JPH04316807A - Long fiber reinforced resin pellet - Google Patents
Long fiber reinforced resin pelletInfo
- Publication number
- JPH04316807A JPH04316807A JP8514891A JP8514891A JPH04316807A JP H04316807 A JPH04316807 A JP H04316807A JP 8514891 A JP8514891 A JP 8514891A JP 8514891 A JP8514891 A JP 8514891A JP H04316807 A JPH04316807 A JP H04316807A
- Authority
- JP
- Japan
- Prior art keywords
- resin
- fiber
- reinforced resin
- pellet
- core
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229920005989 resin Polymers 0.000 title claims abstract description 119
- 239000011347 resin Substances 0.000 title claims abstract description 119
- 239000000835 fiber Substances 0.000 title claims abstract description 73
- 239000008188 pellet Substances 0.000 title claims abstract description 69
- 239000012783 reinforcing fiber Substances 0.000 claims abstract description 37
- 239000000654 additive Substances 0.000 claims abstract description 18
- 230000000996 additive effect Effects 0.000 claims abstract 3
- 238000000034 method Methods 0.000 abstract description 36
- -1 antistat Substances 0.000 abstract description 6
- 239000000945 filler Substances 0.000 abstract description 6
- 239000003607 modifier Substances 0.000 abstract description 5
- 239000000463 material Substances 0.000 abstract description 4
- 239000003963 antioxidant agent Substances 0.000 abstract description 2
- 239000003063 flame retardant Substances 0.000 abstract description 2
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 abstract 1
- 230000003078 antioxidant effect Effects 0.000 abstract 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 35
- 239000004917 carbon fiber Substances 0.000 description 35
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 28
- 238000001746 injection moulding Methods 0.000 description 21
- 239000000843 powder Substances 0.000 description 20
- 238000005470 impregnation Methods 0.000 description 17
- 229920005668 polycarbonate resin Polymers 0.000 description 17
- 239000004431 polycarbonate resin Substances 0.000 description 17
- 229920000642 polymer Polymers 0.000 description 15
- 238000004519 manufacturing process Methods 0.000 description 8
- 238000012360 testing method Methods 0.000 description 8
- 238000000465 moulding Methods 0.000 description 7
- 229920005992 thermoplastic resin Polymers 0.000 description 7
- 238000005452 bending Methods 0.000 description 5
- 239000011248 coating agent Substances 0.000 description 5
- 238000000576 coating method Methods 0.000 description 5
- 239000004922 lacquer Substances 0.000 description 5
- 239000011159 matrix material Substances 0.000 description 5
- 239000002904 solvent Substances 0.000 description 5
- 239000000155 melt Substances 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 239000006082 mold release agent Substances 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- WSLDOOZREJYCGB-UHFFFAOYSA-N 1,2-Dichloroethane Chemical compound ClCCCl WSLDOOZREJYCGB-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 239000004677 Nylon Substances 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000003365 glass fiber Substances 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 229920001778 nylon Polymers 0.000 description 2
- 239000000049 pigment Substances 0.000 description 2
- 239000011342 resin composition Substances 0.000 description 2
- 239000004420 Iupilon Substances 0.000 description 1
- 229920001431 Long-fiber-reinforced thermoplastic Polymers 0.000 description 1
- 239000004696 Poly ether ether ketone Substances 0.000 description 1
- 239000004697 Polyetherimide Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004734 Polyphenylene sulfide Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 229920000297 Rayon Polymers 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 239000002216 antistatic agent Substances 0.000 description 1
- 239000004760 aramid Substances 0.000 description 1
- 229920006231 aramid fiber Polymers 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 238000013467 fragmentation Methods 0.000 description 1
- 238000006062 fragmentation reaction Methods 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229920006158 high molecular weight polymer Polymers 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 239000002667 nucleating agent Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000005453 pelletization Methods 0.000 description 1
- 229920001652 poly(etherketoneketone) Polymers 0.000 description 1
- 229920006122 polyamide resin Polymers 0.000 description 1
- 229920001707 polybutylene terephthalate Polymers 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- 229920002530 polyetherether ketone Polymers 0.000 description 1
- 229920001601 polyetherimide Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 229920005672 polyolefin resin Polymers 0.000 description 1
- 229920000069 polyphenylene sulfide Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000010008 shearing Methods 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
Landscapes
- Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
Abstract
Description
【0001】0001
【産業上の利用分野】本発明は射出成形に用いることの
できる2相構造を有する長繊維強化樹脂ペレットに関す
るものであり、特に力学特性に優れた成形体を成形しう
る2相構造を有する長繊維強化樹脂ペレットに関するも
のである。[Field of Industrial Application] The present invention relates to long fiber reinforced resin pellets having a two-phase structure that can be used for injection molding, and particularly to long fiber reinforced resin pellets having a two-phase structure that can be molded into molded products with excellent mechanical properties. This invention relates to fiber-reinforced resin pellets.
【0002】0002
【従来の技術】射出成形に使用される繊維強化熱可塑性
樹脂ペレットは従来ベースレジン、強化用繊維およびそ
の他の添加剤等を溶融混練して得た溶融混合物をダイの
ノズル先端より吐出し、切断してペレット化することに
より製造されていた。しかしながら溶融押出機中で溶融
混合物に加えられる剪断力のため添加された強化用繊維
は短く切断され、この結果得られるペレットを用いて成
形体とする場合、成形体の力学特性その他の特性を発現
する上で問題を有していた。[Prior Art] Fiber-reinforced thermoplastic resin pellets used in injection molding are conventionally made by melt-kneading a base resin, reinforcing fibers, other additives, etc., and then discharging the molten mixture from the nozzle tip of a die and cutting it. It was produced by pelletizing it. However, due to the shearing force applied to the molten mixture in the melt extruder, the reinforcing fibers added are cut short, and when the resulting pellets are used to make a molded product, the mechanical properties and other properties of the molded product are developed. I had a problem in doing so.
【0003】また混合物の均質化を図る観点からもペレ
ット製造に際し、押出操作を2回以上繰り返すことが行
われるが、強化用繊維の長さは著しく短くなる方向であ
った。そして上述のごとき繊維強化樹脂ペレットの製造
に用いられる強化用繊維の原長は数mm〜+数mmのも
のが通常用いられるが、成形体中の平均残留繊維長はガ
ラス繊維の場合約0.3〜0.5mm、炭素繊維の場合
約0.1〜0.2mm程度と一般に言われている。とこ
ろで射出成形法によって得られる成形体の力学特性はマ
トリックス樹脂と強化用繊維の界面での接着が良好であ
る場合、残留する繊維の長さ(臨界繊維長:Lcr以上
の長さを意味する)に著しく依存することが知られてい
るが、現行の形成体の製造法では力学特性を向上させる
ことが限界に達していた。[0003] Furthermore, in order to homogenize the mixture, the extrusion operation is repeated two or more times during pellet production, but this tends to significantly shorten the length of the reinforcing fibers. The original length of the reinforcing fibers used in the production of the above-mentioned fiber-reinforced resin pellets is usually from several mm to several mm, but the average residual fiber length in the molded product is about 0.0 mm in the case of glass fibers. It is generally said to be about 3 to 0.5 mm, and about 0.1 to 0.2 mm in the case of carbon fiber. By the way, the mechanical properties of a molded product obtained by injection molding are determined by the length of the remaining fibers (critical fiber length: meaning a length equal to or greater than Lcr) when the adhesion at the interface between the matrix resin and the reinforcing fibers is good. However, current methods of manufacturing formed bodies have reached their limits in improving mechanical properties.
【0004】近年この繊維強化樹脂ペレットを用いて成
形される成形体の力学特性を改善する方向として長繊維
強化樹脂ペレットの開発が検討されている。すなわち繊
維強化樹脂ペレット中に存在する強化繊維の長さを3〜
13mm程度の長さとし、かつこの強化繊維束の単繊維
それぞれがマトリックス樹脂中に均一分散し、しかも強
化用繊維がペレットの長さ方向に平行に配列した構造と
するものであり、ガラス繊維を中心とした短繊維強化熱
可塑性複合材料(FRTPと略す)の分野において繊維
強化樹脂ペレットの長繊維化と高Vf化が検討されてい
る。[0004] In recent years, the development of long fiber reinforced resin pellets has been studied in order to improve the mechanical properties of molded articles formed using these fiber reinforced resin pellets. In other words, the length of the reinforcing fibers present in the fiber reinforced resin pellet is 3~
The length of the reinforcing fiber bundle is approximately 13 mm, each single fiber of this reinforcing fiber bundle is uniformly dispersed in the matrix resin, and the reinforcing fibers are arranged parallel to the length direction of the pellet. In the field of short fiber-reinforced thermoplastic composite materials (abbreviated as FRTP), the use of longer fibers and higher Vf in fiber-reinforced resin pellets is being studied.
【0005】ところで長繊維強化樹脂ペレットの製造法
は一般に連続繊維の一方向強化熱可塑性樹脂の引抜成形
法をベースとするものであるが、この中で樹脂の供給法
は一般に粉末含浸法、溶液含浸法及び溶融含浸法の三つ
に大別される。第一の粉末含浸法は数μから数百μのポ
リマー微粉末中に強化繊維を浸し、強化繊維を構成する
各単繊維にポリマー微粉末を付着させるか又は開繊した
繊維束に静電粉体塗装機によりチャージさせたポリマー
微粉体を付着させる方法である。ポリマー微粉体を付着
後は繊維束を高温炉又は高温の金型中に引込みポリマー
を融解させ繊維に含浸させる。[0005] By the way, the method for producing long fiber reinforced resin pellets is generally based on the pultrusion molding method of unidirectionally reinforced thermoplastic resin with continuous fibers, but the resin supply method is generally a powder impregnation method or a solution method. It is roughly divided into three types: impregnation method and melt impregnation method. The first powder impregnation method involves immersing reinforcing fibers in polymer fine powder of several microns to several hundred microns, and attaching the polymer fine powder to each single fiber that makes up the reinforcing fibers, or applying electrostatic powder to spread fiber bundles. This is a method of applying charged polymer fine powder using a body coating machine. After adhering the polymer fine powder, the fiber bundle is drawn into a high-temperature furnace or a high-temperature mold to melt the polymer and impregnate the fibers.
【0006】第二の溶液含浸法はポリマーを溶剤に溶解
したラッカー中に、開繊した強化用繊維束を通して含浸
し、しかる後溶剤を乾燥機で飛散させる。このようにし
て得られたポリマー付着繊維束を数本高温の金型内に引
き抜き、繊維束中の各単繊維にポリマーを完全にさせる
方法である。第三の溶融含浸法はもっとも一般的な方法
であり、溶融押出機の先端に取り付けた金型の中にマト
リックス樹脂を押し出し、更にこの金型中に強化用繊維
を引き込んで樹脂を繊維に含浸しようとする方法である
。[0006] In the second solution impregnation method, a reinforcing fiber bundle that has been opened is passed through a lacquer in which a polymer is dissolved in a solvent and impregnated with the lacquer, and then the solvent is scattered in a dryer. In this method, several of the polymer-attached fiber bundles obtained in this way are drawn into a high-temperature mold to completely coat each single fiber in the fiber bundle with the polymer. The third melt impregnation method is the most common method, and involves extruding matrix resin into a mold attached to the tip of a melt extruder, and then drawing reinforcing fibers into this mold to impregnate the fibers with resin. This is the way to try.
【0007】更に長繊維を含有する熱可塑性樹脂組成物
をスクリューの溝の深さが特定以上である射出成形機を
用いて、噴出成形する方法が特開平2−292008号
公報に、またノズルの径が6mm以上の射出成形機を用
いて射出成形する方法が特開平2−292009号公報
にそれぞれ提案されている。Furthermore, JP-A-2-292008 discloses a method of injection molding a thermoplastic resin composition containing long fibers using an injection molding machine in which the depth of the screw groove is greater than a specified value. A method of injection molding using an injection molding machine having a diameter of 6 mm or more is proposed in JP-A-2-292009.
【0008】[0008]
【発明が解決しようとする課題】しかしながら上記FR
TPにおける従来の技術は力学特性中心グレードのFR
TPの改良を試みたものであり、商品としてFRTP成
形体に要求されるその他の要素、作業性、外観、電気特
性、熱特性等を十分に満足する性能に至っていないのが
現状である。また上記の粉末含浸法は安価な高分子量ポ
リマー微粉体の入手が難しく、しかもポリマーの繊維へ
の含浸時に各種の添加剤を同時に供給することも困難で
あるという問題点を有する。[Problem to be solved by the invention] However, the above FR
The conventional technology for TP is FR, which is a grade mainly based on mechanical properties.
This is an attempt to improve TP, and the current situation is that it has not yet achieved performance that satisfactorily satisfies the other elements, workability, appearance, electrical properties, thermal properties, etc. required of FRTP molded products as products. Further, the above-mentioned powder impregnation method has the problem that it is difficult to obtain inexpensive high molecular weight polymer fine powder, and it is also difficult to simultaneously supply various additives at the time of impregnating the polymer into fibers.
【0009】更に上記の溶液含浸法はポリマーの溶解性
の見地から使用ポリマーが制限されるため一般的な方法
とは言い難い。しかもポリマーが溶剤に溶解する場合で
もポリマーの溶解度が約20重量%前後であり、強化用
繊維に付着できるポリマー量を大きくすることができな
い問題点がある。しかも粉末含浸法のケースと同じよう
にポリマーの含浸時に各種添加剤を同時に供給できない
という欠点がある。Furthermore, the solution impregnation method described above cannot be called a general method because the polymers to be used are limited from the viewpoint of polymer solubility. Moreover, even when the polymer is dissolved in a solvent, the solubility of the polymer is around 20% by weight, and there is a problem that the amount of polymer that can be attached to the reinforcing fiber cannot be increased. Moreover, as in the case of the powder impregnation method, there is a drawback that various additives cannot be supplied simultaneously during polymer impregnation.
【0010】更にまた、上記の溶融含浸法においては使
用する熱可塑性樹脂が一般に溶融粘度が高いため(約数
万ポアズ)、強化用繊維を構成する各単繊維まで樹脂で
濡らすことは極めて困難である。さらにこの方法はマト
リックス樹脂に各種添加剤を同時に供給できるという長
所はあるものの、各種添加剤を実際に加えた場合に溶融
粘度はさらに高くなる傾向となり好ましくない。従って
かかる溶融含浸法の場合には樹脂を含浸後更に強化用繊
維を熱ロールもしくは加熱ダイスを用いて再含浸する方
法が用いられているが、かかる再含浸の方法は強化用繊
維を傷つけやすく、毛羽を発生しやすくするため好まし
くない。しかも熱ロールを用いて再含浸する場合には強
化用繊維の巻付などを生じ作業性に問題がある。さらに
樹脂の含浸不良のため得られるペレット中にボイドやす
などの欠陥も残りやすく不都合な面がある。Furthermore, in the above melt impregnation method, since the thermoplastic resin used generally has a high melt viscosity (approximately tens of thousands of poise), it is extremely difficult to wet each single fiber constituting the reinforcing fibers with the resin. be. Further, although this method has the advantage that various additives can be simultaneously supplied to the matrix resin, when various additives are actually added, the melt viscosity tends to further increase, which is not preferable. Therefore, in the case of the melt impregnation method, a method is used in which the reinforcing fibers are impregnated with the resin and then re-impregnated using a heated roll or heated die, but such re-impregnation method tends to damage the reinforcing fibers; This is not preferable because it tends to cause fuzz. Moreover, when re-impregnating using a heated roll, the reinforcing fibers may be wrapped around, resulting in problems in workability. Furthermore, defects such as voids tend to remain in the resulting pellets due to insufficient resin impregnation, which is disadvantageous.
【0011】一方上記特開平2−292008号公報及
び同2−292009号公報にて提案されている射出成
形法は、いずれも複雑な成形条件を必要とするものであ
り、射出成形条件のコントロールが厳しいという問題点
を有する。以上述べた如く、従来技術による長繊維強化
樹脂ペレットは各種の添加剤をも含有した汎用グレード
には程遠いものであり、しかも射出成形法も特殊な条件
を用いなければならないものである。On the other hand, the injection molding methods proposed in JP-A-2-292008 and JP-A-2-292009 require complicated molding conditions, and it is difficult to control the injection molding conditions. The problem is that it is difficult. As mentioned above, the long fiber reinforced resin pellets produced by the prior art are far from general-purpose grade pellets that also contain various additives, and the injection molding method requires special conditions.
【0012】本発明者らは上述したごとき現状に鑑み特
殊な射出成形条件を用いることなしに長繊維強化熱可塑
性樹脂組成物が本来有する優れた性質を十分に活かした
力学的性質に優れた成形品として得られる長繊維強化ペ
レットを得るべく鋭意検討した結果本発明に到達したも
のである。In view of the above-mentioned current situation, the present inventors have developed a molding method with excellent mechanical properties that fully utilizes the excellent properties inherent in a long fiber reinforced thermoplastic resin composition without using special injection molding conditions. The present invention was arrived at as a result of intensive studies aimed at obtaining long fiber reinforced pellets as a product.
【0013】[0013]
【課題を解決するための手段】本発明の要旨とするとこ
ろは、ペレットの長さ方向に強化用繊維が配列した繊維
強化樹脂芯部と該芯部を構成する樹脂と同じ樹脂からな
る繊維未強化樹脂鞘部から構成される2相構造を有する
長繊維強化樹脂ペレットにある。[Means for Solving the Problems] The gist of the present invention is to provide a fiber-reinforced resin core in which reinforcing fibers are arranged in the length direction of a pellet, and a fiber-reinforced resin core made of the same resin as the core. It is a long fiber reinforced resin pellet having a two-phase structure composed of a reinforced resin sheath.
【0014】本発明の2相構造を有する長繊維強化樹脂
ペレットの代表的な構造の概略を図面に基いて説明する
。図1は円柱状構造のペレットの斜視図であり、図2は
矩形状構造のペレットの斜視図であり、図1及び図2に
おいて1は強化用繊維を、2は繊維強化樹脂芯部を、3
は樹脂を、4は繊維未強化樹脂鞘部をそれぞれ示すもの
である。A typical structure of the long fiber reinforced resin pellet having a two-phase structure according to the present invention will be schematically explained with reference to the drawings. FIG. 1 is a perspective view of a pellet with a cylindrical structure, and FIG. 2 is a perspective view of a pellet with a rectangular structure. In FIGS. 1 and 2, 1 represents reinforcing fibers, 2 represents a fiber reinforced resin core, 3
4 indicates a resin, and 4 indicates a fiber-unreinforced resin sheath.
【0015】本発明の最も大きな特徴とするところは従
来のような単に長繊維を熱可塑性樹脂に配合して成形し
た長繊維強化樹脂ペレットとは異なり、上述のごとき繊
維強化樹脂芯部と繊維未強化樹脂鞘部から構成される2
相構造を有している点であり、このような構造とするこ
とによって繊維未強化樹脂鞘部を構成する樹脂が、芯部
中の強化用繊維により多く含浸することができる。しか
もこの鞘部を構成する樹脂中に各種の添加剤を含有させ
ることができ、この結果本発明の長繊維強化樹脂ペレッ
トを用いて射出成形することによって樹脂が均一に強化
用繊維を含浸し、その上各種添加剤が得られる成形体中
に均一に分散され、力学特性、外観、電気特性、熱特性
等に優れた成形体を得ることができるという汎用グレー
ドとして優れた効果を有する。The most significant feature of the present invention is that, unlike the conventional long fiber reinforced resin pellets which are simply formed by blending long fibers into a thermoplastic resin, the present invention has a fiber reinforced resin core as described above and a fiber-free pellet. Composed of reinforced resin sheath part 2
It has a phase structure, and by having such a structure, more resin constituting the fiber-unreinforced resin sheath can be impregnated into the reinforcing fibers in the core. Moreover, various additives can be contained in the resin constituting the sheath, and as a result, by injection molding using the long fiber reinforced resin pellets of the present invention, the resin uniformly impregnates the reinforcing fibers, Furthermore, it has an excellent effect as a general-purpose grade in that various additives are uniformly dispersed in the resulting molded product, and molded products with excellent mechanical properties, appearance, electrical properties, thermal properties, etc. can be obtained.
【0016】本発明において用いられる強化繊維として
はガラス繊維、アラミド繊維、アルミナ繊維、シリコン
カーバイド繊維、チラノ繊維、ピッチ系炭素繊維、PA
N系炭素繊維等が挙げられ、これらのうちPAN系炭素
繊維が好ましい。またPAN系炭素繊維とこれ以外の上
記強化用繊維のハイブリッド使用を行うこともできる。The reinforcing fibers used in the present invention include glass fibers, aramid fibers, alumina fibers, silicon carbide fibers, tyranno fibers, pitch-based carbon fibers, and PA fibers.
Examples include N-based carbon fibers, and among these, PAN-based carbon fibers are preferred. It is also possible to use a hybrid of PAN-based carbon fiber and other reinforcing fibers.
【0017】また本発明において用いられる上記芯部お
よび鞘部を構成する樹脂としてはポリエチレンやポリプ
ロピレン等のポリオレフィン系樹脂,ポリエチレンテレ
フタレートやポリブチレンテレフタレート等のポリエス
テル樹脂,ポリカーボネート樹脂,6−ナイロン,6,
6−ナイロン等のポリアミド樹脂,ポリエーテルイミド
樹脂,ポリエーテルエーテルケトン樹脂,ポリエーテル
ケトンケトン樹脂,ポリフェニレンサルファイド樹脂等
が挙げられる。[0017] The resins constituting the core and sheath used in the present invention include polyolefin resins such as polyethylene and polypropylene, polyester resins such as polyethylene terephthalate and polybutylene terephthalate, polycarbonate resins, 6-nylon, 6,
Examples include polyamide resins such as 6-nylon, polyetherimide resins, polyetheretherketone resins, polyetherketoneketone resins, and polyphenylene sulfide resins.
【0018】本発明を実施するに際しては繊維強化樹脂
芯部の樹脂と繊維未強化樹脂鞘部の樹脂とは同じものを
使用する。これにより強化用繊維への樹脂の含浸がより
向上される。なお繊維強化樹脂芯部における樹脂の含有
量は20〜80重量%の範囲であることが好ましい。こ
の範囲の樹脂含有量であれば長繊維強化樹脂ペレットと
しての流動性を失うことなく、また射出成形時の繊維の
切断を極力抑止した成形が行え、成形体中の平均残留繊
維長を長くすることが可能となるので好ましい。In carrying out the present invention, the same resin is used for the fiber-reinforced resin core and the non-fiber-reinforced resin sheath. This further improves the impregnation of the reinforcing fibers with the resin. Note that the resin content in the fiber-reinforced resin core is preferably in the range of 20 to 80% by weight. If the resin content is within this range, it is possible to perform molding without losing the fluidity of long fiber reinforced resin pellets, and to suppress fiber breakage as much as possible during injection molding, increasing the average residual fiber length in the molded product. This is preferable because it makes it possible to
【0019】更に本発明においては上述したとうり繊維
未強化樹脂鞘部を構成する樹脂中に添加剤を含有させる
ことができるため,従来技術の粉末含浸法,溶液含浸法
,溶融含浸法による長繊維強化樹脂ペレットの製造技術
では、作業上の理由で添加が困難であった充填剤等を長
繊維強化樹脂ペレットに担持させることが可能となり、
これまでの力学特性中心の特殊グレードタイプの長繊維
強化樹脂ペレットに射出成形用ペレットとして要求され
る種々の要求事項を満たす汎用グレードとしての特性を
付与させることができる。Furthermore, in the present invention, additives can be incorporated into the resin constituting the fiber-unreinforced resin sheath as described above. With the manufacturing technology of fiber-reinforced resin pellets, it is now possible to make long fiber-reinforced resin pellets carry fillers, etc., which were difficult to add due to operational reasons.
It is possible to impart the characteristics of a general-purpose grade that satisfies the various requirements required for injection molding pellets to the special grade type long fiber reinforced resin pellets that have so far focused on mechanical properties.
【0020】本発明の実施に際して用いることのできる
添加剤は充填剤,改質剤,離型剤,顔料,酸化防止剤,
帯電防止剤,核形成剤,低収縮剤,難燃剤,比重調整剤
,流動調整剤等が挙げられ、これらは目的に応じて1種
又は2種以上組み合わせて用いることができる。Additives that can be used in carrying out the present invention include fillers, modifiers, mold release agents, pigments, antioxidants,
Examples include antistatic agents, nucleating agents, low shrinkage agents, flame retardants, specific gravity regulators, flow regulators, etc., and these can be used singly or in combination of two or more depending on the purpose.
【0021】次に本発明の2相構造を有する長繊維強化
樹脂ペレットの代表的な製法について、強化用繊維とし
て炭素繊維を用いた場合の例について以下に説明する。
以下の製法例は他の強化用繊維を用いた場合にも適用す
ることができる。Next, a typical method for manufacturing the long fiber reinforced resin pellets having a two-phase structure according to the present invention will be described below with reference to an example in which carbon fibers are used as the reinforcing fibers. The following manufacturing method examples can also be applied when other reinforcing fibers are used.
【0022】まずペレットの長さ方向に強化用繊維が配
列し、かつ樹脂に均一分散した繊維強化樹脂芯部を作成
するわけであるが、この芯部の形成は例えば図3に示す
プロセスで容易に実施することができる。即ち最初に例
えばサイズ量0.5重量%の炭素繊維束を粒径数+μ以
下の熱可塑性樹脂粉末6が入った含浸槽に導き、ここで
繊維に樹脂粉末6を付着させると繊維束5は開繊し拡幅
化する。First, a fiber-reinforced resin core is created in which the reinforcing fibers are arranged in the length direction of the pellet and uniformly dispersed in the resin, but this core can be easily formed by the process shown in FIG. 3, for example. can be implemented. That is, first, for example, a carbon fiber bundle with a size amount of 0.5% by weight is introduced into an impregnation bath containing a thermoplastic resin powder 6 having a particle diameter of not more than a number + μ, and when the resin powder 6 is attached to the fibers, the fiber bundle 5 becomes Spread and widen.
【0023】次に前記樹脂粉末6と同じ熱可塑性樹脂を
溶剤に約10重量%溶解したラッカー7中で前記拡幅化
した繊維束5を浸漬含浸し、しかる後これを熱風乾燥機
8に導き、溶剤を揮散させ樹脂が付着した拡幅炭素繊維
トウを得る。繊維トウに付着する樹脂量はトウの幅と大
体直線関係にあり、開繊トウのトウ幅をコントロールす
ることにより見掛けの付着樹脂量を数%〜80%の範囲
に適宜設定することができるが、この付着樹脂量は記述
したように20〜80重量%の範囲が好ましい。Next, the widened fiber bundle 5 is impregnated by dipping in a lacquer 7 in which about 10% by weight of the same thermoplastic resin as the resin powder 6 is dissolved in a solvent, and then introduced into a hot air dryer 8. The solvent is volatilized to obtain a widened carbon fiber tow to which the resin is attached. The amount of resin attached to the fiber tow has a roughly linear relationship with the width of the tow, and by controlling the tow width of the spread tow, the apparent amount of resin attached can be set appropriately in the range of several percent to 80%. As described above, the amount of the attached resin is preferably in the range of 20 to 80% by weight.
【0024】次にこのようにして得た樹脂付着繊維束5
の数本を図4に示すような押出機9の先端に取り付けた
高温に加熱された金型10の入口11に導く。しかる後
金型の出口12から前記繊維束5を引き出すと同時に、
各種添加剤を添加して別途調製した樹脂ペレットを押出
機9のホッパー(図示されていない)から供給し、溶融
混練したものを押出機9の先端に取り付けた前記金型1
0内に押出し、前記の樹脂付着繊維束5の周りに被覆し
樹脂鞘部を形成し金型10の出口12から引き出す。Next, the resin-attached fiber bundle 5 obtained in this manner
Several of the tubes are guided to the inlet 11 of a mold 10 heated to a high temperature attached to the tip of an extruder 9 as shown in FIG. After that, the fiber bundle 5 is pulled out from the outlet 12 of the mold, and at the same time,
Resin pellets prepared separately by adding various additives are supplied from a hopper (not shown) of an extruder 9, and the resulting mixture is melt-kneaded and attached to the tip of the extruder 9.
The resin-attached fiber bundle 5 is coated around the resin-attached fiber bundle 5 to form a resin sheath, and then pulled out from the outlet 12 of the mold 10.
【0025】なお金型10の入口11に導かれた前記樹
脂付着繊維束5は入口11に導かれた直後互いに溶融接
着されているため、これが芯部となり、その周囲に各種
添加剤を含有する樹脂が上述のごとき金型10内で被覆
され樹脂鞘部となる。この鞘部が形成された2相構造の
連続棒状物は金型10をでた後冷却され、ギロチンカッ
ターで約10mmの長さに切断され2相構造を有する長
繊維強化樹脂ペレットとされる。本発明においては上記
ペレットの調製時に樹脂鞘部の厚みを変えることにより
ペレット全体の樹脂含有量を変えることが可能である。[0025] The resin-attached fiber bundles 5 led to the entrance 11 of the mold 10 are melted and bonded to each other immediately after being led to the entrance 11, so this becomes a core and various additives are contained around it. A resin is coated within the mold 10 as described above to form a resin sheath. After leaving the mold 10, the continuous rod-shaped product having a two-phase structure in which the sheath portion is formed is cooled and cut into lengths of about 10 mm using a guillotine cutter to obtain long fiber-reinforced resin pellets having a two-phase structure. In the present invention, it is possible to change the resin content of the entire pellet by changing the thickness of the resin sheath during the preparation of the pellet.
【0026】上述の長繊維強化樹脂ペレットを調製する
技術に類似する技術として電線被覆技術があるが、かか
る技術によってペレットを調製すると芯部の強化用繊維
は殆んど被覆樹脂に濡れていないので得られるペレット
を用いて射出成形すると繊維の未含浸部での細分切断化
,糸球の発生,成形体の不均質化等種々の問題を生じる
。しかしながら本発明の長繊維強化樹脂ペレットを調製
する際、上述のような方法を採用するとかかる従来技術
が呈するような問題を何等生ずることなく優れたペレッ
トを提供することができる。[0026] There is a wire coating technique that is similar to the technique for preparing long fiber reinforced resin pellets described above, but when pellets are prepared using such a technique, the reinforcing fibers in the core are hardly wetted with the coating resin. When the obtained pellets are used for injection molding, various problems occur such as fragmentation of the unimpregnated portion of the fibers, generation of thread balls, and non-uniformity of the molded product. However, when preparing the long fiber-reinforced resin pellets of the present invention, by employing the method described above, it is possible to provide excellent pellets without any of the problems presented by the prior art.
【0027】なお本発明の2相構造を有する長繊維強化
樹脂ペレット中における強化用繊維の長さはペレットの
長さと実質的に同一であり、ペレットの長さは通常は3
mm以上、好ましくは5mm以上のものが好適に用いら
れる。[0027] The length of the reinforcing fibers in the long fiber reinforced resin pellets having a two-phase structure of the present invention is substantially the same as the length of the pellet, and the length of the pellet is usually 3
Those having a diameter of mm or more, preferably 5 mm or more are suitably used.
【0028】[0028]
【実施例】以下実施例により本発明を具体的に説明する
。
実施例1
強化用繊維としてPAN系炭素繊維(三菱レイヨン(株
)製登録商標パイロフィル TR30,12K)のト
ウ形態でサイズ量0.5重量%のものを用い、図3に示
すようなプロセスにより粒径数十μ以下のポリカーボネ
ート樹脂粉末(三菱ガス化学(株)製登録商標ユーピロ
ンALO71)が入った含浸槽に上記炭素繊維トウを導
き開繊拡幅化した。しかる後この開繊拡幅化した炭素繊
維トウをポリカーボネート樹脂(三菱化成(株)製登録
商標ノバレックス7025A)を1,2−ジクロロエタ
ンに約10重量%溶解したラッカーに浸漬含浸し、その
後含浸した炭素繊維トウを130℃の熱風循環方式の乾
燥機を通すことにより、1,2−ジクロロエタンを揮散
させ乾燥した。更に乾燥後の炭素繊維トウを200〜3
00℃の乾燥機に通してポリカーボネート樹脂の含浸を
改良した。このようにしてポリカーボネート樹脂を含有
する炭素繊維のテープ状物を連続的に製造した。このテ
ープ状物の樹脂付着量は約50重量%であった。[Examples] The present invention will be explained in detail with reference to Examples below. Example 1 PAN-based carbon fiber (Pyrofil TR30, 12K, a registered trademark manufactured by Mitsubishi Rayon Co., Ltd.) in the form of a tow with a size amount of 0.5% by weight was used as a reinforcing fiber, and granules were prepared by the process shown in Figure 3. The carbon fiber tow was introduced into an impregnating tank containing polycarbonate resin powder (registered trademark Iupilon ALO71, manufactured by Mitsubishi Gas Chemical Co., Ltd.) with a diameter of several tens of microns or less, and was spread and expanded. Thereafter, the spread and widened carbon fiber tow was dipped and impregnated in a lacquer prepared by dissolving about 10% by weight of polycarbonate resin (Novarex 7025A, manufactured by Mitsubishi Kasei Corporation) in 1,2-dichloroethane, and then the impregnated carbon The fiber tow was passed through a hot air circulation dryer at 130° C. to volatilize 1,2-dichloroethane and dry it. Furthermore, the carbon fiber tow after drying is 200~3
The impregnation of the polycarbonate resin was improved by passing it through a dryer at 00°C. In this way, carbon fiber tape-like products containing polycarbonate resin were continuously manufactured. The amount of resin attached to this tape-like material was about 50% by weight.
【0029】このようにして得られたポリカーボネート
樹脂が含浸付着した炭素繊維のテープ状物4本を図4に
示すような押出機の先端に取り付けた引抜き用金型の入
口11から供給し出口12から引抜き、供給した4本の
テープ状物を溶融接着させた。一方ポリカーボネート樹
脂に充填剤,改質剤,顔料,離型剤を配合して別途調製
された改質ポリカーボネート樹脂ペレットを押出機のホ
ッパーに供給し溶融混練し、300℃に加熱された引抜
き用金型内に移送供給し、先に溶融接着した炭素繊維の
テープ状物の集合体を金型の先方外部に設けた引抜装置
を通して引き抜くことにより、前記炭素繊維のテープ状
物の集合体の表面に前記改質ポリカーボネート樹脂を連
続的に被覆形成せしめた。Four tape-shaped carbon fibers impregnated with the polycarbonate resin thus obtained are fed from the inlet 11 of a drawing mold attached to the tip of an extruder as shown in FIG. The four supplied tapes were melted and bonded together. On the other hand, modified polycarbonate resin pellets prepared separately by blending fillers, modifiers, pigments, and mold release agents with polycarbonate resin are fed into the hopper of an extruder, melt-kneaded, and then heated to 300°C for drawing. The aggregate of the carbon fiber tape-like material transferred and supplied into the mold and previously melt-bonded is pulled out through a pulling device provided outside the front of the mold, thereby forming a surface of the carbon fiber tape-like material aggregate. The modified polycarbonate resin was continuously coated.
【0030】このようにして得たポリカーボネート樹脂
を含浸付着した炭素繊維のテープ状物の集合体からなる
芯部と、改質ポリカーボネート樹脂層からなる鞘部とか
ら構成される2相構造を有する連続棒を金型を出た後冷
却し、巻取り機に連続的に巻取った。しかる後巻取った
連続棒をギロチンカッターで約10mm毎の長さに切断
し、長さ方向に炭素繊維が配列した炭素繊維強化樹脂芯
部と、樹脂鞘部とから構成される2相構造を有する長炭
素繊維強化樹脂ペレットを得た。A continuous film having a two-phase structure consisting of a core made of an aggregate of carbon fiber tapes impregnated with the polycarbonate resin obtained in this manner and a sheath made of a modified polycarbonate resin layer. After the bar exited the mold, it was cooled and continuously wound on a winder. After that, the wound continuous rod was cut into lengths of approximately 10 mm using a guillotine cutter to obtain a two-phase structure consisting of a carbon fiber-reinforced resin core in which carbon fibers were arranged in the length direction, and a resin sheath. Long carbon fiber reinforced resin pellets were obtained.
【0031】この長炭素繊維強化樹脂ペレットを、射出
成形機により射出成形し試験片を作成した。射出成形時
の成形条件は、圧縮比2,L/D=10(L:スクリュ
ー長,D:スクリュー外径)、スクリュー回転数40r
pm 以下、射出速度4mm/min,ランナーゲート
口を極力大きくした。得られた試験片を用いてJIS
K 7055に準拠した曲げ試験を実施した結果、
曲げ弾性率3ton /mm2 、曲げ強度40kg/
mm2 であった。また試験片中の平均残留炭素繊維長
は3mm、炭素繊維の含有率は40重量%であった。[0031] This long carbon fiber reinforced resin pellet was injection molded using an injection molding machine to prepare a test piece. The molding conditions during injection molding were: compression ratio 2, L/D = 10 (L: screw length, D: screw outer diameter), screw rotation speed 40 r.
pm Below, the injection speed was 4 mm/min and the runner gate opening was made as large as possible. Using the obtained test piece, JIS
As a result of conducting a bending test in accordance with K 7055,
Flexural modulus: 3 ton/mm2, bending strength: 40 kg/
It was mm2. Further, the average residual carbon fiber length in the test piece was 3 mm, and the carbon fiber content was 40% by weight.
【0032】実施例2
実施例1で用いた炭素繊維のトウをスプレッダーロール
で開繊した。次に図5に示す静電粉体塗装機にて実施例
1で用いたのと同様のポリカーボネート樹脂粉末を前記
開繊した炭素繊維トウに50重量%付着せしめた。しか
る後このポリカーボネート樹脂粉末を含浸付着せしめた
炭素繊維トウを240〜300℃に設定した加熱炉を通
過させ、ポリカーボネート樹脂粉末を炭素繊維トウに溶
融付着した。次にこのようにして得られた炭素繊維トウ
4本を実施例1で行った方法と同じ方法で図4に示すよ
うな押出機の先端に取り付けた引抜き金型の入口11か
ら供給し、出口12から引き抜き、供給した4本の炭素
繊維トウを溶融接着させた。Example 2 The carbon fiber tow used in Example 1 was spread using a spreader roll. Next, using the electrostatic powder coating machine shown in FIG. 5, 50% by weight of the same polycarbonate resin powder as that used in Example 1 was applied to the spread carbon fiber tow. Thereafter, the carbon fiber tow impregnated with the polycarbonate resin powder was passed through a heating furnace set at 240 to 300°C to melt and adhere the polycarbonate resin powder to the carbon fiber tow. Next, the four carbon fiber tows thus obtained were supplied from the inlet 11 of the drawing die attached to the tip of the extruder as shown in FIG. 4 in the same manner as in Example 1, and The four supplied carbon fiber tows were pulled out from No. 12 and melted and bonded.
【0033】一方この炭素繊維トウの溶融接着物の表面
に実施例1と同じ方法により実施例1で用いた改質ポリ
カーボネート樹脂を連続的に被覆形成せしめ、ポリカー
ボネート樹脂を含浸付着せしめた芯部と改質ポリカーボ
ネート樹脂層からなる鞘部とから構成される2相構造を
有する連続棒とした。On the other hand, the modified polycarbonate resin used in Example 1 was continuously coated on the surface of the melt-bonded carbon fiber tow by the same method as in Example 1, and a core portion impregnated with the polycarbonate resin was formed. The continuous rod had a two-phase structure consisting of a sheath portion made of a modified polycarbonate resin layer.
【0034】この連続棒が金型を出た後冷却し、巻取り
機に連続的に巻取った。しかる後巻取った連続棒をギロ
チンカッターで約10mm毎の長さに切断し、長さ方向
に炭素繊維が配列した炭素繊維強化樹脂芯部と樹脂鞘部
とから構成される2相構造を有する長炭素繊維強化樹脂
ペレットを得た。この長炭素繊維強化樹脂ペレットを用
いて実施例1と同じ射出成形機および成形条件によって
射出成形し、試験片を作成した。得られた試験片を用い
てJIS K 7055に準拠した曲げ試験を実施
した結果、曲げ弾性率2.8ton /mm2 、曲げ
強度41kg/mm2 であった。また試験片中の平均
炭素繊維長は2.8mm、炭素繊維の含有率は39重量
%であった。[0034] After this continuous rod came out of the mold, it was cooled and continuously wound on a winder. After that, the wound continuous rod is cut into lengths of about 10 mm each with a guillotine cutter, and has a two-phase structure consisting of a carbon fiber reinforced resin core part and a resin sheath part, in which carbon fibers are arranged in the length direction. Long carbon fiber reinforced resin pellets were obtained. Using this long carbon fiber reinforced resin pellet, injection molding was performed using the same injection molding machine and molding conditions as in Example 1 to prepare a test piece. A bending test in accordance with JIS K 7055 was carried out using the obtained test piece, and as a result, the bending elastic modulus was 2.8 ton/mm2 and the bending strength was 41 kg/mm2. Further, the average carbon fiber length in the test piece was 2.8 mm, and the carbon fiber content was 39% by weight.
【0035】[0035]
【発明の効果】本発明の長繊維強化樹脂ペレットは上述
したごとき構造を有するため、(a)従来技術の長繊維
強化ペレット製造技術では困難であった充填剤,改質剤
,離型剤等の添加剤を長繊維強化樹脂ペレットに担持さ
せることが可能であり、これまでの力学特性中心の特殊
グレードタイプの長繊維強化樹脂ペレットに射出成形ペ
レットとして要求される種々の要求事項を満足させる汎
用グレードの特性を付与させることができるようになっ
たこと、(b)樹脂鞘部に添加剤を含有せしめることが
でき、かかる添加剤が射出成形時に長繊維強化樹脂芯部
のマトリックス樹脂とも均一混合されること、(c)長
繊維強化樹脂ペレットとしての流動性を失うことなく、
かつ射出成形時の強化用繊維の切断を極力抑止した成形
が可能であり、(d)総合的に力学特性に優れた成形体
を成形しうることができる等優れた効果を奏する。Effects of the Invention Since the long fiber reinforced resin pellets of the present invention have the above-mentioned structure, (a) fillers, modifiers, mold release agents, etc., which were difficult to produce using conventional long fiber reinforced pellet production techniques, can be removed; Additives can be supported on long fiber reinforced resin pellets, making it a general-purpose product that satisfies the various requirements required for injection molded pellets in addition to special grade types of long fiber reinforced resin pellets focused on mechanical properties. (b) Additives can be contained in the resin sheath, and these additives can be uniformly mixed with the matrix resin of the long fiber reinforced resin core during injection molding. (c) without losing fluidity as long fiber reinforced resin pellets,
In addition, it is possible to perform molding in which cutting of reinforcing fibers is suppressed as much as possible during injection molding, and (d) excellent effects such as being able to mold a molded article with overall excellent mechanical properties are achieved.
【0036】[0036]
【図1,図2】本発明の2相構造を有する長繊維強化樹
脂ペレットの実施態様例の斜視図FIGS. 1 and 2 are perspective views of embodiments of long fiber reinforced resin pellets having a two-phase structure according to the present invention.
【図1】円柱状構造ペレットの斜視図[Figure 1] Perspective view of a cylindrical structured pellet
【図2】矩形状構造ペレットの斜視図[Figure 2] Perspective view of rectangular structured pellet
【図3】繊維強化樹脂芯部を作成するためのプロセスの
一例を示す図[Figure 3] Diagram showing an example of a process for creating a fiber-reinforced resin core
【図4】繊維強化樹脂芯部と樹脂鞘部を合体形成するた
めのプロセスの一例を示す図[Fig. 4] A diagram showing an example of a process for forming a fiber-reinforced resin core and a resin sheath together.
【図5】静電粉体塗装機の概略図[Figure 5] Schematic diagram of electrostatic powder coating machine
1 強化用繊維
2 繊維強化樹脂芯部
3 樹脂
4 樹脂鞘部5 繊維束
6
ポリマー微粉末
7 ラッカー
8 乾燥機9 押出機
10 金型11
金型の強化用繊維入口 12
金型の出口
13 2相構造の長繊維強化樹脂棒14
引抜き装置1 Reinforcing fiber
2 Fiber reinforced resin core 3 Resin
4 Resin sheath part 5 Fiber bundle
6
Fine polymer powder 7 Lacquer
8 Dryer 9 Extruder
10 Mold 11
Mold reinforcing fiber inlet 12
Mold outlet 13 Two-phase structure long fiber reinforced resin rod 14
Pulling device
Claims (3)
列した繊維強化樹脂芯部と該芯部を構成する樹脂と同じ
樹脂からなる繊維未強化樹脂鞘部から構成される2相構
造を有する長繊維強化樹脂ペレット。Claim 1: The pellet has a two-phase structure consisting of a fiber-reinforced resin core in which reinforcing fibers are arranged in the length direction of the pellet, and a non-fiber-reinforced resin sheath made of the same resin as the resin constituting the core. Long fiber reinforced resin pellets.
〜80重量%であることを特徴とする請求項1記載のペ
レット。[Claim 2] The resin content of the fiber reinforced resin core is 20
Pellet according to claim 1, characterized in that it is 80% by weight.
添加剤を含むことを特徴とする請求項1記載のペレット
。3. The pellet according to claim 1, wherein the resin constituting the fiber-unreinforced resin sheath contains an additive.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8514891A JPH04316807A (en) | 1991-04-17 | 1991-04-17 | Long fiber reinforced resin pellet |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8514891A JPH04316807A (en) | 1991-04-17 | 1991-04-17 | Long fiber reinforced resin pellet |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04316807A true JPH04316807A (en) | 1992-11-09 |
Family
ID=13850582
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8514891A Pending JPH04316807A (en) | 1991-04-17 | 1991-04-17 | Long fiber reinforced resin pellet |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04316807A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005263828A (en) * | 2004-03-16 | 2005-09-29 | Asahi Kasei Chemicals Corp | Long fiber-reinforced polyamide resin material |
WO2010074108A1 (en) * | 2008-12-25 | 2010-07-01 | 東レ株式会社 | Molding material, and resin-adhered reinforced fiber bundle |
JP2010150358A (en) * | 2008-12-25 | 2010-07-08 | Toray Ind Inc | Molding material |
JP2010149353A (en) * | 2008-12-25 | 2010-07-08 | Toray Ind Inc | Reinforced fiber bundle |
JP2013107979A (en) * | 2011-11-21 | 2013-06-06 | Daicel Polymer Ltd | Resin composition |
WO2015115408A1 (en) * | 2014-02-03 | 2015-08-06 | 東レ株式会社 | Fiber-reinforced multilayered pellet, molded article molded therefrom, and method for producing fiber-reinforced multilayered pellet |
-
1991
- 1991-04-17 JP JP8514891A patent/JPH04316807A/en active Pending
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005263828A (en) * | 2004-03-16 | 2005-09-29 | Asahi Kasei Chemicals Corp | Long fiber-reinforced polyamide resin material |
WO2010074108A1 (en) * | 2008-12-25 | 2010-07-01 | 東レ株式会社 | Molding material, and resin-adhered reinforced fiber bundle |
JP2010150358A (en) * | 2008-12-25 | 2010-07-08 | Toray Ind Inc | Molding material |
JP2010149353A (en) * | 2008-12-25 | 2010-07-08 | Toray Ind Inc | Reinforced fiber bundle |
CN102245362A (en) * | 2008-12-25 | 2011-11-16 | 东丽株式会社 | Molding material, and resin-adhered reinforced fiber bundle |
US9731440B2 (en) | 2008-12-25 | 2017-08-15 | Toray Industries, Inc. | Molding material and resin-adhered reinforcing fiber bundle |
JP2013107979A (en) * | 2011-11-21 | 2013-06-06 | Daicel Polymer Ltd | Resin composition |
WO2015115408A1 (en) * | 2014-02-03 | 2015-08-06 | 東レ株式会社 | Fiber-reinforced multilayered pellet, molded article molded therefrom, and method for producing fiber-reinforced multilayered pellet |
JPWO2015115408A1 (en) * | 2014-02-03 | 2017-03-23 | 東レ株式会社 | FIBER-REINFORCED MULTILAYER PELLET, MOLDED ARTICLE FORMED BY THE SAME, AND METHOD FOR PRODUCING FIBER-REINFORCED MULTILAYER PELLET |
US10391676B2 (en) | 2014-02-03 | 2019-08-27 | Toray Industries, Inc. | Fiber-reinforced multilayered pellet, molded article molded therefrom, and method of producing fiber-reinforced multilayered pellet |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6090319A (en) | Coated, long fiber reinforcing composite structure and process of preparation thereof | |
KR101578236B1 (en) | Process for producing long glass fibre-reinforced thermoplastic compositions | |
US6846857B1 (en) | Long fiber-reinforced thermoplastics material and a method for producing the same | |
GB1592310A (en) | Glass fibre reinforced thermoplastic resin moulding material | |
JPH0376839A (en) | Composite material capable of controlling characteristics by pre-impregnation of continuous fiber | |
JP5614187B2 (en) | Manufacturing method of composite reinforcing fiber bundle and molding material using the same | |
EP1105277B1 (en) | Coated, long fiber reinforcing composite structure and process of preparation thereof | |
FI91774B (en) | Injection molding and process for making it and injection molding | |
US20030039834A1 (en) | Low friction fibers, methods for their preparation and articles made therefrom | |
JPH04316807A (en) | Long fiber reinforced resin pellet | |
JPH06285855A (en) | Strand for molding of long fiber reinforced synthetic resin product and its pellet | |
JPH0365311A (en) | Carbon fiber chop | |
JP2623282B2 (en) | Molding material | |
KR940002557B1 (en) | Elongated molding granules and injection-molding process empolying them | |
JPH02125706A (en) | Manufacture of carbon fiber bundle | |
JPH06313232A (en) | Production of carbon fiber chopped strand | |
JPS61220808A (en) | Manufacture of prepreg | |
JP5161731B2 (en) | Aliphatic polyester resin pellets and molded articles obtained by molding them | |
JP2002129035A (en) | Fiber-composite thermoplastic resin | |
JPH04197726A (en) | Manufacture of long fiber reinforced composite material | |
JPH0647740A (en) | Continuous glass filament thermoplastic resin pellet | |
JP2985788B2 (en) | Manufacturing method of long fiber reinforced thermoplastic resin molding material | |
JP2007162172A (en) | Resin-coated reinforcing fiber yarn and thermoplastic resin molded article comprising the same | |
CN114806010A (en) | Composite sheet | |
JPH01282364A (en) | Production of collected reinforcing fiber and short fiber chip therefrom |