JP2006167982A - Manufacturing method of long fiber reinforced thermoplastic resin structure - Google Patents

Manufacturing method of long fiber reinforced thermoplastic resin structure Download PDF

Info

Publication number
JP2006167982A
JP2006167982A JP2004360095A JP2004360095A JP2006167982A JP 2006167982 A JP2006167982 A JP 2006167982A JP 2004360095 A JP2004360095 A JP 2004360095A JP 2004360095 A JP2004360095 A JP 2004360095A JP 2006167982 A JP2006167982 A JP 2006167982A
Authority
JP
Japan
Prior art keywords
fiber
thermoplastic resin
reinforced thermoplastic
fiber reinforced
long
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004360095A
Other languages
Japanese (ja)
Inventor
Koji Miyazaki
幸治 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Corp
Original Assignee
Daicel Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Chemical Industries Ltd filed Critical Daicel Chemical Industries Ltd
Priority to JP2004360095A priority Critical patent/JP2006167982A/en
Publication of JP2006167982A publication Critical patent/JP2006167982A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/12Making granules characterised by structure or composition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/002Methods
    • B29B7/007Methods for continuous mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/58Component parts, details or accessories; Auxiliary operations
    • B29B7/72Measuring, controlling or regulating
    • B29B7/726Measuring properties of mixture, e.g. temperature or density
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/88Adding charges, i.e. additives
    • B29B7/90Fillers or reinforcements, e.g. fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/12Making granules characterised by structure or composition
    • B29B9/14Making granules characterised by structure or composition fibre-reinforced

Abstract

<P>PROBLEM TO BE SOLVED: To provide an efficient manufacturing method of a long fiber reinforced thermoplastic resin structure due to a different kind of fibers which appropriately enables the alteration of a mixing ratio and a fiber density and enables the omission of blending work using a blender or the like. <P>SOLUTION: The fiber rovings of fiber bundles are opened by applying tension to the fiber rovings in a molten thermoplastic resin while drawing the fiber rovings and, after the opened fiber rovings are impregnated with the thermoplastic resin, they are cooled while regulating the fiber density thereof by a shaping die and formed into pellets of 3-50 mm by cutting to manufacture the long fiber reinforced thermoplastic resin structure. A plurality of the fiber bundles are impregnated at the same time and the respective fiber rovings are taken up from individual outlets. In the impregnation die, the opening width of the respective fibers is regulated to 5-40 mm. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、複数種類の繊維束を引きながら熱可塑性樹脂を含浸することにより製造される長繊維強化熱可塑性樹脂構造体の製造方法関するものである。   The present invention relates to a method for producing a long fiber reinforced thermoplastic resin structure produced by impregnating a thermoplastic resin while drawing a plurality of types of fiber bundles.

長繊維強化熱可塑性樹脂構造体は、長繊維に樹脂を効果的に含浸することにより、熱可塑性樹脂の物性を極めて改善し、その樹脂としての活用範囲を飛躍的に拡大した。その長繊維強化熱可塑性樹脂構造体は特許文献1にも記載があるように、繊維束を引きながら開繊し、溶融した熱可塑性樹脂を含浸させ、賦形して余剰の樹脂を除き、冷却後、適当な長さにカッティングして得られる。該公報には、樹脂を含浸する前に繊維は適切なサイジング剤にてサイジング処理しておくことが、樹脂を含浸する上で重要である由も記載されている。   The long fiber reinforced thermoplastic resin structure has greatly improved the physical properties of the thermoplastic resin by effectively impregnating the long fiber with the resin, and has dramatically expanded the range of use as the resin. As described in Patent Document 1, the long fiber reinforced thermoplastic resin structure is opened while drawing a fiber bundle, impregnated with a molten thermoplastic resin, shaped to remove excess resin, and cooled. Thereafter, it is obtained by cutting to an appropriate length. This publication also describes the reason why it is important to impregnate the fiber with a suitable sizing agent before impregnating the resin.

熱可塑性樹脂にも多くの種類があるが、繊維にも多くの種類がある。熱可塑性樹脂は単一種類ではその機能が不十分であると、異種の樹脂を組み合わせることによりその樹脂の弱点をカバーすることが可能である。特許文献2には変性ポリオレフィンとポリアミドを樹脂混合して、繊維含浸する方法が紹介されている。樹脂の混合は長繊維強化樹脂構造体の製造方法においては容易であり、例えば、予め異種の樹脂ペレットを混合して押出機にかけて長繊維強化樹脂製造用のクロスヘッドダイへ仕込むことで繊維に含浸されて製造される。   There are many types of thermoplastic resins, but there are also many types of fibers. If the function of a single kind of thermoplastic resin is insufficient, it is possible to cover the weak points of the resin by combining different kinds of resins. Patent Document 2 introduces a method of impregnating fibers by mixing a modified polyolefin and polyamide with a resin. Mixing the resin is easy in the manufacturing method of the long fiber reinforced resin structure. For example, different types of resin pellets are mixed in advance and fed into a crosshead die for manufacturing long fiber reinforced resin by impregnation into the fiber Manufactured.

しかし、繊維もそれぞれ長所欠点を有し、それを補うために繊維種の異なる長繊維強化樹脂構造体(ペレット)をブレンダ−等にて混合して使用されることある。近年、種々の機能を要求されて異種繊維のペレットを混合することが増えてきた。長繊維強化樹脂構造体は通常、連続的に生産できる効率化された装置にて製造されており、異種の繊維種ペレットの混合物は連続に製造されたそれぞれのペレットを別な系統で混合している。長繊維強化樹脂構造体製造用装置以外に煩雑なプロセスが入るためコスト等の問題がある。例えば、ガラス長繊維強化樹脂が最も一般的な品種ではあるが、ガラス繊維強化樹脂は曲げ弾性強度において炭素繊維には劣るが、そのコスト面では圧倒的にガラスが経済的であり、混合することにより機能と経済性の最適点を求めている。また、金属繊維は導電性に優れるが、繊維による樹脂強化することは出来ず、ガラスや炭素繊維等との混合によって初めて工業的な応用が可能となっている。
特開平3−181528号公報 特開平6−192448号公報
However, the fibers also have respective advantages and disadvantages, and long fiber reinforced resin structures (pellets) having different fiber types are sometimes mixed and used in a blender or the like in order to compensate for them. In recent years, mixing various types of pellets of different fibers has been increasing in demand for various functions. Long fiber reinforced resin structures are usually manufactured in an efficient device that can be continuously produced, and a mixture of different types of fiber pellets can be produced by mixing each continuously produced pellet in a separate system. Yes. Since complicated processes other than the apparatus for producing long fiber reinforced resin structure are involved, there are problems such as cost. For example, long glass fiber reinforced resin is the most common varieties, but glass fiber reinforced resin is inferior to carbon fiber in bending elastic strength, but glass is overwhelmingly economical in terms of its cost. Therefore, the optimum point of function and economy is sought. In addition, metal fibers are excellent in conductivity, but cannot be reinforced with resin by fibers, and industrial application is possible only by mixing with glass, carbon fiber, or the like.
JP-A-3-181528 JP-A-6-192448

本発明の目的は、異種の繊維による長繊維強化熱可塑性樹脂構造体を製造する方法において、その混合比率及び繊維濃度を適宜変更可能な、ブレンダ−等によるブレンド作業を省略できる効率的な長繊維強化熱可塑性樹脂構造体の製造方法を提供する。   An object of the present invention is an efficient long fiber capable of appropriately changing the mixing ratio and fiber concentration in a method for producing a long fiber reinforced thermoplastic resin structure made of different kinds of fibers and omitting a blending operation using a blender or the like. A method for producing a reinforced thermoplastic resin structure is provided.

本発明者は、鋭意検討した結果、異種の長繊維ロービングを特定の開繊幅に開繊し、熱可塑性樹脂を含浸し、ペレット化することで、異種繊維による混合長繊維強化熱可塑性樹脂構造体が極めて均一に混合された状態で得られること見出し、本発明を完成するに至った。   As a result of diligent study, the present inventor has developed a mixed long fiber reinforced thermoplastic resin structure with different fibers by opening different types of long fiber rovings to a specific spread width, impregnating with a thermoplastic resin, and pelletizing. The inventors have found that the body can be obtained in a very uniformly mixed state, and have completed the present invention.

すなはち本発明の目的は、繊維束のロービングを引きながら、溶融された熱可塑性樹脂中で繊維ロービングに張力をかけて開繊し、熱可塑性樹脂を含浸後、賦形ダイにより繊維濃度を調節して冷却し、裁断により3〜50mmのペレット状とすることにより製造される長繊維強化熱可塑性樹脂構造体において、複数の繊維種を同時に含浸し、それぞれの繊維ロービングをそれぞれ個別の出口から引取り、含浸ダイでは、それぞれの繊維の開繊幅を5〜40mmに調節することを特徴とする長繊維強化熱可塑性樹脂構造体の製造方法を提供することである。   In other words, the object of the present invention is to open the fiber roving by applying tension to the fiber roving in the molten thermoplastic resin while drawing the roving of the fiber bundle, impregnating the thermoplastic resin, and then adjusting the fiber concentration with a shaping die. In a long fiber reinforced thermoplastic resin structure manufactured by adjusting and cooling and cutting into pellets of 3 to 50 mm, a plurality of fiber types are impregnated at the same time, and each fiber roving is discharged from an individual outlet. In the take-up and impregnation die, it is to provide a method for producing a long fiber reinforced thermoplastic resin structure, characterized in that the opening width of each fiber is adjusted to 5 to 40 mm.

また、本発明の目的は、複数の繊維種の繊維ロービングが繊維径5〜50μmであり、しかも1000本から15000本の微細繊維の集合体である繊維束であることを特徴とした前記記載の長繊維強化熱可塑性樹脂構造体の製造方法を提供することにある。   The object of the present invention is a fiber bundle in which the fiber roving of a plurality of fiber types has a fiber diameter of 5 to 50 μm and is an aggregate of 1000 to 15000 fine fibers. It is providing the manufacturing method of a long fiber reinforced thermoplastic resin structure.

さらにまた、本発明の目的は、繊維種が、少なくともガラス繊維、炭素繊維、無機繊維、有機繊維から選ばれた複数種の繊維束であることを特徴とした前記記載の長繊維強化熱可塑性樹脂構造体の製造方法を提供することにある。   Furthermore, an object of the present invention is the long fiber reinforced thermoplastic resin as described above, wherein the fiber type is a plurality of types of fiber bundles selected from at least glass fiber, carbon fiber, inorganic fiber, and organic fiber. It is providing the manufacturing method of a structure.

さらに本発明の他の目的は、前記記載の長繊維強化熱可塑性樹脂構造体を少なくとも含む材料を使用した長繊維強化熱可塑性樹脂成形体の成形方法を提供することにある。   Still another object of the present invention is to provide a method for molding a long fiber reinforced thermoplastic resin molded article using a material containing at least the long fiber reinforced thermoplastic resin structure described above.

また本発明の他の目的は、成形する時に使用する押出機等のスクリュウの背圧が10kg/cm2以下で行なうことを特徴とした前記記載の長繊維強化熱可塑性樹脂成形体の成形方法を提供することにある。 Another object of the present invention is to provide a method for molding a long fiber reinforced thermoplastic resin molding as described above, wherein the back pressure of a screw of an extruder or the like used for molding is 10 kg / cm 2 or less. It is to provide.

本発明によれば、異種の長繊維による強化樹脂構造体の製造を、余分な工程であるバッチ的なブレンド作業を実施することなく、繊維束のロービングを引き取りながら、開繊し、樹脂を含浸する連続プロセスにおいて、同時に生産されることが可能となり、特性の異なる異種の繊維の混合された長繊維強化熱可塑性樹脂構造体の効率的な製造方法を可能にした。   According to the present invention, the production of a reinforced resin structure using different types of long fibers is opened and impregnated with a resin while taking a roving of a fiber bundle without carrying out a batch blending operation which is an extra step. In the continuous process, it is possible to produce them at the same time, and an efficient method for producing a long fiber reinforced thermoplastic resin structure in which different kinds of fibers having different characteristics are mixed is made possible.

本発明に使用される長繊維強化熱可塑性樹脂ペレットの強化繊維としては、使用するマトリックス樹脂よりも弾性率が高い繊維であれば、下記に挙げた繊維に限定されるものではなく、周知のいずれの繊維も強化繊維として使用可能である。例えば、E−ガラス、D−ガラス等のガラス繊維;ポリアクリロニトリル系、ピッチ系、レーヨン系等の炭素繊維;ボロン繊維、鉱物繊維等の無機繊維;ステンレス、黄銅等の金属繊維;超高分子量ポリエチレン繊維、ポリオキシメチレン繊維、ポリビニルアルコール繊維、液晶性芳香族ポリエステル繊維、ポリエチレンテレフタレート繊維、ポリ−p−フェニレンテレフタルアミド繊維、ポリ−m−フェニレンイソフタルアミド繊維等のアラミド繊維、ポリアクリロニトリル繊維、綿、ジュート等のセルロース繊維等の有機繊維などが挙げられる。特に本発明の適用が好ましい繊維は、ガラス繊維、炭素繊維、金属繊維、有機繊維等である。   The reinforcing fiber of the long fiber reinforced thermoplastic resin pellet used in the present invention is not limited to the fibers listed below as long as it has a higher elastic modulus than the matrix resin used, and any known fiber These fibers can also be used as reinforcing fibers. For example, glass fibers such as E-glass and D-glass; carbon fibers such as polyacrylonitrile, pitch and rayon; inorganic fibers such as boron fibers and mineral fibers; metal fibers such as stainless steel and brass; ultrahigh molecular weight polyethylene Fiber, polyoxymethylene fiber, polyvinyl alcohol fiber, liquid crystalline aromatic polyester fiber, polyethylene terephthalate fiber, poly-p-phenylene terephthalamide fiber, poly-m-phenylene isophthalamide fiber, aramid fiber, polyacrylonitrile fiber, cotton, Examples thereof include organic fibers such as cellulose fibers such as jute. Particularly preferred fibers to which the present invention is applied are glass fiber, carbon fiber, metal fiber, organic fiber and the like.

また、各繊維はそれぞれの特性に応じたサイジング剤でサイジング処理をされたものを使用することも好ましい。   Moreover, it is also preferable to use each fiber that has been subjected to sizing treatment with a sizing agent according to the respective characteristics.

さらに、使用される繊維束において、一本一本の微細繊維の径は通常5〜50μmであり、好ましくは7〜40μmである。微細繊維の径が小さすぎると強度が上がらない。また、50μmより大きくなると、柔軟性が劣り成形時に繊維が破断しやすくなる。繊維束の微細繊維の本数は通常1000本〜15000本であり、好ましくは2000本から13000本である。繊維束の微細繊維の本数は製造上、取り扱いやすさで決められたものである。   Furthermore, in the fiber bundle to be used, the diameter of each fine fiber is usually 5 to 50 μm, preferably 7 to 40 μm. If the diameter of the fine fiber is too small, the strength does not increase. Moreover, when it becomes larger than 50 micrometers, a softness | flexibility is inferior and it becomes easy to fracture | rupture a fiber at the time of shaping | molding. The number of fine fibers in the fiber bundle is usually 1000 to 15000, preferably 2000 to 13000. The number of fine fibers in the fiber bundle is determined by ease of handling in production.

本発明に使用される長繊維強化熱可塑性樹脂ペレットのマトリックス樹脂は、熱可塑性樹脂であれば全ての樹脂が使用可能である。例えば、一般用ポリスチレン、耐衝撃性ポリスチレン、アクリロニトリル−スチレン共重合体樹脂、アクリロニトリル−ブタジエン−スチレン共重合体樹脂等のポリスチレン系樹脂、ポリエチレン、ポリプロピレン等のポリオレフィン系樹脂、ポリエチレンテレフタレート、ポリブチレンテレフタレート等の熱可塑性ポリエステル系樹脂、ポリカーボネート系樹脂、塩化ビニル、塩素化ポリプロピレン等のハロゲン含有ポリオレフィン樹脂、6−ナイロン、 6,6−ナイロン、 4,6−ナイロン、11−ナイロン、12−ナイロン等のポリアミド系樹脂、ポリエチルアクリレート樹脂、ポリメチルメタクリレート樹脂等のポリアクリル系樹脂、ポリスルホン酸系樹脂、ポリフェニルエーテル樹脂、ポリアセタール樹脂、液晶性芳香族ポリエステル樹脂、ポリフェニレンサルファイド樹脂、ポリエーテルエーテルケトン樹脂等の汎用樹脂からスーパーエンプラまで全ての熱可塑性樹脂及びこれらの2種類以上からなるアロイ樹脂が使用可能である。アロイを形成する樹脂は、ここに挙げた熱可塑性樹脂に限定されるものではなく、周知の他の熱可塑性樹脂及びそれらの2種類以上のアロイ樹脂が使用可能である。特に本発明の適用が好ましい熱可塑性樹脂としては、安価なポリスチレン系樹脂、ポリオレフィン系樹脂、ハロゲン含有ポリオレフィン系樹脂を挙げることができる。また、これらの樹脂を複数混合使用することも好ましい。   As long as the matrix resin of the long fiber reinforced thermoplastic resin pellet used in the present invention is a thermoplastic resin, all resins can be used. For example, general polystyrene, impact polystyrene, acrylonitrile-styrene copolymer resin, polystyrene resin such as acrylonitrile-butadiene-styrene copolymer resin, polyolefin resin such as polyethylene and polypropylene, polyethylene terephthalate, polybutylene terephthalate, etc. Thermoplastic polyester resins, polycarbonate resins, halogen-containing polyolefin resins such as vinyl chloride and chlorinated polypropylene, polyamides such as 6-nylon, 6,6-nylon, 4,6-nylon, 11-nylon and 12-nylon Resin, polyethyl acrylate resin, polyacrylic resin such as polymethyl methacrylate resin, polysulfonic acid resin, polyphenyl ether resin, polyacetal resin, liquid crystalline aromatic polyester Ether resin, polyphenylene sulfide resin, any thermoplastic resin and alloy resin composed of two or more of these general-purpose resins such as polyether ether ketone resin until super engineering plastics can be used. The resin forming the alloy is not limited to the thermoplastic resins listed here, and other well-known thermoplastic resins and two or more types of these alloys can be used. In particular, examples of the thermoplastic resin to which the present invention is preferably applied include inexpensive polystyrene resins, polyolefin resins, and halogen-containing polyolefin resins. It is also preferable to use a mixture of these resins.

また、本発明に使用される長繊維強化熱可塑性樹脂ペレットのマトリックス樹脂は、特定の変性剤で変性して繊維への含浸性を向上させたものを使用することが好ましい。特にポリオレフィンは以下に示した変性剤でグラフト変性したものが好ましい。グラフト変性原料の変性剤としては不飽和カルボン酸、及びその誘導体が用いられる。不飽和カルボン酸、及びその誘導体としては、無水マレイン酸、無水イタコン酸等の無水物や、アクリル酸、メタクリル酸、マレイン酸、イタコン酸、フマル酸、シトラコン酸、クロトン酸等を用いる。好ましくは無水マレイン酸、無水イタコン酸等の無水物が良い。   The matrix resin of the long fiber reinforced thermoplastic resin pellets used in the present invention is preferably one that has been modified with a specific modifier to improve the impregnation of the fibers. In particular, polyolefins are preferably graft-modified with the following modifiers. Unsaturated carboxylic acids and their derivatives are used as modifiers for the graft modification raw material. As the unsaturated carboxylic acid and derivatives thereof, anhydrides such as maleic anhydride and itaconic anhydride, acrylic acid, methacrylic acid, maleic acid, itaconic acid, fumaric acid, citraconic acid, crotonic acid and the like are used. Preferred are anhydrides such as maleic anhydride and itaconic anhydride.

また、そのベースとなるポリオレフィンは、様々なものがあげられるが、好ましくは低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、線状低密度ポリエチレン、ポリプロピレン、ポリブテン−1、ポリメチルペンテン−1、エチレンとα−オレフィンとの共重合体(エチレン−プロピレン共重合体、エチレン−プロピレン−ジエン三元共重合体、エチレン−ブテン−1共重合体など)、エチレンとビニル化合物との共重合体(エチレン−酢酸ビニル共重合体、エチレン−アクリル酸共重合体、エチレン−アクリル酸エステル重合体、エチレン−メタクリル酸共重合体、エチレン−メタクリル酸エステル共重合体、エチレン−(メタ)アクリル酸(エステル)−α、β−不飽和カルボン酸(誘導体)三元共重合体、エチレン−塩化ビニル共重合体など)あるいはこれらの混合物があげられる。   Various polyolefins can be used as the base, preferably low density polyethylene, medium density polyethylene, high density polyethylene, linear low density polyethylene, polypropylene, polybutene-1, polymethylpentene-1, ethylene. And α-olefin copolymers (ethylene-propylene copolymer, ethylene-propylene-diene terpolymer, ethylene-butene-1 copolymer, etc.), copolymers of ethylene and vinyl compounds (ethylene -Vinyl acetate copolymer, ethylene-acrylic acid copolymer, ethylene-acrylic acid ester polymer, ethylene-methacrylic acid copolymer, ethylene-methacrylic acid ester copolymer, ethylene- (meth) acrylic acid (ester) -Α, β-unsaturated carboxylic acid (derivative) terpolymer, ethylene-vinyl chloride Copolymer) or a mixture thereof.

ポリオレフィンの変性は、原料ポリオレフィンと変性剤である不飽和カルボン酸、及びその誘導体をラジカル発生剤、例えば重合開始剤を添加して、100℃以上に加熱混合してグラフト重合させる。添加される変性剤の量はポリオレフィンに対して0.1〜10重量%、好ましくは0.2〜8重量%、特に好ましくは0.3〜5重量%程度である。また、本発明の長繊維強化熱可塑性樹脂ペレットの製造において、変性マトリックス樹脂は未変性のポリオレフィンと混合使用することも可能である。変性量が0.1重量%より少ないと繊維への含浸性が劣り、10重量%以上になるとポリオレフィンとしての強度が損なわれる。   For the modification of the polyolefin, the raw material polyolefin, the unsaturated carboxylic acid as a modifier, and derivatives thereof are added to a radical generator, for example, a polymerization initiator, and heated and mixed at 100 ° C. or higher for graft polymerization. The amount of the modifier added is 0.1 to 10% by weight, preferably 0.2 to 8% by weight, particularly preferably about 0.3 to 5% by weight, based on the polyolefin. Further, in the production of the long fiber reinforced thermoplastic resin pellets of the present invention, the modified matrix resin can also be used by mixing with unmodified polyolefin. When the modification amount is less than 0.1% by weight, the impregnation property to the fiber is poor, and when it is 10% by weight or more, the strength as a polyolefin is impaired.

長繊維強化熱可塑性樹脂構造体に含まれる長繊維の繊維長は3〜100mmであり、好ましくは、5〜80mmであり、特に好ましくは7〜50mmである。3mm以下では、成形体にする段階で更に繊維が切断されるため、長繊維特有の物理的強度が得られない。また、100mmより長くなると、成形時において、押出機等への取扱いで混合しにくくなり不都合を生ずる可能性が出て来る。   The fiber length of the long fibers contained in the long fiber reinforced thermoplastic resin structure is 3 to 100 mm, preferably 5 to 80 mm, and particularly preferably 7 to 50 mm. If it is 3 mm or less, the fibers are further cut at the stage of forming a molded body, and therefore, the physical strength peculiar to long fibers cannot be obtained. On the other hand, if the length is longer than 100 mm, it may become difficult to mix by handling to an extruder or the like at the time of molding, which may cause inconvenience.

繊維の含有量については、通常10〜70重量%であり、好ましくは15〜65重量%、特に好ましくは、20〜60重量%程度である。また、賦形ダイの穴径を変更することで、異種の繊維毎に濃度を変更することも可能である。
長繊維強化熱可塑性樹脂構造体に含まれる長繊維の繊維長は3〜100mmであり、好ましくは、5〜80mmであり、特に好ましくは7〜50mmである。3mm以下では、成形体にする段階で更に繊維が切断されるため、長繊維特有の物理的強度が得られない。また、100mmより長くなると、成形時において、押出機等への取扱いで混合しにくくなり不都合を生ずる可能性が出て来る。
About fiber content, it is 10 to 70 weight% normally, Preferably it is 15 to 65 weight%, Most preferably, it is about 20 to 60 weight%. Moreover, it is also possible to change a density | concentration for every different fiber by changing the hole diameter of a shaping die.
The fiber length of the long fibers contained in the long fiber reinforced thermoplastic resin structure is 3 to 100 mm, preferably 5 to 80 mm, and particularly preferably 7 to 50 mm. If the thickness is 3 mm or less, the fiber is further cut at the stage of forming a molded body, and thus physical strength peculiar to long fibers cannot be obtained. On the other hand, if the length is longer than 100 mm, it becomes difficult to mix by handling to an extruder or the like at the time of molding, which may cause inconvenience.

また、目的に応じて所望の特性を付与するため、一般に熱可塑性樹脂に添加される公知の物質、例えば酸化防止剤、耐熱安定剤、紫外線吸収剤等の安定剤、帯電防止剤、難燃剤、難燃助剤、染料や顔料等の着色剤、潤滑剤、可塑剤、結晶化促進剤、結晶核剤等を配合することも可能である。また、ガラスフレーク、マイカ、ガラス粉、ガラスビーズ、タルク、クレー、アルミナ、カーボンブラック、ウォラストナイト等の板状、粉粒状、の無機化合物、ウィスカー等を併用しても良い。   Further, in order to impart desired properties according to the purpose, known substances generally added to thermoplastic resins, for example, stabilizers such as antioxidants, heat stabilizers, ultraviolet absorbers, antistatic agents, flame retardants, It is also possible to blend flame retardant aids, colorants such as dyes and pigments, lubricants, plasticizers, crystallization accelerators, crystal nucleating agents and the like. Further, glass flakes, mica, glass powder, glass beads, talc, clay, alumina, carbon black, wollastonite and other plate-like or powdery inorganic compounds, whiskers and the like may be used in combination.

また、本発明の長繊維強化熱可塑性樹脂ペレットの製造に使用される長繊維ロービングは、樹脂含浸用のダイの中で開繊された状態になることが必要である。開繊はダイの中にある、例えば、凹凸やバーを往復することで形成されるが、その幅はダイの入口にあるテンションロールのテンションの程度により決定される。一本の繊維ロービングは通常5〜40mmで開繊されるが、好ましくは7〜35mm、特に好ましくは8〜30mm程度である。開繊幅が小さいと樹脂含浸が充分には出来ず、開繊幅が40mmを超えると繊維に対するテンション(張力)が大きすぎて、繊維の切断が起こることもある。   Further, the long fiber roving used for the production of the long fiber reinforced thermoplastic resin pellet of the present invention needs to be opened in a resin impregnation die. Opening is formed in the die, for example, by reciprocating an unevenness or a bar, and the width thereof is determined by the degree of tension of a tension roll at the entrance of the die. One fiber roving is usually opened at 5 to 40 mm, preferably 7 to 35 mm, particularly preferably about 8 to 30 mm. If the spread width is small, resin impregnation cannot be sufficiently performed. If the spread width exceeds 40 mm, the tension on the fiber is too large, and the fiber may be cut.

本発明の長繊維強化熱可塑性樹脂ペレットの製造に使用される樹脂含浸用のダイには、繊維を開繊させるための凹凸が必要であるが、山と谷からなる形状や、交互に段違いに設置されたバーを応用することが多い。   The die for resin impregnation used in the production of the long fiber reinforced thermoplastic resin pellets of the present invention requires unevenness for opening the fibers, but the shape consisting of peaks and valleys, or alternately in steps Often installed bars are applied.

樹脂を含浸した後、含浸ダイからの出口に繊維含有量を制御するための賦形ダイが通常設置される。賦形ダイにはロービングを所望の形状にするための孔が開いている。樹脂含浸したロービングはその孔を通り、余剰な樹脂はそこでしごかれて所望の繊維濃度としている。孔の形状は通常丸であるが、三角や四角、多角形でも可能である。また、シート状に引くことも可能である。   After impregnating the resin, a shaping die for controlling the fiber content is usually installed at the outlet from the impregnation die. The shaping die has a hole for making roving a desired shape. The resin-impregnated roving passes through the holes, and excess resin is crushed there to obtain a desired fiber concentration. The shape of the hole is usually round, but it can also be a triangle, square or polygon. It can also be drawn in the form of a sheet.

更に本発明の長繊維強化熱可塑性樹脂構造体を成形するに当たって、その成形方法としては押出成形、射出成形、ブロー成形、押出ブロー成形、射出ブロー成形、インフレーション成形、スタンピングモールド成形、圧縮成形、ビーズ成形等が挙げられる。なかでも、射出成形が好ましい。   Further, in molding the long fiber reinforced thermoplastic resin structure of the present invention, the molding methods include extrusion molding, injection molding, blow molding, extrusion blow molding, injection blow molding, inflation molding, stamping molding, compression molding, and beads. Examples include molding. Of these, injection molding is preferred.

例えば、本発明の長繊維強化熱可塑性樹脂構造体を使用して射出成形する条件として、通常はスクリュウ形式の押出機等が使用されるが、その攪拌強度の指標となる背圧が10kg/cm2以下で行なうことで充分であるし、好ましくは5kg/cm2、特に好ましくは0kg/cm2である。これにより、成形体中の平均繊維長は2mmとすることが出来た。 For example, as a condition for injection molding using the long fiber reinforced thermoplastic resin structure of the present invention, a screw type extruder or the like is usually used, but the back pressure as an index of the stirring strength is 10 kg / cm. It is sufficient to carry out at 2 or less, preferably 5 kg / cm 2 , particularly preferably 0 kg / cm 2 . Thereby, the average fiber length in a molded object was able to be 2 mm.

以下に実施例に基づいて本発明を詳細に説明するが、本発明は実施例により限定されるものではない。   Hereinafter, the present invention will be described in detail based on examples, but the present invention is not limited to the examples.

[実施例使用繊維]
ガラス繊維;径17μmのガラス単繊維4000本の束にサイジング処理したもの。
炭素繊維;東邦テナックス(株)製、ベスファイトSTS−24K−F301。
ステンレス繊維;径11μmのステンレス単繊維7000本の繊維束。サイジング処理はしていない。
ペレットの均一性評価は、およそ200個のペレットを採取して、それぞれの繊維種のペレットの個数を数えて、総数で除して比率(%)を求めた。
[Example fibers used]
Glass fiber: Sizing treatment of a bundle of 4000 single glass fibers having a diameter of 17 μm.
Carbon fiber: manufactured by Toho Tenax Co., Ltd., Besfight STS-24K-F301.
Stainless fiber: a bundle of 7000 stainless single fibers having a diameter of 11 μm. No sizing process.
For evaluating the uniformity of the pellets, approximately 200 pellets were collected, and the number of pellets of each fiber type was counted and divided by the total number to obtain a ratio (%).

[変性結晶性ポリプロピレン樹脂の調整]
ポリオレフィン100重量部に対し、無水マレイン酸1.5重量部、スチレン0.5重量部、開始剤として1,3−ビス(t−ブチルパーオキシイソプロピル)ベンゼン0.08重量部及び安定剤であるイルガノックス1010を0.1重量部をヘンシェルミキサーで均一に混合後、二軸押出し機で温度270℃、平均滞留時間0.8分で溶融混合し、変性ポリオレフィン樹脂を得た。無水マレイン酸の含有量は0.59重量%であった。
[Adjustment of modified crystalline polypropylene resin]
For 100 parts by weight of polyolefin, 1.5 parts by weight of maleic anhydride, 0.5 parts by weight of styrene, 0.08 parts by weight of 1,3-bis (t-butylperoxyisopropyl) benzene as an initiator and a stabilizer Irganox 1010 (0.1 part by weight) was uniformly mixed with a Henschel mixer and then melt-mixed with a twin-screw extruder at a temperature of 270 ° C. and an average residence time of 0.8 minutes to obtain a modified polyolefin resin. The content of maleic anhydride was 0.59% by weight.

(実施例1)
図1に示すような構造の長繊維強化熱可塑性樹脂構造体製造装置を用いた。繊維束ロービングは10本平行して引取りできる装置を使用した。ガラス繊維束5本を上段のテンションロールを通し、炭素繊維5本を下段のテンションロールに同様に通し、両方の繊維束をクロスヘッドダイ6の繊維の入り口に導き、クロスヘッドダイを通して10個の孔の開いた賦形ダイ7から10本の繊維束を引き抜き冷却装置、更には引き取り機からペレタイザー10に導いた。変性結晶性ポリプロピレン樹脂は押出し機等で溶融し、クロスヘッドダイの溶融樹脂入口5からクロスヘッドダイ6に注入された。各繊維束は開繊幅がおよそ15mmになるように、上下のテンションロールにて張力をかけて、樹脂含浸が実施された。余分な樹脂は賦形ダイでしごきとり各繊維の含量が50重量%となるように賦形ダイの孔の大きさを決定した。繊維束の引取り速度は10m/分とした。樹脂含浸後のロービングは冷却され、ペレタイザーにて長さ12mmとなるようにカッティングされた。ペレタイザーから排出されるペレット(構造体)の混合比率を10分毎に測定した。ガラス繊維のペレットの数はいずれも50±2%以内となり、非常に均一混合された異種混合繊維の樹脂ペレットが得られた。
Example 1
A long fiber reinforced thermoplastic resin structure manufacturing apparatus having a structure as shown in FIG. 1 was used. For the fiber bundle roving, an apparatus that can take up 10 pieces in parallel was used. 5 glass fiber bundles are passed through the upper tension roll, 5 carbon fibers are passed through the lower tension roll in the same way, both fiber bundles are led to the fiber entrance of the crosshead die 6, and 10 pieces are passed through the crosshead die. Ten fiber bundles were drawn from the shaping die 7 having holes and led to the pelletizer 10 from the cooling device and the take-out machine. The modified crystalline polypropylene resin was melted by an extruder or the like and injected into the crosshead die 6 from the molten resin inlet 5 of the crosshead die. Each fiber bundle was impregnated with resin by applying tension with upper and lower tension rolls so that the opening width was about 15 mm. Excess resin was squeezed with a shaping die and the size of the holes in the shaping die was determined so that the content of each fiber was 50% by weight. The take-up speed of the fiber bundle was 10 m / min. The roving after impregnation with the resin was cooled and cut with a pelletizer to a length of 12 mm. The mixing ratio of pellets (structures) discharged from the pelletizer was measured every 10 minutes. The number of glass fiber pellets was all within 50 ± 2%, and resin pellets of heterogeneous mixed fibers that were very uniformly mixed were obtained.

(実施例2)
炭素繊維の代わりにステンレス繊維を使用した以外は実施例1と同様な操作を実施した。得られたペレットの均一性評価は、10分毎の測定でガラス繊維のペレットの数はいずれも50±2%以内となった。
(Example 2)
The same operation as in Example 1 was performed except that stainless steel fiber was used instead of carbon fiber. The uniformity evaluation of the obtained pellets showed that the number of glass fiber pellets was within 50 ± 2% as measured every 10 minutes.

(比較例1)
図2に示すような構造の装置にて、ガラス繊維と炭素繊維の繊維含有量50重量%のペレットをそれぞれ別に製造した。それぞれ製造された長繊維強化樹脂ペレットをそれぞれ100,000個づつ回転ブレンダー(正規の名称はありますか)に仕込み、回転ブレンドを実施した。開始後、10分毎に3回サンプリングして、そのそれぞれの個数を数えた。3回目でもガラス繊維のペレットは41%、43%、57%と、均一にすることは出来なかった。30分ブレンドした段階で、ペレットの繊維が毛羽立ってきたので、これ以上のブレンドは中止した。
(Comparative Example 1)
In an apparatus having a structure as shown in FIG. 2, pellets having a fiber content of 50% by weight of glass fiber and carbon fiber were produced separately. Each of the produced long fiber reinforced resin pellets was charged in a rotating blender (having a proper name) for 100,000 pieces, and rotated blending was performed. After the start, sampling was performed 3 times every 10 minutes, and the number of each was counted. Even at the third time, the glass fiber pellets could not be made uniform at 41%, 43% and 57%. At the stage of blending for 30 minutes, the pellet fibers became fluffy, so further blending was stopped.

2種類の繊維束からそれぞれ異なったテンションロールにより、各繊維に適切なテンションをかけて、クロスヘッドダイに送られ、その内部で溶融樹脂が含浸される装置である。This is an apparatus in which an appropriate tension is applied to each fiber by different tension rolls from two types of fiber bundles, which is sent to a crosshead die and impregnated with molten resin therein. 通常使用される装置であり、図1に比較して繊維種は単一であるため、テンションロールは1つである。その他詳細は図1と同じであり割愛する。Since this is a device that is normally used and has a single fiber type as compared with FIG. 1, there is only one tension roll. Other details are the same as in FIG.

符号の説明Explanation of symbols

1 金属繊維束
2 その他の繊維束
3 テンションロール
4 テンションロール
5 溶融樹脂入口
6 クロスヘッドダイ
7 賦形ダイ
8 冷却装置
9 引き取り機
10 ペレタイザー
DESCRIPTION OF SYMBOLS 1 Metal fiber bundle 2 Other fiber bundles 3 Tension roll 4 Tension roll 5 Molten resin inlet 6 Crosshead die 7 Shaping die 8 Cooling device 9 Take-out machine 10 Pelletizer

Claims (5)

繊維束のロービングを引きながら、溶融された熱可塑性樹脂中で繊維ロービングに張力をかけて開繊し、熱可塑性樹脂を含浸後、賦形ダイにより繊維濃度を調節して冷却し、裁断により3〜50mmのペレット状とすることにより製造される長繊維強化熱可塑性樹脂構造体において、複数の繊維種を同時に含浸し、それぞれの繊維ロービングをそれぞれ個別の出口から引取り、含浸ダイでは、それぞれの繊維の開繊幅を5〜40mmに調節することを特徴とする長繊維強化熱可塑性樹脂構造体の製造方法。   While pulling the roving of the fiber bundle, the fiber roving is opened by applying tension to the fiber roving in the molten thermoplastic resin, impregnated with the thermoplastic resin, cooled by adjusting the fiber concentration with a shaping die, and 3 by cutting. In a long fiber reinforced thermoplastic resin structure produced by forming a pellet of ˜50 mm, a plurality of fiber types are impregnated at the same time, and each fiber roving is taken out from an individual outlet. A method for producing a long fiber reinforced thermoplastic resin structure, wherein the fiber opening width is adjusted to 5 to 40 mm. 複数の繊維種の繊維ロービングが繊維径5〜50μmであり、しかも1000本から15000本の微細繊維の集合体である繊維束であることを特徴とした請求項1記載の長繊維強化熱可塑性樹脂構造体の製造方法。   2. The long fiber reinforced thermoplastic resin according to claim 1, wherein the fiber roving of a plurality of fiber types is a fiber bundle having a fiber diameter of 5 to 50 [mu] m and an aggregate of 1000 to 15000 fine fibers. Manufacturing method of structure. 繊維種が、少なくともガラス繊維、炭素繊維、無機繊維、有機繊維から選ばれた複数種の繊維束であることを特徴とした請求項1記載の長繊維強化熱可塑性樹脂構造体の製造方法。   The method for producing a long fiber reinforced thermoplastic resin structure according to claim 1, wherein the fiber type is a plurality of types of fiber bundles selected from at least glass fiber, carbon fiber, inorganic fiber, and organic fiber. 請求項1記載の長繊維強化熱可塑性樹脂構造体を少なくとも含む材料を使用した長繊維強化熱可塑性樹脂成形体の成形方法。   A method for molding a long fiber reinforced thermoplastic resin molded article using a material containing at least the long fiber reinforced thermoplastic resin structure according to claim 1. 成形する時に使用する押出機等のスクリュウの背圧が10kg/cm2以下で行なうことを特徴とした請求項4記載の長繊維強化熱可塑性樹脂成形体の成形方法。



The method for molding a long fiber reinforced thermoplastic resin molded article according to claim 4, wherein the back pressure of a screw of an extruder or the like used for molding is 10 kg / cm 2 or less.



JP2004360095A 2004-12-13 2004-12-13 Manufacturing method of long fiber reinforced thermoplastic resin structure Pending JP2006167982A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004360095A JP2006167982A (en) 2004-12-13 2004-12-13 Manufacturing method of long fiber reinforced thermoplastic resin structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004360095A JP2006167982A (en) 2004-12-13 2004-12-13 Manufacturing method of long fiber reinforced thermoplastic resin structure

Publications (1)

Publication Number Publication Date
JP2006167982A true JP2006167982A (en) 2006-06-29

Family

ID=36669239

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004360095A Pending JP2006167982A (en) 2004-12-13 2004-12-13 Manufacturing method of long fiber reinforced thermoplastic resin structure

Country Status (1)

Country Link
JP (1) JP2006167982A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010073998A1 (en) * 2008-12-24 2010-07-01 住友化学株式会社 Expansion molded body and method for producing expansion molded body
JP2015143370A (en) * 2009-11-30 2015-08-06 株式会社カネカ Carbon fiber-reinforced composite material
JP2020536779A (en) * 2017-10-16 2020-12-17 フェッデム ゲー・エム・ベー・ハー ウント コー. カー・ゲーFEDDEM GmbH & Co. KG Equipment and methods for impregnating fiber bundles with polymer melt
CN116021806A (en) * 2021-10-25 2023-04-28 重庆国际复合材料股份有限公司 Infiltration device and method for preparing LFT-G composite material

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04279638A (en) * 1991-03-06 1992-10-05 Mitsubishi Kasei Corp Electrically conductive fiber-reinforced thermoplastic
JPH06285855A (en) * 1993-04-07 1994-10-11 Kobe Steel Ltd Strand for molding of long fiber reinforced synthetic resin product and its pellet
JPH07314444A (en) * 1994-05-19 1995-12-05 Polyplastics Co Long fiber-reinforced thermoplastic resin structure and its production
JPH09183869A (en) * 1995-12-28 1997-07-15 Kawasaki Steel Corp Colored glass fiber-reinforced polyolefin composition
JPH09323322A (en) * 1996-06-04 1997-12-16 Asahi Fiber Glass Co Ltd Manufacture of long fiber-reinforced thermoplastic resin composite material
JP2003305779A (en) * 2002-04-16 2003-10-28 Asahi Fiber Glass Co Ltd Device and method for manufacturing filament- reinforced thermoplastic resin material

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04279638A (en) * 1991-03-06 1992-10-05 Mitsubishi Kasei Corp Electrically conductive fiber-reinforced thermoplastic
JPH06285855A (en) * 1993-04-07 1994-10-11 Kobe Steel Ltd Strand for molding of long fiber reinforced synthetic resin product and its pellet
JPH07314444A (en) * 1994-05-19 1995-12-05 Polyplastics Co Long fiber-reinforced thermoplastic resin structure and its production
JPH09183869A (en) * 1995-12-28 1997-07-15 Kawasaki Steel Corp Colored glass fiber-reinforced polyolefin composition
JPH09323322A (en) * 1996-06-04 1997-12-16 Asahi Fiber Glass Co Ltd Manufacture of long fiber-reinforced thermoplastic resin composite material
JP2003305779A (en) * 2002-04-16 2003-10-28 Asahi Fiber Glass Co Ltd Device and method for manufacturing filament- reinforced thermoplastic resin material

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010073998A1 (en) * 2008-12-24 2010-07-01 住友化学株式会社 Expansion molded body and method for producing expansion molded body
JPWO2010073998A1 (en) * 2008-12-24 2012-06-14 住友化学株式会社 Foam molded body and method for producing foam molded body
JP2015143370A (en) * 2009-11-30 2015-08-06 株式会社カネカ Carbon fiber-reinforced composite material
JP2020536779A (en) * 2017-10-16 2020-12-17 フェッデム ゲー・エム・ベー・ハー ウント コー. カー・ゲーFEDDEM GmbH & Co. KG Equipment and methods for impregnating fiber bundles with polymer melt
JP7271560B2 (en) 2017-10-16 2023-05-11 フェッデム ゲー・エム・ベー・ハー ウント コー. カー・ゲー Apparatus and method for impregnating fiber bundles with polymer melt
CN116021806A (en) * 2021-10-25 2023-04-28 重庆国际复合材料股份有限公司 Infiltration device and method for preparing LFT-G composite material

Similar Documents

Publication Publication Date Title
CN101535382B (en) Organic fiber-reinforced composite resin composition and organic fiber-reinforced composite resin molding
EP2764968B1 (en) Fiber-reinforced resin composition
JPH03121146A (en) Long fiber-reinforced polyolefin resin composition for molding and preparation thereof
JP2019529582A (en) Isotropic, &#34;ready-to-use&#34; plastic pellets with highly entangled nanofibrils and methods of manufacture
CN104822736B (en) Granulate mixture, carbon fiber-reinforced polypropylene resin composite, the manufacture method of formed body and granulate mixture
KR20080066695A (en) Process for forming a reinforced polymeric material and articles formed therewith
JPH03181528A (en) Long fiber-reinforced polyolefinic resin composition for molding an production thereof
CN116622102A (en) fiber reinforced resin composition
CN101636255A (en) Long-carbon-fiber-reinforced resin molding and process for producing the same
JP2007284631A (en) Thermoplastic resin pellet reinforced with basalt filament
CN110452452A (en) A kind of high performance composite long fiber reinforced polypropylene material and preparation method thereof
JP3661736B2 (en) Method for producing polyolefin-polyamide resin composition
US10584219B2 (en) Composite and method of preparing the same
JP2006167982A (en) Manufacturing method of long fiber reinforced thermoplastic resin structure
JPH04202545A (en) Filament-containing resin composition and its production
KR100730421B1 (en) Polyolefin resin composition and method of producing the same
DE102011116397A1 (en) Process for producing a resin molding
JP5584978B2 (en) Molding material
JP2022081402A (en) Rayon long fiber reinforced resin compositions
JP2006001116A (en) Splittable shaping die for producing long fiber-reinforced thermoplastic resin structure and method for producing long fiber-reinforced thermoplastic resin structure using the die
JPH05162124A (en) Long fiber-reinforced thermoplastic resin pellet
JP5161731B2 (en) Aliphatic polyester resin pellets and molded articles obtained by molding them
JP4285482B2 (en) Method for producing polyolefin-polyamide resin composition
JP5649532B2 (en) Aliphatic polyester resin composition pellets and molded articles obtained by molding the same
WO2011152439A1 (en) Polyolefin resin composition pellets and moldings obtained therefrom

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101118

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110310