JP2642971B2 - Fruit and vegetable ingredient measuring device - Google Patents

Fruit and vegetable ingredient measuring device

Info

Publication number
JP2642971B2
JP2642971B2 JP30096588A JP30096588A JP2642971B2 JP 2642971 B2 JP2642971 B2 JP 2642971B2 JP 30096588 A JP30096588 A JP 30096588A JP 30096588 A JP30096588 A JP 30096588A JP 2642971 B2 JP2642971 B2 JP 2642971B2
Authority
JP
Japan
Prior art keywords
light
vegetables
fruits
optical fiber
semiconductor sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP30096588A
Other languages
Japanese (ja)
Other versions
JPH02147940A (en
Inventor
健一 米田
準 中村
武夫 堀田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP30096588A priority Critical patent/JP2642971B2/en
Publication of JPH02147940A publication Critical patent/JPH02147940A/en
Application granted granted Critical
Publication of JP2642971B2 publication Critical patent/JP2642971B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/02Food
    • G01N33/025Fruits or vegetables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/4738Diffuse reflection, e.g. also for testing fluids, fibrous materials
    • G01N21/474Details of optical heads therefor, e.g. using optical fibres

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、青果物の選果機等に適用される青果物の成
分測定装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a fruit and vegetable component measuring device applied to a fruit and vegetable sorting machine and the like.

〔従来の技術〕[Conventional technology]

従来の選果機等に適用される青果物の内容成分の測定
は、青果物の形状要素より成分を間接的に推定したり、
685nmの波長の光を用いてクロロフイル(葉緑素)の濃
度を測定し熟度や糖度を間接的に判定するものであつ
た。
Measurement of the components of fruits and vegetables applied to conventional fruit sorting machines, etc., indirectly estimate the components from the shape elements of fruits and vegetables,
Using a light having a wavelength of 685 nm, the concentration of chlorophyll (chlorophyll) was measured to judge the ripeness and sugar content indirectly.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

従来の青果物の内容成分の測定においては、いずれも
青果物の成分を間接的に測定するもので、測定誤差が大
きかつた。
In the conventional measurement of the components of fruits and vegetables, the components of the fruits and vegetables are indirectly measured, and the measurement error is large.

本発明は、青果物の内容成分、たとえば、糖度、酸
度、熟度等を非破壊的に直接測定できる装置を提供しよ
うとするものである。
An object of the present invention is to provide a device capable of directly and non-destructively measuring content components of fruits and vegetables, for example, sugar content, acidity, ripeness and the like.

〔課題を解決するための手段〕[Means for solving the problem]

(1)本発明の青果物の成分測定装置は、投光装置より
近赤外線を入光し透過光の波長が選択可能である回転可
能な厚さが一定でない円盤状のフィルタ、同フィルタの
透過光を一端より入光し他端より青果物に照射する第1
の光ファイバ、上記青果物からの反射光を第1の光ファ
イバと同軸となっている一端より入光し他端より一方の
半導体センサに照射する第2の光ファイバ、上記フィル
タの透過光の一部を参照光として一端より入光し他端よ
り反射物体に照射する第3の光ファイバ、上記反射物体
からの反射光を第3の光ファイバと同軸となっている一
端より入光し他端より他方の半導体センサに照射する第
4の光ファイバ、および上記一方の半導体センサと他方
の半導体センサより吸光度信号を入力して青果物の内容
成分を演算する演算部を備えたことを特徴としている。
(1) The component measuring device for fruits and vegetables according to the present invention is a rotatable disk-shaped filter having a non-constant thickness, which is capable of selecting near-infrared rays from a light projecting device and selecting a wavelength of transmitted light, and a transmitted light of the filter. Light from one end and irradiates fruits and vegetables from the other end
An optical fiber, a second optical fiber that receives reflected light from the fruit and vegetable from one end coaxial with the first optical fiber and irradiates one semiconductor sensor from the other end, and one of transmitted light of the filter. A third optical fiber that receives light from one end as a reference light and irradiates the reflecting object from the other end, and receives reflected light from the reflecting object from one end coaxial with the third optical fiber and receives the other end. A fourth optical fiber for irradiating the other semiconductor sensor, and an arithmetic unit for inputting an absorbance signal from the one semiconductor sensor and the other semiconductor sensor to calculate a content component of the fruits and vegetables are provided.

(2)本発明は、上記発明(1)に記載の青果物の成分
測定装置において、上記フィルタが透過する透過光の糖
度と相関の高い吸光度を持つ波長域として、1300〜1320
nm、1660〜1680nm及び2170〜2190nmの3波長域を用いる
ことを特徴としている。
(2) The present invention provides the apparatus for measuring a component of fruits and vegetables according to the invention (1), wherein the wavelength range having an absorbance having a high correlation with the sugar content of the transmitted light transmitted through the filter is 1300 to 1320.
nm, 1660-1680 nm, and 2170-2190 nm.

〔作用〕[Action]

上記発明(1)において、投光装置より投光された近
赤外線はフィルタに入光し、厚さが一定でない円盤状の
フィルタを回転させることにより、これが1回転する間
に波長が一定の範囲内で連続して変化する光を透過す
る。上記透過光は、第1の光ファイバを介して青果物に
照射され、その一部は青果物の糖度に比例して吸収さ
れ、残りは反射される。
In the above invention (1), the near-infrared light emitted from the light projecting device enters the filter, and by rotating the disc-shaped filter having a non-constant thickness, the wavelength is within a certain range during one rotation. Transmits light that changes continuously within. The transmitted light is radiated to the fruits and vegetables via the first optical fiber, and a part thereof is absorbed in proportion to the sugar content of the fruits and vegetables, and the rest is reflected.

上記反射光は、第1の光ファイバの他端とその一端が
同軸の第2の光ファイバを介して一方の半導体センサを
照射し、同センサはこの反射光より青果物の吸光度を測
定する。
The reflected light irradiates one semiconductor sensor via the other end of the first optical fiber and a second optical fiber whose one end is coaxial, and the sensor measures the absorbance of the fruit or vegetable from the reflected light.

また、上記フィルタを透過した透過光は、第3の光フ
ァイバを介して反射物体を照射し、その反射光が第3の
光ファイバの他端とその一端が同軸の第4の光ファイバ
を介して他方の半導体センサを照射し、同センサは反射
物体の吸光度を測定する。
The transmitted light transmitted through the filter irradiates a reflecting object through a third optical fiber, and the reflected light is transmitted through a fourth optical fiber whose one end is coaxial with the other end of the third optical fiber. Irradiates the other semiconductor sensor, which measures the absorbance of the reflecting object.

なお、上記フィルタより出力されその回転により波長
が連続して変化する光は受光面積が極めて小さい光ファ
イバにより受光されるため、分解能の高い光を青果物に
照射することができる。
Note that light output from the filter and whose wavelength continuously changes due to its rotation is received by an optical fiber having an extremely small light receiving area, so that light with a high resolution can be applied to fruits and vegetables.

上記一方の半導体センサと他方の半導体センサは、そ
れぞれの吸光度信号を演算部に入力される。
Each of the one semiconductor sensor and the other semiconductor sensor inputs its absorbance signal to a calculation unit.

上記青果物と反射物体の吸光度は環境条件により同様
に変化するため、上記演算部は、青果物の吸光度を反射
物体の吸光度により補正し、青果物の糖度を求める。
Since the absorbance of the fruits and vegetables and the reflection object change similarly depending on the environmental conditions, the arithmetic unit corrects the absorbance of the fruits and vegetables by the absorbance of the reflection object to obtain the sugar content of the fruits and vegetables.

上記により、青果物を傷つけずに1個当り0.5秒程度
の処理スピードで迅速に、青果物の糖度、酸度等の内容
成分を精度よく測定できるようになった。
As described above, it has become possible to quickly and accurately measure the content components such as sugar content and acidity of fruits and vegetables without processing the fruits and vegetables at a processing speed of about 0.5 seconds per one.

上記発明(2)において、1300〜1320nm、1660〜1680
nm及び2170〜2190nmの波長域の光は、糖によく吸収さ
れ、この吸光度が糖度と高い相関を有するため、この波
長域の光を青果物に照射することにより、高精度の成分
測定が可能となる。
In the above invention (2), 1300 to 1320 nm, 1660 to 1680
Light in the wavelength range of nm and 2170 to 2190 nm is well absorbed by sugar, and since this absorbance has a high correlation with the sugar content, irradiating the light in this wavelength range to fruits and vegetables enables highly accurate component measurement. Become.

〔実施例〕〔Example〕

本発明の一実施例を第1図に示す。 One embodiment of the present invention is shown in FIG.

第1図に示す本実施例は、近赤外線2を発光する投光
装置1、上記近赤外線を集光レンズ3を介して入光する
回転可能な厚さが一定でない円盤状のフイルタ4、同フ
イルタ4を透過した特定の波長の近赤外線5の大部分を
一端より入光し他端より青果物8に照射する光フアイバ
6、上記青果物8からの反射光を一端より入光し他端よ
り半導体センサ10に照射する同軸フアイバ9、上記フイ
ルタ4を透過した近赤外線5の残りを一端より入光し他
端よりテフロン球11に照射する光フアイバ7、上記テフ
ロン球11からの反射光を一端より入光し他端より半導体
センサ13に照射する同軸フアイバ12、および上記半導体
センサ10,13よりそれぞれ電線14,15を介して吸光度信号
が入力され電線17より演算結果の信号が出力される演算
部17を備えており、上記光フアイバ6と7及び同軸フア
イバ9と12はそれぞれ長さと材質が同じものである。
The embodiment shown in FIG. 1 includes a light projecting device 1 that emits near-infrared rays 2, a rotatable disk-shaped filter 4 that enters the near-infrared rays via a condenser lens 3, and a rotatable filter 4 having the same thickness. A light fiber 6 that receives most of the near-infrared ray 5 having a specific wavelength transmitted through the filter 4 from one end and irradiates the fruits and vegetables 8 from the other end, and receives reflected light from the fruits and vegetables 8 from one end and semiconductors from the other end. A coaxial fiber 9 for irradiating the sensor 10, an optical fiber 7 for irradiating the rest of the near-infrared ray 5 transmitted through the filter 4 from one end and irradiating the Teflon sphere 11 from the other end, and a reflected light from the Teflon sphere 11 from one end. A coaxial fiber 12 that receives light and irradiates the semiconductor sensor 13 from the other end; and a calculation unit that receives an absorbance signal from the semiconductor sensors 10 and 13 via wires 14 and 15 and outputs a calculation result signal from the wire 17. 17 Drivers 6 and 7 and coaxial fiber 9 and 12 are respectively the length and material same.

上記において、投光装置1より投光された近赤外線2
は、集光レンズ3により絞られフイルタ4に集光され
る。
In the above, the near-infrared ray 2 emitted from the light emitting device 1
Is focused by the condenser lens 3 and condensed on the filter 4.

上記フイルタ4は回転させて特定波長の光を選択する
ことができ、フイルタ4を透過し分光されたある特定の
波長の近赤外線5は大部分が光フアイバ6によつて青果
物8に照射される。また、上記フイルタ4を透過した近
赤外線5の残りは、参照光として光フアイバ7によりテ
フロン球11に照射される。
The filter 4 can be rotated to select light of a specific wavelength, and the near infrared rays 5 of a specific wavelength transmitted through the filter 4 and dispersed are mostly radiated to the fruits and vegetables 8 by the optical fiber 6. . The rest of the near-infrared ray 5 transmitted through the filter 4 is irradiated on the Teflon sphere 11 by the optical fiber 7 as reference light.

上記光フアイバ6によつて青果物8に照射された光
は、青果物8の内部を透過しある特定の波長の光の一部
が青果物8の糖(桃の場合、80%がシヨ糖)を構成する
官能基(例えばCH2,CH等)に共振し、糖度に比例して吸
収される。
The light irradiating the fruits and vegetables 8 by the optical fiber 6 transmits through the inside of the fruits and vegetables 8 and a part of the light having a specific wavelength constitutes the sugar of the fruits and vegetables 8 (in the case of peach, 80% is sugar). Resonate with the functional groups (eg, CH 2 , CH, etc.) and are absorbed in proportion to the sugar content.

上記糖度に比例して吸光された光以外は、桃の内部か
ら反射され同軸フアイバ9により半導体センサ10に導か
れ、その反射光の量により桃の吸光度が測定される。
Light other than the light absorbed in proportion to the sugar content is reflected from the inside of the peach and guided to the semiconductor sensor 10 by the coaxial fiber 9, and the absorbance of the peach is measured based on the amount of the reflected light.

一般に物質に光が照射されると、物質は光を吸収し物
質を構成する原子のエネルギー状態は、低いエネルギー
状態(基底状態)から高いエネルギー状態(励起状態)
へ遷移する。
Generally, when a material is irradiated with light, the material absorbs light, and the energy state of atoms constituting the material changes from a low energy state (ground state) to a high energy state (excitation state).
Transition to.

上記光の吸収の強さと吸収物質の濃度の関係は、ピア
ーの法則により次式(1)で表わすことができる。
The relationship between the intensity of light absorption and the concentration of the absorbing substance can be expressed by the following equation (1) according to Pier's law.

ここで、α:物質の吸収係数、CX:吸収物質の濃度、I
0:物質中に照射されるエネルギー、IX:物質より反射さ
れ出力されるエネルギー 上記式(1)は、α=2.3εとおき、次式(2)に変
換される。
Where α: absorption coefficient of the substance, C X : concentration of the absorbing substance, I
0 : energy irradiated into the substance, IX : energy reflected from the substance and output The above equation (1) is converted to the following equation (2) with α = 2.3ε.

log(I0/IX)=εCX (2) また、上記テフロン球11に参照光として照射された近
赤外線5の残りは、上記と同様にその一部が反射され、
同軸フアイバ12を介して半導体センサ13に導かれ、半導
体センサ13にてテフロン球11の吸光度が測定される。
log (I 0 / I X ) = εC X (2) Further, a part of the rest of the near-infrared ray 5 radiated as the reference light to the Teflon sphere 11 is partially reflected as described above,
The light is guided to the semiconductor sensor 13 via the coaxial fiber 12, and the semiconductor sensor 13 measures the absorbance of the Teflon sphere 11.

上記青果物8の吸光度信号は電線14を経て、又テフロ
ン球の吸光度信号は電線15を経て演算部16に導かれる。
The absorbance signal of the fruits and vegetables 8 is led to the arithmetic unit 16 via the electric wire 14, and the absorbance signal of the Teflon bulb is led to the arithmetic unit 16 via the electric wire 15.

上記青果物8とテフロン球11の吸光度は、環境条件
(温度、湿度等)により同様に変化するため、上記演算
部16では(2)式に補正を加えた(3)式を用いて演算
が行われ、環境条件(温度、湿度等)、フイルター、フ
アイバー等による微少変化が補正され、電線17よりOD値
信号が出力され、糖度の濃度が求められる。
Since the absorbances of the fruits and vegetables 8 and the Teflon spheres 11 similarly vary depending on the environmental conditions (temperature, humidity, etc.), the arithmetic unit 16 performs an arithmetic operation using the corrected expression (2) and the expression (3). Then, minute changes due to environmental conditions (temperature, humidity, etc.), filters, fibers, and the like are corrected, an OD value signal is output from the electric wire 17, and the concentration of sugar content is obtained.

OD=log(I0・R/IX)=ε′CX (3) ここでR:テフロン球より反射してくるエネルギー、
ε′:環境条件等補正された吸光係数、OD:光学密度 上記OD値は吸収物質の濃度に比例するものであり、か
つ濃度がC1,C2…、吸光係数がそれぞれε1…の複
数の物質を含む物質では、OD値はそれぞれの物質のOD値
の和で表わされる。
OD = log (I 0 · R / I X ) = ε'C X (3) where R: energy reflected from the Teflon sphere,
ε ′: extinction coefficient corrected for environmental conditions, etc., OD: optical density The above OD value is proportional to the concentration of the absorbing substance, and the concentrations are C 1 , C 2 ..., and the extinction coefficients are ε 1 , ε 2 , respectively. For a substance containing a plurality of substances, the OD value is represented by the sum of the OD values of the respective substances.

上記ピアーの法則にもとづく近赤外線の照射実験を桃
について行つた結果を次に示す。
The results of a near-infrared irradiation experiment based on Peer's law on peach are shown below.

上記投光装置1より投光された近赤外線2を上記フイ
ルタ4により1310nm,1670nm,2180nmの波長の光とし、ま
ず数個の桃について上記光を照射してI0=1としたとき
のR,IXを測定し、更に上記それぞれの光を当てた部分の
糖度CXをブリツクス計により測定し、上記I0=1,R,IX,C
Xよりε′を求めた。次に100個の桃について、上記光を
照射してI0=1としたときのR,IXを測定し、上記数個の
桃より求めたε′とにより算定糖度C′を算出し、更
にブリツクス計により実測糖度CXを測定した。上記算定
糖度C′と実測糖度CXと比較結果は、誤差の平均値即
ち平均誤差は0.42%であり、また算定糖度C′と実測
糖度CXをそれぞれ縦軸と横軸としてプロツトしたときの
相関関係を示し、相関関係が高い場合には1に近くなる
重相関係数は0.93であり、近赤外線による糖度測定の糖
度は良好であつた。
The near-infrared 2 which is projected from the light projection apparatus 1 1310 nm by the filter 4, 1670 nm, and light having a wavelength of 2180nm, R when the I 0 = 1 for first several peaches by irradiating the light , I X, and the sugar content C X of each of the portions exposed to light was measured by a Brix meter, and the above I 0 = 1, R, I X , C
Ε 'was determined from X. Next, for 100 peaches, R and IX were measured when the above light was irradiated and I 0 = 1, and the calculated sugar content C ′ X was calculated from ε ′ obtained from the above several peaches. The measured sugar content CX was measured with a Brix meter. The calculated brix C 'X and the measured Brix C X comparison result, the average value or average error of the error is 0.42%, and calculated sugar content C' was plotted the X and measured sugar content C X as vertical and horizontal axes, respectively When the correlation was high, the multiple correlation coefficient approaching 1 was 0.93, and the sugar content in the sugar content measurement by near-infrared light was good.

なお、参照光による補正を行わず、桃の反射光のみを
測定し(2)式より算定糖度C′を算出したところ、
算出糖度C′と測定糖度CXの平均誤差は0.62%、重相
関係数は0.89であり、参照光により補正した場合に比
べ、平均誤差が大きく相関関係が低かつた。
Note that without performing the correction by the reference beam, to measure only the peach reflected light (2) was calculated to calculate sugar content C 'X from equation
The average error between the calculated sugar content C ′ X and the measured sugar content C X was 0.62%, and the multiple correlation coefficient was 0.89. The average error was large and the correlation was low as compared with the case where the correction was performed using the reference light.

上記実験によつて、近赤外線を光フアイバを介して青
果物に照射し、その吸光度より内容成分を非破壊測定す
るときに、フイルタを通過した光の1部を上記青果物に
用いたものと同じ材質及び長さのフアイバにより参照光
として取り出し、テフロン球に当て、その吸光度を補正
に用いることにより精度の高い測定ができることが判明
した。
According to the above experiment, when near-infrared rays are irradiated on fruits and vegetables through an optical fiber and the non-destructive measurement of content components is performed based on the absorbance, the same material as that used for the fruits and vegetables with a part of the light passing through the filter is used. It was found that high-precision measurement was possible by taking out as a reference light with a fiber having a length and irradiating it to a Teflon sphere and using its absorbance for correction.

また、上記近赤外線2の波長を更に変化さてて上記測
定を行つたところ、波長が1,300〜1,320nm,1,660〜1,68
0nm,2,170〜2,190nmの範囲が適当であることが判つた。
Further, when the above measurement was performed with the wavelength of the near infrared ray 2 further changed, the wavelength was found to be 1,300 to 1,320 nm, 1,660 to 1,68
A range of 0 nm, 2,170-2,190 nm has been found to be appropriate.

上記により、青果物を傷つけずに1個当り0.5秒程度
の処理スピードで迅速に、青果物の糖度、酸度等の内容
成分を精度よく測定できるようになつた。
As described above, the components such as the sugar content and the acidity of the fruits and vegetables can be measured accurately with a processing speed of about 0.5 seconds per one without damaging the fruits and vegetables.

〔発明の効果〕〔The invention's effect〕

本発明は、投光装置より投光されフイルタを透過した
近赤外線を第1の光フアイバを介して青果物に照射し、
その反射光を第2の光フアイバを介して一方の半導体セ
ンサに照射し、また上記フイルタを透過した近赤外線の
一部を第3の光フアイバを介して反射物体に照射し、そ
の反射光を第4の光フアイバを介して他方の半導体セン
サに照射し、上記一方の半導体センサと他方の半導体セ
ンサより吸光度信号を演算部に入力することによつて、
青果物を傷つけずに1個当り0.5秒程度の処理スピード
で迅速に、青果物の糖度、酸度等の内容成分を精度よく
測定できるようになつた。
The present invention irradiates fruits and vegetables with near-infrared light emitted from a light emitting device and transmitted through a filter through a first optical fiber,
The reflected light is radiated to one of the semiconductor sensors via a second optical fiber, and a part of the near-infrared light transmitted through the filter is radiated to a reflecting object via a third optical fiber, and the reflected light is emitted. By irradiating the other semiconductor sensor via the fourth optical fiber and inputting an absorbance signal from the one semiconductor sensor and the other semiconductor sensor to a calculation unit,
The components such as sugar content and acidity of fruits and vegetables can be measured accurately with a processing speed of about 0.5 seconds per one without damaging the fruits and vegetables.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の一実施例の説明図である。 1……投光装置、2……近赤外線、 3……集光レンズ、4……フイルタ、 5……特定波長の近赤外線、 6,7……光フアイバ、8……青果物、 9……同軸フアイバ、10……半導体センサ、 11……テフロン球、12……同軸フアイバ、 13……半導体センサ、14,15……電線、 16……演算部、17……電線。 FIG. 1 is an explanatory view of one embodiment of the present invention. DESCRIPTION OF SYMBOLS 1 ... Projection device, 2 ... Near infrared light, 3 ... Condensing lens, 4 ... Filter, 5 ... Near infrared light of specific wavelength, 6, 7 ... Optical fiber, 8 ... Fruits and vegetables, 9 ... Coaxial fiber, 10… Semiconductor sensor, 11… Teflon sphere, 12… Coaxial fiber, 13… Semiconductor sensor, 14,15… Wire, 16… Calculator, 17… Wire.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭53−15890(JP,A) 特開 昭54−92790(JP,A) 特開 昭63−11841(JP,A) ──────────────────────────────────────────────────続 き Continuation of front page (56) References JP-A-53-15890 (JP, A) JP-A-54-92790 (JP, A) JP-A-63-11841 (JP, A)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】投光装置より近赤外線を入光し透過光の波
長が選択可能である回転可能な厚さが一定でない円盤状
のフィルタ、同フィルタの透過光を一端より入光し他端
より青果物に照射する第1の光ファイバ、上記青果物か
らの反射光を第1の光ファイバと同軸となっている一端
より入光し他端より一方の半導体センサに照射する第2
の光ファイバ、上記フィルタの透過光の一部を参照光と
して一端より入光し他端より反射物体に照射する第3の
光ファイバ、上記反射物体からの反射光を第3の光ファ
イバと同軸となっている一端より入光し他端より他方の
半導体センサに照射する第4の光ファイバ、および上記
一方の半導体センサと他方の半導体センサより吸光度信
号を入力して青果物の内容成分を演算する演算部を備え
たことを特徴とする青果物の成分測定装置。
1. A rotatable disk-shaped filter that receives near-infrared light from a light projecting device and has a selectable wavelength of transmitted light, and has a non-constant rotatable thickness. A first optical fiber for irradiating more fruits and vegetables, and a second optical fiber for irradiating reflected light from the above fruits and vegetables from one end coaxial with the first optical fiber and irradiating one semiconductor sensor from the other end.
An optical fiber, a third optical fiber that enters a part of the light transmitted through the filter as reference light from one end and irradiates a reflective object from the other end, and coaxially reflects the reflected light from the reflective object with the third optical fiber. A fourth optical fiber that receives light from one end and irradiates the other semiconductor sensor from the other end, and absorbs light signals from the one semiconductor sensor and the other semiconductor sensor to calculate the content component of the fruits and vegetables An apparatus for measuring ingredients of fruits and vegetables, comprising a calculation unit.
【請求項2】特許請求の範囲(1)に記載の青果物の成
分測定装置において、上記フィルタが透過する透過光の
糖度と相関の高い吸光度を持つ波長域として、1300〜13
20nm、1660〜1680nm及び2170〜2190nmの3波長域を用い
ることを特徴とする青果物の成分測定装置。
2. The fruit and vegetable component measuring device according to claim 1, wherein the wavelength range having an absorbance having a high correlation with the sugar content of the transmitted light transmitted through the filter is 1300 to 13
An apparatus for measuring a component of fruits and vegetables, characterized by using three wavelength ranges of 20 nm, 1660 to 1680 nm and 2170 to 2190 nm.
JP30096588A 1988-11-30 1988-11-30 Fruit and vegetable ingredient measuring device Expired - Lifetime JP2642971B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30096588A JP2642971B2 (en) 1988-11-30 1988-11-30 Fruit and vegetable ingredient measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30096588A JP2642971B2 (en) 1988-11-30 1988-11-30 Fruit and vegetable ingredient measuring device

Publications (2)

Publication Number Publication Date
JPH02147940A JPH02147940A (en) 1990-06-06
JP2642971B2 true JP2642971B2 (en) 1997-08-20

Family

ID=17891208

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30096588A Expired - Lifetime JP2642971B2 (en) 1988-11-30 1988-11-30 Fruit and vegetable ingredient measuring device

Country Status (1)

Country Link
JP (1) JP2642971B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2517858B2 (en) * 1991-10-04 1996-07-24 農林水産省食品総合研究所長 Nondestructive measurement method of fruit sugar content by near infrared transmission spectrum
JPH0650890A (en) * 1992-03-16 1994-02-25 Agency Of Ind Science & Technol Estimation method for functional group
US5708271A (en) * 1994-12-28 1998-01-13 Sumitomo Metal Mining Co., Ltd. Non-destructive sugar content measuring apparatus
US5844678A (en) * 1995-06-29 1998-12-01 Sumitomo Metal Mining Co. Ltd. Non-destructive taste characteristics measuring apparatus and tray used in the apparatus
US5726750A (en) * 1995-06-29 1998-03-10 Sumitomo Metal Mining Co., Ltd. Non-destructive taste characteristics measuring apparatus and tray used in the apparatus
JP2002014042A (en) 2000-04-24 2002-01-18 Sumitomo Metal Mining Co Ltd Nondestructive sugar-level measuring apparatus
JP4616747B2 (en) * 2005-10-06 2011-01-19 ヤンマー株式会社 Reference body for calibration of light emitting / receiving means

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5922171B2 (en) * 1976-07-28 1984-05-24 株式会社島津製作所 Method and device for measuring the degree of deterioration of organic matter or the ripeness of agricultural products
JPS5492790A (en) * 1977-12-30 1979-07-23 Minolta Camera Co Ltd Spectral information measuring device of body
JPS6311841A (en) * 1986-03-20 1988-01-19 Satake Eng Co Ltd Device for evaluation of rice quality

Also Published As

Publication number Publication date
JPH02147940A (en) 1990-06-06

Similar Documents

Publication Publication Date Title
JP2517858B2 (en) Nondestructive measurement method of fruit sugar content by near infrared transmission spectrum
US5258825A (en) Optical compositional analyzer apparatus and method for detection of ash in wheat and milled wheat products
JP3526652B2 (en) Optical measuring method and optical measuring device
US6639678B1 (en) Apparatus and method for nondestructive monitoring of gases in sealed containers
NO338611B1 (en) Method for Quantitative Analysis of Solutions and Dispersions by Near-Infrared Spectroscopy
JP2642971B2 (en) Fruit and vegetable ingredient measuring device
CN111751328B (en) Method for rapidly measuring high-light-reflection space target material
US5708271A (en) Non-destructive sugar content measuring apparatus
JPH07229840A (en) Method and apparatus for optical measurement
JP2004317381A (en) Apparatus for nondestructively measuring sugar content of fruits and vegetables
CN110487740A (en) Unginned cotton regain on-line measurement system and its measurement method based on Near-Infrared Absorption Method
JPH1164217A (en) Component quantity detecting device for spectral analyzer
JPH03176645A (en) Component measuring instrument of food
Inagaki et al. Three-fibre-based diffuse reflectance spectroscopy for estimation of total solid content in natural rubber latex
JP2642973B2 (en) Fruit and vegetable ingredient measuring device
JPH0763616A (en) Measuring method for temperature of inner section of fruit or vegetable
JPH0348138A (en) Apparatus for measuring food constituent
JPH07301598A (en) Optical sensor probe
JPH0259081A (en) Method for measuring sugar level of fruit
JP3576773B2 (en) Non-destructive measuring device using reflected light
JPH04254744A (en) Apparatus for nondestructive inspection of taste of citrus fruit
JPH09182740A (en) Biological photomeasuring device
WO1996001417A1 (en) Spectrophotometric equipment and use thereof
JPH08128949A (en) Non-destructive component analyzer of fruit and vegetable
JP2003035669A (en) Method and apparatus for nondestructive judgment of ripe level of fruit