JP2985788B2 - Manufacturing method of long fiber reinforced thermoplastic resin molding material - Google Patents
Manufacturing method of long fiber reinforced thermoplastic resin molding materialInfo
- Publication number
- JP2985788B2 JP2985788B2 JP8227762A JP22776296A JP2985788B2 JP 2985788 B2 JP2985788 B2 JP 2985788B2 JP 8227762 A JP8227762 A JP 8227762A JP 22776296 A JP22776296 A JP 22776296A JP 2985788 B2 JP2985788 B2 JP 2985788B2
- Authority
- JP
- Japan
- Prior art keywords
- thermoplastic resin
- cut
- molding material
- reinforced thermoplastic
- resin molding
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 229920005989 resin Polymers 0.000 title claims description 60
- 239000011347 resin Substances 0.000 title claims description 60
- 229920001431 Long-fiber-reinforced thermoplastic Polymers 0.000 title claims description 50
- 239000012778 molding material Substances 0.000 title claims description 48
- 238000004519 manufacturing process Methods 0.000 title claims description 16
- 229920005992 thermoplastic resin Polymers 0.000 claims description 61
- 239000012784 inorganic fiber Substances 0.000 claims description 54
- 239000000835 fiber Substances 0.000 claims description 27
- 239000000463 material Substances 0.000 claims description 25
- 239000003365 glass fiber Substances 0.000 claims description 16
- 238000010438 heat treatment Methods 0.000 claims description 14
- 238000001816 cooling Methods 0.000 claims description 8
- 238000002844 melting Methods 0.000 claims description 5
- 230000008018 melting Effects 0.000 claims description 5
- 238000000034 method Methods 0.000 description 21
- 238000005470 impregnation Methods 0.000 description 17
- 239000011521 glass Substances 0.000 description 14
- 230000000052 comparative effect Effects 0.000 description 11
- 230000002093 peripheral effect Effects 0.000 description 11
- -1 polyethylene Polymers 0.000 description 11
- 239000000047 product Substances 0.000 description 10
- 239000004743 Polypropylene Substances 0.000 description 8
- 229920001155 polypropylene Polymers 0.000 description 8
- 238000012360 testing method Methods 0.000 description 7
- 239000012530 fluid Substances 0.000 description 5
- 238000005520 cutting process Methods 0.000 description 4
- 238000000465 moulding Methods 0.000 description 4
- 239000011230 binding agent Substances 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 239000000155 melt Substances 0.000 description 3
- 239000008188 pellet Substances 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- 239000000654 additive Substances 0.000 description 2
- 239000003086 colorant Substances 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000001746 injection moulding Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- 229930182556 Polyacetal Natural products 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004697 Polyetherimide Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 239000006087 Silane Coupling Agent Substances 0.000 description 1
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 239000002612 dispersion medium Substances 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 238000002386 leaching Methods 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 239000000088 plastic resin Substances 0.000 description 1
- 229920002239 polyacrylonitrile Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920001707 polybutylene terephthalate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 229920001601 polyetherimide Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 229920006324 polyoxymethylene Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 229920002050 silicone resin Polymers 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
Landscapes
- Reinforced Plastic Materials (AREA)
- Moulding By Coating Moulds (AREA)
Description
【0001】[0001]
【発明の属する技術分野】本発明は、連続した無機繊維
束に熱可塑性樹脂を含浸させ、所定長さに切断してなる
長繊維強化熱可塑性樹脂成形材料(L−FRTP)の製
造法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a long fiber reinforced thermoplastic resin molding material (L-FRTP) obtained by impregnating a continuous inorganic fiber bundle with a thermoplastic resin and cutting it into a predetermined length.
【0002】[0002]
【従来の技術】長繊維強化熱可塑性樹脂成形材料は、チ
ョップドストランドと熱可塑性樹脂とを混練してペレッ
ト化した成形材料に比べて、繊維長が長い状態に保たれ
ているので、得られる熱可塑性樹脂成形品の補強効果に
優れている。2. Description of the Related Art A long-fiber reinforced thermoplastic resin molding material has a longer fiber length than a molding material obtained by kneading a chopped strand and a thermoplastic resin into pellets. Excellent in reinforcing effect of plastic resin molded products.
【0003】長繊維強化熱可塑性樹脂成形材料は、例え
ば特公昭52-10140号公報等に示されるように、連続した
無機繊維束を含浸ダイ(溶融樹脂槽)に供給して、溶融
した熱可塑性樹脂を塗布又は含浸させ、含浸ダイの出口
に設けられた所定の口径のノズル、スリット又はダイス
を通して余分の熱可塑性樹脂を取り除いて所定の繊維含
有率にすると共に所定形状に賦形し、冷却した後、所定
の長さに切断してペレット状等の形状の切断物とするこ
とにより製造されている。As disclosed in Japanese Patent Publication No. 52-10140, for example, a long fiber reinforced thermoplastic resin molding material is prepared by supplying a continuous inorganic fiber bundle to an impregnation die (a molten resin tank) to melt the thermoplastic resin. The resin is applied or impregnated, the excess thermoplastic resin is removed through a nozzle of a predetermined diameter, a slit or a die provided at the outlet of the impregnation die to obtain a predetermined fiber content and shaped into a predetermined shape, and cooled. Thereafter, it is manufactured by cutting into a predetermined length to obtain a cut product having a shape such as a pellet shape.
【0004】こうして得られた長繊維強化熱可塑性樹脂
成形材料は、所望の繊維含有率となるように無機繊維を
含有しない熱可塑性樹脂と混合し、必要に応じて着色
剤、その他の添加剤等を添加した後、射出成形等の方法
により所望の形状に成形して成形品とされる。なお、成
形時等における長繊維強化熱可塑性樹脂成形材料の移送
には、空気流等の流体による搬送手段が用いられること
が多い。The long-fiber-reinforced thermoplastic resin molding material thus obtained is mixed with a thermoplastic resin containing no inorganic fiber so as to have a desired fiber content, and if necessary, a coloring agent, other additives, etc. Is added and molded into a desired shape by a method such as injection molding to obtain a molded article. In addition, in order to transfer the long fiber reinforced thermoplastic resin molding material at the time of molding or the like, a conveying means using a fluid such as an air flow is often used.
【0005】しかしながら、上記のような従来の方法に
より製造された長繊維強化熱可塑性樹脂成形材料は、無
機繊維束に熱可塑性樹脂が充分には含浸されにくく、繊
維束を構成する単繊維間に空隙が生じたり、切断物の外
周面に無機繊維が露出することが多く、また、切断によ
って切断物の端面の無機繊維も露出していた。したがっ
て、このような長繊維強化熱可塑性樹脂成形材料を、空
気流等の流体に乗せて移送すると、切断物の外周面又は
端面から無機繊維が脱落して毛羽が発生しやすく、毛羽
が発生すると、移送に支障をきたして生産性が低下し、
また、成形品の外観も悪くなるという問題があった。However, the long-fiber-reinforced thermoplastic resin molding material manufactured by the above-described conventional method is difficult to impregnate the inorganic fiber bundle with the thermoplastic resin sufficiently, and it is difficult to impregnate the single fiber constituting the fiber bundle. In many cases, voids were formed or inorganic fibers were exposed on the outer peripheral surface of the cut material, and the inorganic fibers on the end face of the cut material were also exposed by cutting. Therefore, when such a long-fiber-reinforced thermoplastic resin molding material is transported by placing it on a fluid such as an air stream, the inorganic fibers are likely to fall off from the outer peripheral surface or the end surface of the cut product, and fluff is likely to be generated. , Hindering transfer, reducing productivity,
In addition, there is a problem that the appearance of the molded product is deteriorated.
【0006】また、無機繊維束に熱可塑性樹脂が充分に
含浸されないので、成形時に熱可塑性樹脂中に無機繊維
が均一に分散しにくく、得られた成形品の機械的物性が
低下し、外観も悪くなるという問題があった。Further, since the inorganic fiber bundle is not sufficiently impregnated with the thermoplastic resin, the inorganic fibers are difficult to be uniformly dispersed in the thermoplastic resin at the time of molding, and the mechanical properties of the obtained molded product are deteriorated and the appearance is reduced. There was a problem of getting worse.
【0007】このような問題を解決するため、例えばUS
P4,439,387号、特開昭63-264326 号公報、特開平6-2548
56号公報等には、含浸ダイに導入された無機繊維束を、
含浸ダイ内部に設けた突起、ローラ等に接触させて、張
力をかけることにより開繊して、無機繊維束への熱可塑
性樹脂の含浸性を向上させるようにした長繊維強化熱可
塑性樹脂成形材料の製造法が開示されている。To solve such a problem, for example, US Pat.
P4,439,387, JP-A-63-264326, JP-A-6-2548
No. 56, etc., the inorganic fiber bundle introduced into the impregnation die,
A long fiber reinforced thermoplastic resin molding material that is opened by applying tension to the protrusions, rollers, etc. provided inside the impregnation die to improve the impregnation of the inorganic fiber bundle with the thermoplastic resin. Is disclosed.
【0008】[0008]
【発明が解決しようとする課題】しかしながら、USP4,4
39,387号、特開昭63-264326 号公報、特開平6-254856号
公報等に開示された方法は、無機繊維束を突起、ローラ
等に接触させて張力をかけて開繊するので、摩擦によっ
て無機繊維束を構成する単繊維の一部が切れて毛羽とな
り、この毛羽が含浸ダイのノズル等につまり、ひいては
ノズル等を塞いでしまい、無機繊維束の引張抵抗が増大
して、無機繊維束が破断し、生産が停止してしまうとい
う問題があった。また、突起、ローラ等に接触させた際
の張力が弱い場合には十分に開繊せず、したがって、熱
可塑性樹脂の含浸性が十分に向上しないという問題があ
った。なお、無機繊維としてガラス長繊維を用いたガラ
ス長繊維強化熱可塑性樹脂成形材料のガラス繊維含有率
は、一般的には20〜80重量%であるが、上記のような製
造時及び移送時等の毛羽発生による問題は、特に、ガラ
ス繊維を50重量%以上の高い割合で含有する場合に起こ
りやすい。[Problems to be solved by the invention] However, USP4,4
No. 39,387, JP-A-63-264326, JP-A-6-254856, etc., the method disclosed in Japanese Patent Application Laid-Open No. 6-254856 discloses that the inorganic fiber bundle is brought into contact with a projection, a roller or the like to open the fiber under tension, so that the friction is caused by friction. A part of the single fiber constituting the inorganic fiber bundle is cut and becomes fluff, and the fluff is clogged by a nozzle or the like of the impregnation die, which in turn blocks the nozzle and the like, and the tensile resistance of the inorganic fiber bundle increases, and the inorganic fiber bundle However, there was a problem that the rupture occurred and production stopped. In addition, there is a problem that the fiber is not sufficiently opened when the tension at the time of contact with the protrusion, the roller, or the like is weak, and therefore, the impregnation property of the thermoplastic resin is not sufficiently improved. The glass fiber content of the glass long fiber reinforced thermoplastic resin molding material using glass long fibers as the inorganic fibers is generally 20 to 80% by weight. The problem caused by the generation of fluff is likely to occur particularly when glass fibers are contained at a high ratio of 50% by weight or more.
【0009】本発明は、上記問題点に鑑みてなされたも
ので、その目的は、製造時及び移送時等に毛羽が発生し
にくく、熱可塑性樹脂成形品を射出成形等の方法により
成形した際に、マトリックスとしての熱可塑性樹脂への
無機繊維の分散性に優れ、得られる熱可塑性樹脂成形品
の機械的物性、外観を向上させることができる長繊維強
化熱可塑性樹脂成形材料の製造法を提供することにあ
る。SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and has as its object to reduce the generation of fluff during production and transfer, and to produce a thermoplastic resin molded article by a method such as injection molding. To provide a method for producing a long-fiber-reinforced thermoplastic resin molding material that has excellent dispersibility of inorganic fibers in a thermoplastic resin as a matrix and can improve the mechanical properties and appearance of the resulting thermoplastic resin molded product. Is to do.
【0010】[0010]
【課題を解決するための手段】上記目的を達成するた
め、本発明の第1は、連続した無機繊維束に熱可塑性樹
脂を塗布又は含浸させ、所定の長さに切断して切断物と
した後、該切断物をおおむね接触しないように分散させ
た状態で、前記熱可塑性樹脂の溶融温度以上に加熱し
て、前記切断物に塗布又は含浸させた前記熱可塑性樹脂
を溶融させ、次いで冷却することを特徴とする長繊維強
化熱可塑性樹脂成形材料の製造法を提供するものであ
る。In order to achieve the above object, a first aspect of the present invention is to coat or impregnate a continuous inorganic fiber bundle with a thermoplastic resin and cut it into a predetermined length to obtain a cut product. Thereafter, in a state in which the cut pieces are dispersed so as not to substantially contact with each other, the cut pieces are heated to a melting temperature of the thermoplastic resin or higher to melt the thermoplastic resin applied or impregnated to the cut pieces, and then cooled. It is intended to provide a method for producing a long-fiber-reinforced thermoplastic resin molding material, characterized in that:
【0011】本発明の第2は、本発明の第1において、
前記切断物をコンベア上に載置し、このコンベアを振動
させることにより前記切断物をおおむね接触しないよう
に分散させる長繊維強化熱可塑性樹脂成形材料の製造法
を提供するものである。A second aspect of the present invention is the first aspect of the present invention, wherein
An object of the present invention is to provide a method for producing a long-fiber-reinforced thermoplastic resin molding material in which the cut material is placed on a conveyor and the conveyor is vibrated to disperse the cut material so that the cut material is not substantially in contact with the cut material.
【0012】本発明の第3は、本発明の第1又は2にお
いて、前記無機繊維束としてガラス繊維束を用い、繊維
含有率を50重量%以上とする長繊維強化熱可塑性樹脂成
形材料の製造法を提供するものである。A third aspect of the present invention is the method of the first or second aspect of the present invention, wherein a glass fiber bundle is used as the inorganic fiber bundle and the fiber content is 50% by weight or more. It provides the law.
【0013】なお、本発明において、切断物をおおむね
接触しないように分散させた状態とは、切断物に塗布又
は含浸させた熱可塑性樹脂を溶融させたとき、大部分の
切断物が互いにくっつくことなく、個々に分離した状態
を維持できるように分散させた状態を意味する。In the present invention, the state in which cut pieces are dispersed so that they do not substantially come into contact with each other means that when the thermoplastic resin applied or impregnated to the cut pieces is melted, most of the cut pieces stick to each other. , But dispersed in such a way that they can be kept individually separated.
【0014】本発明の第1によれば、切断物をおおむね
接触しないように分散させた状態で、熱可塑性樹脂の溶
融温度以上に加熱することにより、切断物に塗布又は含
浸させた熱可塑性樹脂が溶融して、切断物の外周面及び
端面に浸み出すと共に、切断物の単繊維間にも浸透す
る。この場合、切断物中の無機繊維束は、切断前の連続
無機繊維束の状態と比較して繊維束としての拘束力が著
しく低くなり、溶融した熱可塑性樹脂の表面張力によっ
て単繊維が比較的自由に切断物中で移動するので、溶融
樹脂が単繊維間へ容易に浸透し、単繊維間の空隙がなく
なり、無機繊維束への樹脂の含浸性が向上すると考えら
れる。According to the first aspect of the present invention, the thermoplastic resin applied or impregnated to the cut material is heated by heating the thermoplastic resin to a temperature not lower than the melting temperature of the thermoplastic resin in such a state that the cut material is dispersed so as not to come into contact with the thermoplastic resin. Melts and oozes into the outer peripheral surface and the end surface of the cut material, and penetrates between the single fibers of the cut material. In this case, the inorganic fiber bundle in the cut material has a significantly lower binding force as a fiber bundle compared to the state of the continuous inorganic fiber bundle before cutting, and the single fiber is relatively thin due to the surface tension of the molten thermoplastic resin. It is thought that the molten resin easily penetrates between the single fibers because there is free movement in the cut material, voids between the single fibers are eliminated, and impregnation of the inorganic fiber bundle with the resin is improved.
【0015】したがって、連続した無機繊維束に熱可塑
性樹脂を塗布又は含浸させる工程において、無機繊維束
を開繊させて樹脂の含浸性を高めるために、無機繊維束
を突起やローラに接触させて強い張力をかけなくても、
後の加熱工程において樹脂の含浸性を高めることができ
るため、熱可塑性樹脂の塗布又は含浸工程における毛羽
の発生を低減し、生産性を向上させることができる。Therefore, in the step of applying or impregnating the thermoplastic resin to the continuous inorganic fiber bundle, the inorganic fiber bundle is brought into contact with the projections and rollers in order to open the inorganic fiber bundle and enhance the impregnation of the resin. Even without applying strong tension,
Since the impregnating property of the resin can be increased in the subsequent heating step, the generation of fluff in the step of applying or impregnating the thermoplastic resin can be reduced, and the productivity can be improved.
【0016】また、得られた長繊維強化熱可塑性樹脂成
形材料は、外周面及び端面が溶融した熱可塑性樹脂で被
覆されているので、空気流等の流体に乗せて移送しても
無機繊維が脱落せず、毛羽の発生が少ない。更に、熱可
塑性樹脂成形品を製造するときに、無機繊維がマトリッ
クスである熱可塑性樹脂中に均一に分散し、成形品の機
械的物性を向上させ、外観を良好にすることができる。Further, since the obtained long fiber reinforced thermoplastic resin molding material is coated with a molten thermoplastic resin on the outer peripheral surface and the end surface, the inorganic fiber can be transferred even by being carried on a fluid such as an air flow. Does not fall off and generates less fluff. Further, when producing a thermoplastic resin molded article, the inorganic fibers are uniformly dispersed in the thermoplastic resin as a matrix, whereby the mechanical properties of the molded article can be improved and the appearance can be improved.
【0017】本発明の第2によれば、切断物をコンベア
上に載置し、このコンベアを振動させることにより切断
物をおおむね接触しないように分散させるので、切断物
が容易に均一に分散され、切断物同士をおおむね接触し
ないように分散させた状態で、加熱して熱可塑性樹脂を
溶融させることができ、したがって、切断物同士が接合
してしまうことが防止できる。According to the second aspect of the present invention, the cut objects are placed on a conveyor, and the conveyed objects are vibrated to disperse the cut objects so that they are not substantially in contact with each other. In addition, the thermoplastic resin can be melted by heating in a state where the cut pieces are dispersed so as not to come into contact with each other, so that the cut pieces can be prevented from being joined to each other.
【0018】本発明の第3によれば、無機繊維束として
ガラス繊維束を用い、繊維含有率を50重量%以上とした
ことにより、無機繊維束への熱可塑性樹脂の含浸性の向
上、毛羽発生の低減等の効果をより顕著に得ることがで
きる。According to the third aspect of the present invention, the glass fiber bundle is used as the inorganic fiber bundle, and the fiber content is set to 50% by weight or more, so that the impregnation of the inorganic fiber bundle with the thermoplastic resin is improved. Effects such as reduction of generation can be more remarkably obtained.
【0019】[0019]
【発明の実施の形態】本発明において連続した無機繊維
束としては、長繊維強化熱可塑性樹脂成形材料に通常使
用されているものを用いることができ、例えば、ガラス
繊維、カーボン繊維等の無機繊維束を、所定の形状、例
えば太鼓状又は円筒状等に巻き取った回巻体から引き出
されるものが好ましく用いられる。なお、無機繊維とし
てガラス繊維を用いると、コスト的にも有利であるので
より好ましい。BEST MODE FOR CARRYING OUT THE INVENTION As the continuous inorganic fiber bundle in the present invention, those usually used for a long fiber reinforced thermoplastic resin molding material can be used. For example, inorganic fibers such as glass fiber and carbon fiber can be used. It is preferable to use a bundle that is pulled out from a wound body that is wound into a predetermined shape, for example, a drum shape or a cylindrical shape. It is more preferable to use glass fiber as the inorganic fiber because it is advantageous in terms of cost.
【0020】また、無機繊維束としての単繊維の集束本
数は、100 〜20000 本程度が、熱可塑性樹脂を塗布又は
含浸させやすいので好ましい。なお、比較的集束本数の
少ない無機繊維束を、複数本引き揃えて使用してもよ
い。The number of bundles of the single fibers as the inorganic fiber bundle is preferably about 100 to 20,000 because it is easy to apply or impregnate the thermoplastic resin. In addition, a plurality of inorganic fiber bundles having a relatively small number of bundles may be aligned and used.
【0021】なお、一般的に、ガラス繊維には、使用時
の毛羽や静電気の発生を抑えてハンドリング性を改善す
るためや、塗布又は含浸させる熱可塑性樹脂との接着性
の改善のために、種々のバインダーが付与されている
が、バインダーの種類は、塗布又は含浸させる熱可塑性
樹脂の種類に応じて選択することが好ましい。In general, glass fibers are used to improve handling properties by suppressing generation of fluff and static electricity during use, and to improve adhesiveness with a thermoplastic resin to be applied or impregnated. Although various binders are provided, it is preferable to select the type of the binder according to the type of the thermoplastic resin to be applied or impregnated.
【0022】本発明において熱可塑性樹脂としては、特
に限定されないが、例えば、ポリエチレン、ポリプロピ
レン、ポリアミド、ポリエチレンテレフタレート、ポリ
ブチレンテレフタレート、ポリスチレン、ポリアクリル
ニトリル、ポリアセタール、ポリエーテルイミド、ポリ
カーボネート等が好ましく用いられる。これらの樹脂
は、単独で用いてもよく、2種以上の混合物又は共重合
体として用いてもよい。また、熱可塑性樹脂には、用途
や成形条件等に応じて、着色剤、改質剤、無機繊維以外
の充填剤等、公知の添加剤を配合してもよく、これら
は、常法にしたがって混練、使用することができる。In the present invention, the thermoplastic resin is not particularly limited. For example, polyethylene, polypropylene, polyamide, polyethylene terephthalate, polybutylene terephthalate, polystyrene, polyacrylonitrile, polyacetal, polyetherimide, polycarbonate and the like are preferably used. . These resins may be used alone or as a mixture or copolymer of two or more. In addition, the thermoplastic resin may be blended with known additives such as a coloring agent, a modifying agent, and a filler other than inorganic fibers, depending on the application and molding conditions, etc., according to a conventional method. Can be kneaded and used.
【0023】なお、本発明において、長繊維強化熱可塑
性樹脂成形材料の繊維含有率は、特に限定されないが、
本発明の効果を顕著に出すには、繊維含有率を50重量%
以上とすることが好ましい。すなわち、繊維含有率が50
重量%以上の場合、熱可塑性樹脂の含浸性の低下、毛羽
の発生という問題が起こりやすいが、本発明の方法によ
れば、繊維含有率が50重量%でも、熱可塑性樹脂の含浸
性を向上させ、毛羽発生を低減できるからである。In the present invention, the fiber content of the long fiber reinforced thermoplastic resin molding material is not particularly limited,
To make the effect of the present invention remarkable, the fiber content should be 50% by weight.
It is preferable to make the above. That is, the fiber content is 50
When the content is more than 50% by weight, problems such as a decrease in the impregnating property of the thermoplastic resin and the generation of fluff are likely to occur. This is because fluffing can be reduced.
【0024】本発明の長繊維強化熱可塑性樹脂成形材料
の製造方法は、例えば図1に示すような製造ラインによ
って実施することができる。すなわち、図示しない回巻
体から引き出した連続した無機繊維束1を含浸ダイ4に
導入する。含浸ダイ4には、押出機3から溶融した熱可
塑性樹脂2が供給され、無機繊維束1に熱可塑性樹脂が
含浸される。熱可塑性樹脂を含浸された無機繊維束1
は、ダイス5を通して引き出され、それによって余分な
熱可塑性樹脂2を除去されて所定の繊維含有率とされる
と共に所定形状に賦形されて、長繊維強化熱可塑性樹脂
6となる。The method for producing a long fiber reinforced thermoplastic resin molding material of the present invention can be carried out, for example, by a production line as shown in FIG. That is, a continuous inorganic fiber bundle 1 drawn from a wound body (not shown) is introduced into the impregnation die 4. The molten thermoplastic resin 2 is supplied to the impregnation die 4 from the extruder 3, and the inorganic fiber bundle 1 is impregnated with the thermoplastic resin. Inorganic fiber bundle impregnated with thermoplastic resin 1
Is drawn out through a die 5, whereby excess thermoplastic resin 2 is removed to have a predetermined fiber content and shaped into a predetermined shape, thereby forming a long fiber reinforced thermoplastic resin 6.
【0025】次いで、こうして得られた長繊維強化熱可
塑性樹脂6を、冷却槽7で冷却し、引き取り機8で引き
取った後、ペレタイザー9で、ペレット状に切断して切
断物10aを得る。なお、ここまでの工程は、従来の一
般的な長繊維強化熱可塑性樹脂成形材料の製造工程と同
様であり、この切断物10aが、従来の一般的な長繊維
強化熱可塑性樹脂成形材料に相当する。Next, the long-fiber-reinforced thermoplastic resin 6 thus obtained is cooled in a cooling tank 7, taken up by a take-up machine 8, and cut into pellets by a pelletizer 9 to obtain a cut product 10a. The steps up to this point are the same as those of a conventional general long-fiber-reinforced thermoplastic resin molding material, and this cut product 10a corresponds to a conventional general long-fiber-reinforced thermoplastic resin molding material. I do.
【0026】本発明においては、続いて、上記のように
して得られた切断物10aを、ペレタイザー9と連設さ
れたコンベア11上に送り、図示しない振動機によりコ
ンベア11を振動させて、切断物10aがコンベア11
上で互いにほとんど接触しない程度に分散した状態と
し、加熱器12を備えた加熱槽13に通して、熱可塑性
樹脂2の溶融温度以上に加熱する。その結果、切断物1
0aに含浸された熱可塑性樹脂2が溶融し、切断物10
aの外周や端面に浸出すると共に、切断物10a中の無
機繊維束の単繊維間にも浸透する。その後、切断物10
aを冷却器14により冷却し、スクレーパー15により
コンベア11から掻き取って長繊維強化熱可塑性樹脂成
形材料10bを得る。この長繊維強化熱可塑性樹脂成形
材料10bは、切断物10aの外周面及び端面のほぼ全
体が、熱可塑性樹脂2で被覆された状態をなしている。In the present invention, subsequently, the cut material 10a obtained as described above is sent onto a conveyor 11 connected to the pelletizer 9, and the conveyor 11 is vibrated by a vibrator (not shown) to cut the material. Object 10a is conveyor 11
The resin is dispersed to such a degree that it hardly contacts each other, and is passed through a heating tank 13 provided with a heater 12 and heated to a temperature higher than the melting temperature of the thermoplastic resin 2. As a result, the cut material 1
The thermoplastic resin 2 impregnated with Oa is melted and cut 10
In addition to the leaching on the outer periphery and the end face of the cut material 10a, it also permeates between the single fibers of the inorganic fiber bundle in the cut material 10a. After that, cut 10
is cooled by the cooler 14 and scraped from the conveyor 11 by the scraper 15 to obtain the long fiber reinforced thermoplastic resin molding material 10b. The long fiber reinforced thermoplastic resin molding material 10b is in a state in which the thermoplastic resin 2 covers almost the entire outer peripheral surface and end surface of the cut material 10a.
【0027】切断物10aを、ペレタイザー9から、加
熱槽13に運搬する方法は、コンベア11による方法以
外でもよく、例えば空気流等の流体に乗せて運搬する方
法、自由落下による方法等であってもよい。なお、コン
ベア11を用いる方法を採用する場合には、コンベア1
1表面を、シリコン樹脂、フッ素樹脂等で処理しておく
と、切断物10aの熱可塑性樹脂2を加熱溶融させた
後、冷却して長繊維強化熱可塑性樹脂成形材料10bと
した際に、コンベア11上から掻き取りやすくなるので
好ましい。The method of transporting the cut material 10a from the pelletizer 9 to the heating tank 13 may be any method other than the method using the conveyor 11, such as a method in which the cut material 10a is loaded on a fluid such as an air flow, a method by free fall, and the like. Is also good. When the method using the conveyor 11 is adopted, the conveyor 1
1 If the surface is treated with a silicone resin, a fluororesin, or the like, the thermoplastic resin 2 of the cut material 10a is heated and melted, and then cooled to obtain a long fiber reinforced thermoplastic resin molding material 10b. 11 because it is easy to scrape from above.
【0028】加熱槽13の加熱器12としては、特に限
定されないが、例えば熱風発生器、赤外線式ヒーター等
が好ましく採用される。加熱温度及び時間は、切断物1
0aに含浸された熱可塑性樹脂2が、溶融して切断物1
0aの外周や端面を被覆すると共に、内部の単繊維間に
浸透するのに十分な温度及び時間であって、かつ、熱可
塑性樹脂が劣化しない程度の温度及び時間とすることが
好ましい。なお、加熱槽13内は、空気雰囲気でもよい
が、熱可塑性樹脂2の劣化を防止するため、窒素ガス等
の不活性ガス雰囲気としてもよい。The heater 12 of the heating tank 13 is not particularly limited, but for example, a hot air generator, an infrared heater or the like is preferably employed. The heating temperature and the time are
0a is impregnated with the thermoplastic resin 2,
It is preferable that the temperature and time be sufficient to cover the outer periphery and the end face of Oa and to penetrate between the single fibers therein, and to such a degree that the thermoplastic resin does not deteriorate. The inside of the heating tank 13 may be an air atmosphere, but may be an inert gas atmosphere such as a nitrogen gas in order to prevent deterioration of the thermoplastic resin 2.
【0029】また、冷却器14による冷却方法は、回収
したときに少なくとも切断物同士が融着しない温度以下
まで冷却できる方法であればよいが、例えば冷風、冷水
を用いる方法等が好ましく採用される。また、冷却器1
4での強制冷却によらず、常温にて放冷する方法でもよ
い。The method of cooling by the cooler 14 may be any method that can cool at least a temperature at which the cut pieces do not fuse together when collected. For example, a method using cold air or cold water is preferably employed. . Cooler 1
Instead of the forced cooling in step 4, a method of cooling at room temperature may be used.
【0030】なお、上記の例では、連続した無機繊維束
1に熱可塑性樹脂2を塗布又は含浸する方法として、無
機繊維束1に溶融した熱可塑性樹脂2を含浸する溶融含
浸法を採用したが、その他の方法を採用することもでき
る。例えば、熱可塑性樹脂エマルジョン、熱可塑性樹脂
粉末を水又はその他の溶媒に分散させたスラリー、又は
熱可塑性樹脂を溶媒に溶解させた溶液を、無機繊維束に
含浸させるか、又はロールコータ等で塗布した後、分散
媒又は溶媒を蒸発させる方法等を採用することができ
る。また、熱可塑性樹脂粉末を無機繊維束に付着させた
後、必要に応じて樹脂を加熱溶融、冷却する方法等を採
用することもできる。ただし、取扱性やコストの面か
ら、溶融含浸法が好ましい。In the above example, as a method of applying or impregnating the thermoplastic resin 2 to the continuous inorganic fiber bundle 1, a melt impregnation method of impregnating the inorganic fiber bundle 1 with the molten thermoplastic resin 2 is employed. , And other methods can be adopted. For example, a thermoplastic resin emulsion, a slurry obtained by dispersing a thermoplastic resin powder in water or another solvent, or a solution obtained by dissolving a thermoplastic resin in a solvent is impregnated into an inorganic fiber bundle, or applied with a roll coater or the like. After that, a method of evaporating the dispersion medium or the solvent or the like can be adopted. In addition, after the thermoplastic resin powder is attached to the inorganic fiber bundle, a method in which the resin is heated, melted, and cooled as necessary can be employed. However, the melt impregnation method is preferred from the viewpoints of handleability and cost.
【0031】[0031]
実施例1 図1に示した製造ラインによる前述した方法に従って、
長繊維強化熱可塑性樹脂成形材料を製造した。連続無機
繊維束1としては、シランカップリング剤と変性ポリプ
ロピレンとを主成分とするバインダーを付与した繊維径
13μmのEガラス単繊維を800 本集束させ、更にこの繊
維束を8本引き揃えたものを用い、熱可塑性樹脂2とし
ては、ポリプロピレンを用い、含浸ダイ4、冷却槽7、
引き取り機8、ペレタイザー9は、従来から使用されて
いる通常のものを用いて、含浸ダイ4の出口のダイス5
の径2.0mm 、引き取り速度30m/分、ペレタイザー9で
のカット長さ6mmとして、切断物10aを得た。Example 1 According to the method described above using the production line shown in FIG.
A long fiber reinforced thermoplastic resin molding material was manufactured. The continuous inorganic fiber bundle 1 has a fiber diameter provided with a binder containing a silane coupling agent and a modified polypropylene as main components.
Eighty 13 μm E glass single fibers are bundled, and a bundle of eight such fiber bundles is used. The thermoplastic resin 2 is made of polypropylene, the impregnation die 4, the cooling tank 7,
The take-off machine 8 and the pelletizer 9 are the same as those conventionally used, and the die 5 at the outlet of the impregnation die 4 is used.
A cut product 10a was obtained with a diameter of 2.0 mm, a take-up speed of 30 m / min, and a cut length of 6 mm with a pelletizer 9.
【0032】次に、得られた切断物10aを、表面にフ
ッ素樹脂加工を施したコンベア11上に載置し、コンベ
ア11を振動させて切断物10a同士がおおむね接触し
ないように分散させた。この状態で、赤外線式ヒーター
からなる加熱器12を設けた雰囲気温度200 ℃の加熱槽
13中に、切断物10aを導入し、1分間滞留させて加
熱した後、エアーコンプレッサーからなる冷却器14か
ら冷風を吹きつけて約40℃まで冷却した後、スクレーパ
ー15によりコンベア11から掻き取って、長繊維強化
熱可塑性樹脂成形材料10bを得た。この長繊維強化熱
可塑性樹脂成形材料10bのガラス含有率は、51重量%
であった。Next, the obtained cut pieces 10a were placed on a conveyor 11 having a surface subjected to a fluororesin processing, and the conveyer 11 was vibrated to disperse the cut pieces 10a so that the cut pieces 10a did not substantially contact each other. In this state, the cut material 10a is introduced into a heating tank 13 at an atmospheric temperature of 200 ° C. provided with a heater 12 composed of an infrared heater, and is heated while being retained for one minute. After cooling to about 40 ° C. by blowing cool air, the scraper 15 scraped off the conveyor 11 to obtain a long fiber reinforced thermoplastic resin molding material 10b. The glass content of the long fiber reinforced thermoplastic resin molding material 10b is 51% by weight.
Met.
【0033】この長繊維強化熱可塑性樹脂成形材料は、
外周面及び端面のほぼ全体がポリプロピレンで被覆さ
れ、無機繊維が容易にばらけないように保持されてい
た。This long fiber reinforced thermoplastic resin molding material is
Almost the entire outer peripheral surface and the end surface were covered with polypropylene, and the inorganic fibers were held so as not to be easily dispersed.
【0034】実施例2 実施例1において、連続した無機繊維束として、実施例
1と同様のガラス繊維束を10本引き揃えたものを用い、
あとは実施例1と同様にして、ガラス含有率60重量%の
長繊維強化熱可塑性樹脂成形材料を得た。Example 2 In Example 1, as the continuous inorganic fiber bundle, ten glass fiber bundles similar to those in Example 1 were used.
After that, in the same manner as in Example 1, a long fiber reinforced thermoplastic resin molding material having a glass content of 60% by weight was obtained.
【0035】この長繊維強化熱可塑性樹脂成形材料も、
外周面及び端面のほぼ全体がポリプロピレンで被覆さ
れ、無機繊維が容易にばらけないように保持されてい
た。This long fiber reinforced thermoplastic resin molding material is also
Almost the entire outer peripheral surface and the end surface were covered with polypropylene, and the inorganic fibers were held so as not to be easily dispersed.
【0036】実施例3 実施例1において、連続した無機繊維束として、実施例
1と同様のガラス繊維束を13本引き揃えたものを用い、
あとは実施例1と同様にして、ガラス含有率73重量%の
長繊維強化熱可塑性樹脂成形材料を得た。Example 3 In Example 1, 13 continuous glass fiber bundles similar to those in Example 1 were used as continuous inorganic fiber bundles.
After that, in the same manner as in Example 1, a long fiber reinforced thermoplastic resin molding material having a glass content of 73% by weight was obtained.
【0037】この長繊維強化熱可塑性樹脂成形材料も、
外周面及び端面のほぼ全体がポリプロピレンで被覆さ
れ、無機繊維が容易にばらけないように保持されてい
た。This long fiber reinforced thermoplastic resin molding material is also
Almost the entire outer peripheral surface and the end surface were covered with polypropylene, and the inorganic fibers were held so as not to be easily dispersed.
【0038】比較例1 実施例1において、切断物10aを得る工程までを同様
に行い、切断物10aを加熱する工程以下は行わずに、
ガラス含有率51重量%の長繊維強化熱可塑性樹脂成形材
料を得た。Comparative Example 1 In Example 1, the steps up to the step of obtaining the cut piece 10a were performed in the same manner, and the steps of heating the cut piece 10a were not performed.
A long fiber reinforced thermoplastic resin molding material having a glass content of 51% by weight was obtained.
【0039】この長繊維強化熱可塑性樹脂成形材料は、
外周面の一部と、端面の大部分に、ガラス繊維が露出し
た状態であった。This long fiber reinforced thermoplastic resin molding material is
Glass fiber was exposed in a part of the outer peripheral surface and a large part of the end surface.
【0040】比較例2 実施例2において、切断物10aを得る工程までを同様
に行い、切断物10aを加熱する工程以下は行わずに、
ガラス含有率60重量%の長繊維強化熱可塑性樹脂成形材
料を得た。Comparative Example 2 In Example 2, the steps up to the step of obtaining the cut object 10a were performed in the same manner, and the steps of heating the cut object 10a were not performed.
A long fiber reinforced thermoplastic resin molding material having a glass content of 60% by weight was obtained.
【0041】この長繊維強化熱可塑性樹脂成形材料も、
外周面の一部と、端面の大部分に、ガラス繊維が露出し
た状態であった。This long fiber reinforced thermoplastic resin molding material is also
Glass fiber was exposed in a part of the outer peripheral surface and a large part of the end surface.
【0042】比較例3 実施例3において、切断物10aを得る工程までを同様
に行い、切断物10aを加熱する工程以下は行わずに、
ガラス含有率73重量%の長繊維強化熱可塑性樹脂成形材
料を得た。Comparative Example 3 In Example 3, the steps up to the step of obtaining the cut object 10a were performed in the same manner, and the steps of heating the cut object 10a were not performed.
A long fiber reinforced thermoplastic resin molding material having a glass content of 73% by weight was obtained.
【0043】この長繊維強化熱可塑性樹脂成形材料も、
外周面の一部と、端面の大部分に、ガラス繊維が露出し
た状態であった。This long fiber reinforced thermoplastic resin molding material is also
Glass fiber was exposed in a part of the outer peripheral surface and a large part of the end surface.
【0044】試験例 実施例1〜3及び比較例1〜3で得られた長繊維強化熱
可塑性樹脂成形材料を、それぞれ所定量のポリプロピレ
ンと混合した後、射出成形して、ガラス含有率約20重量
%の試験片を得た。Test Example Each of the long-fiber-reinforced thermoplastic resin molding materials obtained in Examples 1 to 3 and Comparative Examples 1 to 3 was mixed with a predetermined amount of polypropylene, and then injection-molded to obtain a glass content of about 20%. A weight percent test specimen was obtained.
【0045】得られた試験片について、ガラス繊維の分
散状態を目視により観察し、束状に見えるガラス繊維束
を未分散とみなしてその個数を数えた。また、それぞれ
の試験片の機械的物性として、引張り強さと曲げ強さと
を、ASTM D 638及びASTM D 790に従って測定した。With respect to the obtained test pieces, the dispersion state of the glass fibers was visually observed, and the number of glass fiber bundles which looked like bundles was counted as non-dispersed. Further, as mechanical properties of each test piece, tensile strength and flexural strength were measured according to ASTM D 638 and ASTM D 790.
【0046】また、実施例1〜3及び比較例1〜3で得
られた長繊維強化熱可塑性樹脂成形材料それぞれ10kgず
つを、ホッパーローダー(商品名「BS-700」、加藤理機
製)を用いて、風速20m/秒の空気流によって、内径38mm
φの塩化ビニルチューブ中を3m移送し、移送中に発生
した毛羽をホッパーローダー吸引口に設けた100 メッシ
ュの金網で捕集して、その重量を測定した。これらの結
果を表1に示す。Using a hopper loader (trade name "BS-700", manufactured by Kato Riki Co., Ltd.), 10 kg of each of the long fiber reinforced thermoplastic resin molding materials obtained in Examples 1 to 3 and Comparative Examples 1 to 3 was used. With an air flow of 20m / s, the inner diameter is 38mm
The powder was transported 3 m in a φ vinyl chloride tube, and the fluff generated during the transport was collected by a 100-mesh wire mesh provided at the suction port of the hopper loader, and its weight was measured. Table 1 shows the results.
【0047】[0047]
【表1】 [Table 1]
【0048】表1の結果から、実施例1〜3及び比較例
1〜3の長繊維強化熱可塑性樹脂成形材料を空気流によ
り移送した場合、毛羽の発生量は、実施例においても比
較例においてもガラス含有率の高いものほど多くなる
が、同じガラス含有率のものを比較すると、実施例のも
のは、比較例のものよりかなり少ないことがわかる。From the results shown in Table 1, when the long fiber reinforced thermoplastic resin molding materials of Examples 1 to 3 and Comparative Examples 1 to 3 were transferred by an air flow, the amount of fluff generated was the same in both Examples and Comparative Examples. The higher the glass content, the higher the glass content. However, comparing the same glass content, it can be seen that the example is considerably less than the comparative example.
【0049】また、実施例1〜3及び比較例1〜3の長
繊維強化熱可塑性樹脂成形材料に、ポリプロピレンを混
合して、ほぼ同じガラス含有率になるようにした試験片
においては、繊維の未分散個数を比較すると、実施例1
〜3のものはいずれも0であるのに対して、比較例1〜
3のものはいずれも未分散のものがあり、長繊維強化熱
可塑性樹脂成形材料としてのガラス繊維含有率が高いも
のほど未分散のものが多いことがわかる。また、引張り
強さ、曲げ強さとも、実施例1〜3の試験片のほうが比
較例1〜3の試験片より優れていることがわかる。Further, in the test pieces in which polypropylene was mixed with the long fiber reinforced thermoplastic resin molding material of Examples 1 to 3 and Comparative Examples 1 to 3 so that the glass content was almost the same, Comparing the undispersed number, Example 1
Comparative Examples 1 to 3 are all 0.
All three have undispersed ones, and the higher the glass fiber content as a long fiber reinforced thermoplastic resin molding material, the more undispersed ones. Further, it can be seen that the test pieces of Examples 1 to 3 are superior to the test pieces of Comparative Examples 1 to 3 in both tensile strength and bending strength.
【0050】[0050]
【発明の効果】以上説明したように、本発明の長繊維強
化熱可塑性樹脂成形材料の製造法によれば、連続した無
機繊維束に熱可塑性樹脂を塗布又は含浸させ、所定の長
さに切断して切断物とした後、この切断物をおおむね接
触しないように分散させた状態で熱可塑性樹脂の溶融温
度以上に加熱し、切断物に塗布又は含浸させた樹脂を溶
融させた後、冷却するので、空気流等の流体により移送
した際の毛羽の発生が少なく、また、成形時にマトリッ
クスとなる熱可塑性樹脂への無機繊維の分散性が向上
し、機械的物性、外観が向上した成形品を得ることがで
きる。As described above, according to the method for producing a long fiber reinforced thermoplastic resin molding material of the present invention, a continuous inorganic fiber bundle is coated or impregnated with a thermoplastic resin, and cut into predetermined lengths. After being cut into cut pieces, the cut pieces are heated to a temperature higher than the melting temperature of the thermoplastic resin in a state of being dispersed so as not to substantially contact, and the resin applied or impregnated to the cut pieces is melted and then cooled. Therefore, there is little generation of fluff when transferred by a fluid such as an air flow, and the dispersibility of the inorganic fibers in the thermoplastic resin that serves as a matrix during molding is improved, resulting in a molded article with improved mechanical properties and appearance. Obtainable.
【図1】本発明の長繊維強化熱可塑性樹脂成形材料の製
造法を実施するための製造ラインの一例を示す概略図で
ある。FIG. 1 is a schematic view showing an example of a production line for implementing a method for producing a long fiber reinforced thermoplastic resin molding material of the present invention.
1 無機繊維束 2 熱可塑性樹脂 3 押出機 4 含浸ダイ 5 ダイス 6 長繊維強化熱可塑性樹脂 7 冷却槽 8 引き取り機 9 ペレタイザー 10a 切断物 10b 長繊維強化熱可塑性樹脂成形材料 11 コンベア 12 加熱器 13 加熱槽 14 冷却器 15 スクレーパー DESCRIPTION OF SYMBOLS 1 Inorganic fiber bundle 2 Thermoplastic resin 3 Extruder 4 Impregnation die 5 Dice 6 Long fiber reinforced thermoplastic resin 7 Cooling tank 8 Pickup machine 9 Pelletizer 10a Cut material 10b Long fiber reinforced thermoplastic resin molding material 11 Conveyor 12 Heater 13 Heating Vessel 14 Cooler 15 Scraper
Claims (3)
布又は含浸させ、所定の長さに切断して切断物とした
後、該切断物をおおむね接触しないように分散させた状
態で、前記熱可塑性樹脂の溶融温度以上に加熱して、前
記切断物に塗布又は含浸させた前記熱可塑性樹脂を溶融
させ、次いで冷却することを特徴とする長繊維強化熱可
塑性樹脂成形材料の製造法。1. A continuous inorganic fiber bundle is coated or impregnated with a thermoplastic resin, cut into predetermined lengths to obtain cut pieces, and the cut pieces are dispersed so as not to come into contact with each other. A method for producing a long-fiber-reinforced thermoplastic resin molding material, comprising heating the thermoplastic resin at a temperature not lower than the melting temperature of the thermoplastic resin to melt the thermoplastic resin applied or impregnated to the cut product, and then cooling.
コンベアを振動させることにより前記切断物をおおむね
接触しないように分散させる請求項1記載の長繊維強化
熱可塑性樹脂成形材料の製造法。2. The method for producing a long-fiber-reinforced thermoplastic resin molding material according to claim 1, wherein the cut material is placed on a conveyor, and the cut material is dispersed so as not to come into contact with the conveyor by vibrating the conveyor. .
い、繊維含有率を50重量%以上とする請求項1又は2記
載の長繊維強化熱可塑性樹脂成形材料の製造法。3. The method for producing a long fiber reinforced thermoplastic resin molding material according to claim 1, wherein a glass fiber bundle is used as the inorganic fiber bundle, and a fiber content is 50% by weight or more.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8227762A JP2985788B2 (en) | 1996-08-09 | 1996-08-09 | Manufacturing method of long fiber reinforced thermoplastic resin molding material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8227762A JP2985788B2 (en) | 1996-08-09 | 1996-08-09 | Manufacturing method of long fiber reinforced thermoplastic resin molding material |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH1052820A JPH1052820A (en) | 1998-02-24 |
JP2985788B2 true JP2985788B2 (en) | 1999-12-06 |
Family
ID=16865986
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8227762A Expired - Fee Related JP2985788B2 (en) | 1996-08-09 | 1996-08-09 | Manufacturing method of long fiber reinforced thermoplastic resin molding material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2985788B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101095776B1 (en) | 2005-12-12 | 2011-12-21 | 주식회사 한국화이바 | Manufacturing method of composite material reinforced with cut or continuos glass fiber filament mat and apparatus for manufacturing the same |
EP2727694B1 (en) * | 2012-11-05 | 2015-01-28 | Toho Tenax Europe GmbH | Deposition device for controlled lowering of reinforcement fibre bundles |
-
1996
- 1996-08-09 JP JP8227762A patent/JP2985788B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH1052820A (en) | 1998-02-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3100567B2 (en) | Long fiber reinforced thermoplastic resin molding material | |
KR920001646B1 (en) | Maruko chiaki | |
JP5059259B2 (en) | Long fiber pellet and method and apparatus for producing long fiber pellet | |
JPH0631821A (en) | Manufacture of thermoplastic composite material | |
CZ20012347A3 (en) | Anhydrous sizing composition for glass fibers intended for reinforcing polymers moldable by injection molding process | |
JP2985788B2 (en) | Manufacturing method of long fiber reinforced thermoplastic resin molding material | |
JP3234877B2 (en) | Method for producing fiber reinforced resin pellets | |
JPH06285855A (en) | Strand for molding of long fiber reinforced synthetic resin product and its pellet | |
JPH0820021A (en) | Manufacture of fiber reinforced thermoplastic resin composition and preformed body using the composition | |
JP2623282B2 (en) | Molding material | |
JPH0416309A (en) | Manufacture of glass fiber reinforced thermoplastic resin forming material | |
US20030215633A1 (en) | Fiber glass product incorporating string binders | |
JP2914469B2 (en) | Method for producing carbon fiber chopped strand | |
JP3724067B2 (en) | Method for producing composite material and mat-like composite material | |
JPH031907A (en) | Production of fiber reinforced composite material | |
JPH05124036A (en) | Production of fiber-reinforced resin body | |
JPH04316807A (en) | Long fiber reinforced resin pellet | |
JP2003192911A (en) | Long-glass-fiber-reinforced thermoplastic resin molding material and method for producing the same | |
JPH0137503B2 (en) | ||
JP4703159B2 (en) | Method for producing long fiber reinforced thermoplastic resin molding material | |
JPH10316771A (en) | Sheet material for composite-fiber-reinforced molding and molding made therefrom | |
JP2018150201A (en) | Glass roving, method for manufacturing the same, and glass fiber reinforced composite resin material | |
JPH10166362A (en) | Manufacture of fiber reinforced thermoplastic resin sheet | |
JP2832206B2 (en) | Thread composite material for thermoplastic resin molding material, molding material from the composite material, and method for producing the composite material | |
JPS62288011A (en) | Manufacture of fiber reinforced resin molding |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |