの重量比を求めた。その結果は表1に示される。表の中で、実施例の列で、混合繊維とあるのは実施例1で作成したステンレス繊維とガラス繊維の混合繊維によるペレットを意味し、比較例の列では、金属繊維及びガラス繊維とあるのが、比較例1で作成した、ステンレス繊維ペレットとガラス繊維ペレットを意味する。数値はそれぞれのペレットの重量%を示し、各3個づつサンプリングして測定した平均値を示している。実施例1では、混合繊維のペレットは排出された初期、中期、後期でその比率は一定であったが、比較例ではステンレス繊維のペレットがバラツキを示した。
25 kg of pellets having the composition shown in Table 1 are put into a 50-liter hopper equipped with a screw-type quantitative feeder at the bottom, and the quantitative feeder is driven, and the pellets discharged from the quantitative feeder are in the initial, middle and late stages. In three stages, three samples of 200 g each were sampled for a total of nine samples, and each sampled sample was divided into types of pellets, and the weight ratio of the pellets of each type was determined. The results are shown in Table 1. In the table, “mixed fiber” in the column of Example means pellets made of mixed fiber of stainless fiber and glass fiber prepared in Example 1, and in the column of Comparative Example, there are metal fiber and glass fiber. This means the stainless fiber pellets and glass fiber pellets prepared in Comparative Example 1. A numerical value shows weight% of each pellet, and has shown the average value measured by sampling 3 each. In Example 1, the ratio of the mixed fiber pellets was constant in the early, middle, and late stages of discharge, but in the comparative example, the stainless fiber pellets showed variations.

Figure 2006096966
Figure 2006096966

2種類の繊維束からそれぞれ異なったテンションロールにより、各繊維に適切なテンションをかけて、クロスヘッドダイに送られ、その内部で溶融樹脂が含浸される装置である。This is an apparatus in which an appropriate tension is applied to each fiber by different tension rolls from two types of fiber bundles, which is sent to a crosshead die and impregnated with molten resin therein. 符号は付していないが、図1が2種類の繊維を処理する装置であるのに比べて、1種類の繊維を樹脂含浸する通常の装置を示す。Although not denoted by reference numerals, FIG. 1 shows an ordinary apparatus for impregnating one kind of fiber as compared with the apparatus for treating two kinds of fibers.

符号の説明Explanation of symbols

1 金属繊維束
2 その他の繊維束
3 テンションロール
4 テンションロール
5 溶融樹脂入口
6 クロスヘッドダイ
7 賦形ダイ
8 冷却装置
9 引き取り機
10 ペレタイザー

DESCRIPTION OF SYMBOLS 1 Metal fiber bundle 2 Other fiber bundles 3 Tension roll 4 Tension roll 5 Molten resin inlet 6 Crosshead die 7 Shaping die 8 Cooling device 9 Take-out machine 10 Pelletizer

Claims (8)

金属繊維が2〜45重量%であり、少なくとも他の1種の繊維が10〜60重量%含み、いずれの繊維も繊維長3〜100mmであり、しかも略並行に配列された長繊維強化熱可塑性樹脂構造体。   Metal fiber is 2 to 45% by weight, at least one other type of fiber is 10 to 60% by weight, each fiber has a fiber length of 3 to 100 mm, and long fiber reinforced thermoplastics arranged in parallel. Resin structure. 金属繊維と少なくとも1種の他の繊維を引きながら開繊し、熱可塑性樹脂を溶融状態で含浸させることを特徴とした請求項1記載の長繊維強化熱可塑性樹脂構造体。   2. The long fiber reinforced thermoplastic resin structure according to claim 1, wherein the metal fiber and at least one other fiber are opened while being drawn, and the thermoplastic resin is impregnated in a molten state. 少なくとも1種の他の繊維がガラス繊維であることを特徴とした請求項1記載の長繊維強化熱可塑性樹脂構造体。   2. The long fiber reinforced thermoplastic resin structure according to claim 1, wherein the at least one other fiber is a glass fiber. 請求項1記載の長繊維強化熱可塑性樹脂構造体を少なくとも含む材料より成形された長繊維強化熱可塑性樹脂成形体。   A long fiber reinforced thermoplastic resin molded article molded from a material containing at least the long fiber reinforced thermoplastic resin structure according to claim 1. 金属繊維及び少なくとも1種の他の繊維に異なるテンションをかけて、それぞれの繊維の開繊幅をおよそ同一にすることを特徴とした金属繊維が2〜45重量%であり、少なくとも他の1種の繊維が10〜60重量%含み、いずれの繊維も繊維長3〜100mmであり、しかも略並行に配列された長繊維強化熱可塑性樹脂構造体の製造方法。   The metal fiber is characterized by applying different tensions to the metal fiber and at least one other fiber so that the opening width of each fiber is approximately the same, and is 2 to 45% by weight, and at least one other fiber A method for producing a long fiber reinforced thermoplastic resin structure comprising 10 to 60% by weight of any fiber, each fiber having a fiber length of 3 to 100 mm, and arranged substantially in parallel. 金属繊維及び少なくとも1種の他の繊維の開繊される繊維幅が、5〜50mmであることを特徴とした請求項5記載の長繊維強化熱可塑性樹脂構造体の製造方法。   6. The method for producing a long fiber reinforced thermoplastic resin structure according to claim 5, wherein the fiber width of the metal fiber and at least one other fiber is 5 to 50 mm. 請求項1記載の長繊維強化熱可塑性樹脂構造体を少なくとも含む材料を使用した長繊維強化熱可塑性樹脂成形体の成形方法。   A method for molding a long fiber reinforced thermoplastic resin molded article using a material containing at least the long fiber reinforced thermoplastic resin structure according to claim 1. 成形する時に使用する押出機等のスクリュウの背圧が10kg/cm2以下で行なうことを特徴とした請求項7記載の長繊維強化熱可塑性樹脂成形体の成形方法。


The method for molding a long fiber reinforced thermoplastic resin molded article according to claim 7, wherein the back pressure of a screw of an extruder or the like used for molding is 10 kg / cm 2 or less.


JP2004331621A 2004-09-02 2004-11-16 Long fiber-reinforced thermoplastic resin structure, its molding and production method thereof Pending JP2006096966A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004331621A JP2006096966A (en) 2004-09-02 2004-11-16 Long fiber-reinforced thermoplastic resin structure, its molding and production method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004255268 2004-09-02
JP2004331621A JP2006096966A (en) 2004-09-02 2004-11-16 Long fiber-reinforced thermoplastic resin structure, its molding and production method thereof

Publications (1)

Publication Number Publication Date
JP2006096966A true JP2006096966A (en) 2006-04-13

Family

ID=36237085

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004331621A Pending JP2006096966A (en) 2004-09-02 2004-11-16 Long fiber-reinforced thermoplastic resin structure, its molding and production method thereof

Country Status (1)

Country Link
JP (1) JP2006096966A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2716692A1 (en) * 2012-10-08 2014-04-09 WKP Products SA Composite materials for use in injection moulding method

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04279638A (en) * 1991-03-06 1992-10-05 Mitsubishi Kasei Corp Electrically conductive fiber-reinforced thermoplastic
JPH06285855A (en) * 1993-04-07 1994-10-11 Kobe Steel Ltd Strand for molding of long fiber reinforced synthetic resin product and its pellet
JPH07314444A (en) * 1994-05-19 1995-12-05 Polyplastics Co Long fiber-reinforced thermoplastic resin structure and its production
JPH08309748A (en) * 1996-06-14 1996-11-26 Mitsui Toatsu Chem Inc Molding material
JPH09183869A (en) * 1995-12-28 1997-07-15 Kawasaki Steel Corp Colored glass fiber-reinforced polyolefin composition
JPH09323322A (en) * 1996-06-04 1997-12-16 Asahi Fiber Glass Co Ltd Manufacture of long fiber-reinforced thermoplastic resin composite material
JP2001088223A (en) * 1999-09-21 2001-04-03 Chisso Corp Apparatus for producing thermoplastic resin long object reinforced by long fibers
JP2003105620A (en) * 2001-09-28 2003-04-09 Kawasaki Steel Corp Shell of industrial safety helmet and method for producing the same
JP2004123951A (en) * 2002-10-04 2004-04-22 Daicel Chem Ind Ltd Filament reinforced thermoplastic resin molding and method for forming the same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04279638A (en) * 1991-03-06 1992-10-05 Mitsubishi Kasei Corp Electrically conductive fiber-reinforced thermoplastic
JPH06285855A (en) * 1993-04-07 1994-10-11 Kobe Steel Ltd Strand for molding of long fiber reinforced synthetic resin product and its pellet
JPH07314444A (en) * 1994-05-19 1995-12-05 Polyplastics Co Long fiber-reinforced thermoplastic resin structure and its production
JPH09183869A (en) * 1995-12-28 1997-07-15 Kawasaki Steel Corp Colored glass fiber-reinforced polyolefin composition
JPH09323322A (en) * 1996-06-04 1997-12-16 Asahi Fiber Glass Co Ltd Manufacture of long fiber-reinforced thermoplastic resin composite material
JPH08309748A (en) * 1996-06-14 1996-11-26 Mitsui Toatsu Chem Inc Molding material
JP2001088223A (en) * 1999-09-21 2001-04-03 Chisso Corp Apparatus for producing thermoplastic resin long object reinforced by long fibers
JP2003105620A (en) * 2001-09-28 2003-04-09 Kawasaki Steel Corp Shell of industrial safety helmet and method for producing the same
JP2004123951A (en) * 2002-10-04 2004-04-22 Daicel Chem Ind Ltd Filament reinforced thermoplastic resin molding and method for forming the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2716692A1 (en) * 2012-10-08 2014-04-09 WKP Products SA Composite materials for use in injection moulding method
WO2014056854A1 (en) 2012-10-08 2014-04-17 Wkp Products Sa Composite materials for use in injection moulding methods
DE212013000158U1 (en) 2012-10-08 2015-02-19 Wkp Products Sa Composite materials for use in injection molding processes
CN105008437A (en) * 2012-10-08 2015-10-28 M塑料有限责任公司 Composite materials for use in injection moulding methods

Similar Documents

Publication Publication Date Title
KR100212526B1 (en) Mixture of long glass fiber-reinforced polypropylene and polypropylene resin and moldings formed therefrom
US6284831B1 (en) Fiber-reinforced resin molded article
EP2764968B1 (en) Fiber-reinforced resin composition
CN102167867B (en) Continuous glass fiber reinforced polypropylene/nylon alloy chopped material and preparation method thereof
KR20080066695A (en) Process for forming a reinforced polymeric material and articles formed therewith
CN102159627A (en) Long-fiber-reinforced resin composition and molded article thereof
US20130052448A1 (en) Process for the Production of Fiber Reinforced Thermoplastic Composites
JP2007284631A (en) Thermoplastic resin pellet reinforced with basalt filament
Andrzejewski et al. Fabrication of the self‐reinforced composites using co‐extrusion technique
JP2009242616A (en) Resin injection-molded article and its molding method
US10273348B2 (en) Glass fiber-reinforced polyamide 66 resin composition with high tensile strength and method of manufacturing the same
JP2006096966A (en) Long fiber-reinforced thermoplastic resin structure, its molding and production method thereof
WO2008042090A2 (en) Methods for making fiber reinforced polystyrene composites
JP2011057811A (en) Propylene based resin composition
JPH0365311A (en) Carbon fiber chop
JP2005298663A (en) Automobile interior part made of resin
JP5584978B2 (en) Molding material
EP3922427A1 (en) Thermoplastic resin composition molding machine and producing method, method for manufacturing molded article of composite resin composition, and injection molded article
JP2006167982A (en) Manufacturing method of long fiber reinforced thermoplastic resin structure
JP2006001116A (en) Splittable shaping die for producing long fiber-reinforced thermoplastic resin structure and method for producing long fiber-reinforced thermoplastic resin structure using the die
JP2005060547A (en) Resin structure of long fiber-reinforced polymer alloy and molded article
JP5161731B2 (en) Aliphatic polyester resin pellets and molded articles obtained by molding them
JP2004123951A (en) Filament reinforced thermoplastic resin molding and method for forming the same
JP2003103517A (en) Method for manufacturing thermoplastic resin composition
JP2003285323A (en) Fiber reinforced thermoplastic resin pellets, plastication method for pellets and manufacturing method for molded object

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100318

A131 Notification of reasons for refusal

Effective date: 20101116

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20110310

Free format text: JAPANESE INTERMEDIATE CODE: A02