JP2003035669A - Method and apparatus for nondestructive judgment of ripe level of fruit - Google Patents

Method and apparatus for nondestructive judgment of ripe level of fruit

Info

Publication number
JP2003035669A
JP2003035669A JP2001219481A JP2001219481A JP2003035669A JP 2003035669 A JP2003035669 A JP 2003035669A JP 2001219481 A JP2001219481 A JP 2001219481A JP 2001219481 A JP2001219481 A JP 2001219481A JP 2003035669 A JP2003035669 A JP 2003035669A
Authority
JP
Japan
Prior art keywords
fruit
maturity
light
nondestructive
photodetector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001219481A
Other languages
Japanese (ja)
Inventor
Takuo Shiraishi
卓夫 白石
Motohiro Mitamura
元裕 三田村
Naohiro Tanno
直弘 丹野
Kinpui Chan
キンプイ チャン
Hideaki Nakano
英秋 仲野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Corp filed Critical Japan Science and Technology Corp
Priority to JP2001219481A priority Critical patent/JP2003035669A/en
Publication of JP2003035669A publication Critical patent/JP2003035669A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method and an apparatus for the nondestructive judgment of the ripe level of a fruit wherein the ripe level of the fruit is judged quickly and nondestructively by a simple mechanism usable in a fruit sorting place or the like. SOLUTION: The fruit F as a measuring object is irradiated with light (irradiation light) from a light source S, and the intensity of scattered light from the fruit F is measured by a photodetector D from a direction at an angle θwith reference to its irradiation optical axis. At this time, the influence of the scattered (or reflected) light on the surface of the fruit F which does not contain scattering information on the side of the fruit F is suppressed to be low, the surface of the fruit F is irradiated with the irradiation light nearly perpendicularly to the surface (an irradiation optical axis pass the center of the fruit F), a measuring optical axis shifted up to a position in which the reflected light from the surface is not incident on the photodetector D, the focal position of a lens is placed at the inside of the measuring object, and the scattered light mainly from the inside is detected.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、果実の非破壊熟度
判定方法及びその装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for determining the nondestructive maturity of fruits and an apparatus therefor.

【0002】[0002]

【従来の技術】“おいしい果物”を供給することは、果
樹農業に従事する生産者の願いである。このためには生
産方法の工夫に加えて、品質判定が次の二つの観点から
重要となる。
2. Description of the Related Art Providing "delicious fruits" is a desire of producers engaged in fruit tree agriculture. For this purpose, in addition to devising the production method, quality judgment is important from the following two viewpoints.

【0003】市場に供給する商品の質を保証し、結果
として商品価値を高める。
The quality of products supplied to the market is guaranteed, and as a result, product value is increased.

【0004】食べ頃を見極めることによって、出荷の
時期を調整(熟れていない果実は、熟れを促進してから
出荷)し、高品質を保つ。
By determining when to eat, the shipping time is adjusted (unripe fruits are shipped after ripening is promoted), and high quality is maintained.

【0005】“おいしさ”に相当する品質の基準は果物
の種類によって様々であるが、多くの果実において糖度
が高いことが高品質の重要な要素である。したがって、
の観点から従来より、サンプリングした果実における
糖度の測定がなされてきた。近年では、多くの果実にお
いて光計測によって非破壊的に糖度を測定することが可
能となり、リンゴなどでは実際に品質検査に用いられて
いる(計測原理については後述)。
[0005] Although the quality standard corresponding to "deliciousness" varies depending on the type of fruit, high sugar content is an important factor for high quality in many fruits. Therefore,
From the viewpoint of the above, the sugar content in the sampled fruits has been conventionally measured. In recent years, it has become possible to nondestructively measure sugar content in many fruits by optical measurement, and it is actually used for quality inspection in apples and the like (the measurement principle will be described later).

【0006】しかし、桃・キウイフルーツ・洋ナシなど
では、たとえ糖度計での測定値が同じであっても、熟れ
具合(熟度)によって“おいしさ”が大きく異なる。こ
の熟度には様々な要因が関わっており、食べ頃は糖度だ
けでは決定できない。
However, in peaches, kiwifruits, pears, etc., the "deliciousness" varies greatly depending on the ripeness (ripeness) even if the values measured by a sugar content meter are the same. There are various factors involved in this maturity, and it is not possible to determine the sugar content when eating.

【0007】これらの果実においては、収穫後の貯蔵過
程での熟れの進行に伴い糖質が変化するとともに、果肉
組織の構造も変化し硬度が大きく低下する。特に洋ナシ
は、収穫後に追熟(低温・高温貯蔵などで熟れの進行を
促進する)処理が必要な品種が多く、その追熟過程で外
見はほとんど変化せず糖度もあまり増加しない。この
時、硬度の低下が最大の熟度指標となる。つまり、食べ
頃の判定には硬度測定が必要であり、現時点では、果物
硬度計が広く用いられている。
[0007] In these fruits, the sugar changes as the ripening progresses in the storage process after harvesting, and the structure of the flesh tissue also changes, greatly decreasing the hardness. In particular, many pears require additional ripening (accelerating the ripening process such as storage at low temperature and high temperature) after harvesting, and their appearance hardly changes and sugar content does not increase much during the ripening process. At this time, the decrease in hardness becomes the maximum maturity index. In other words, it is necessary to measure the hardness to determine when to eat, and at the present time, the fruit hardness meter is widely used.

【0008】けれども、この方法は破壊的計測法である
ために、硬度を計測した後に出荷することは出来ず、サ
ンプリングした一定数の試験による品質管理にしか適用
できない。例えば、洋ナシの中でもラ・フランスは、食
べ頃の果肉の味と香りは‘果物の女王’と呼ばれるほど
であるが、追熟に伴う糖度・外見の変化が極めて乏し
い。ゆえに、流通において食べ頃の商品を供給すること
が困難であり、このことが‘果物の女王’ラ・フランス
の販売数がリンゴの約1/10に止まっている大きな要
因となっている。
However, since this method is a destructive measurement method, it cannot be shipped after measuring the hardness, and can be applied only to quality control by a fixed number of sampled tests. For example, among the pears, La France has the taste and aroma of the pulp at the time of eating, which is called "Queen of Fruits", but changes in sugar content and appearance due to ripening are extremely scarce. Therefore, it is difficult to supply ready-to-eat products in distribution, which is a major factor that the number of sales of'Queen of Fruits' La France is about 1/10 of that of apples.

【0009】以下に、光計測によって果実の品質を非破
壊的に判定する試みについて、過去の研究を概説する。
[0009] The following is a summary of past studies on attempts to nondestructively determine fruit quality by optical measurement.

【0010】(1)1960年代から1970年代にか
けて、分光光度法を用いた幾つかの報告がある。Nor
risらは、紫外光から赤外光の波長領域での、果実の
光反射率(Reflectance:リフレクタンス)
と果実の成熟度の相関を検討した(文献1)。収穫時期
の異なる(成熟度の異なる)果実について、広波長域
(250−2100nm)の分光光度計測によって得ら
れたリフレクタンススペクトルと収穫時期が良く対応す
ることを示している。
(1) From the 1960s to the 1970s, there were some reports using the spectrophotometric method. Nor
ris et al. are the light reflectances of fruits in the wavelength range from ultraviolet light to infrared light (Reflectance).
And the maturity of fruits were examined (Reference 1). It is shown that, regarding fruits having different harvest times (different maturity), the reflectance spectrum obtained by the spectrophotometric measurement in a wide wavelength range (250-2100 nm) and the harvest time correspond well.

【0011】彼らの研究は、この時期に農作物の成分分
析法として確立しつつあった近赤外分光法(NIR s
pectroscopy)の基本原理を果実の非破壊計
測に適用しようとしたもので、その後の多くの研究の方
向を示すものであった。しかしながら、リンゴなどの果
実の成熟過程での色の変化を計測データ(リフレクタン
ススペクトル)として表すのみで、果実内部の熟度の判
定に対する実用性は乏しかった。
[0011] Their research was near-infrared spectroscopy (NIR s) which was being established as a method for analyzing the components of agricultural products at this time.
It was an attempt to apply the basic principle of "electroscopy" to nondestructive measurement of fruits, and indicated the direction of many subsequent studies. However, only the change in color during the ripening process of fruits such as apples is represented as measurement data (reflectance spectrum), and its practicality for judging the ripeness inside fruits is poor.

【0012】(2)Birthらは、1970年代より
生物由来の試料の光透過率・光反射率スペクトルを計測
するための分光光度計を幾つか提案している(文献
2)。応用例として、パパイヤの熟度測定法(文献
3)、タマネギの乾物率決定法(文献4)などを報告し
ている。パパイヤの測定は、‘外見は変化しないが内部
の果肉が黄変している熟れた果実’と‘内部が白いまま
の熟れていない果実’を、内部の光透過スペクトル計測
から切り分けることを目的とした研究で、結果として、
光透過スペクトルから光吸収率の違いとして内部の色変
化(熟れているか否か)を検出することに成功してい
る。
(2) Birth et al. Have proposed some spectrophotometers for measuring the light transmittance / light reflectance spectra of biological samples since the 1970s (Reference 2). As application examples, we have reported a method for measuring the ripeness of papaya (Reference 3) and a method for determining the dry matter rate of onions (Reference 4). Papaya's measurement aims to separate'ripe fruits whose appearance does not change but the flesh inside is yellowing 'and'ripe fruits whose inside remains white' from the internal light transmission spectrum measurement. As a result,
It has succeeded in detecting an internal color change (whether it is ripe or not) as a difference in light absorption rate from a light transmission spectrum.

【0013】タマネギにおいても、光透過スペクトル計
測によって乾物率に寄与する光吸収率パラメーターの算
出に成功し、これらは炭水化物による光吸収によると考
察している。しかし、何れの場合もスペクトルを取得
し、この解析から対応する光吸収成分の量(含有率)を
求めるものであり、熟れる過程で光吸収する成分(例え
ば糖質)が大きく変化することを前提としている。この
点で、後に我々が提案する“光散乱特性に着目して熟度
を計測する方法”とは、基本的な考え方が異なってい
る。
In the onion as well, the light absorptance parameter contributing to the dry matter rate was successfully calculated by measuring the light transmission spectrum, and it is considered that these are due to the light absorption by the carbohydrate. However, in each case, the spectrum is acquired and the amount (content rate) of the corresponding light-absorbing component is obtained from this analysis, and it is assumed that the light-absorbing component (eg, sugar) changes greatly during the ripening process. I am trying. In this respect, the basic idea is different from the “method of measuring the maturity by paying attention to the light scattering characteristics” which we propose later.

【0014】(3)上記の方法に類似した果実の計測法
は、1980年代後半から1990年代にかけて数多く
報告されており、その大部分が近赤外分光光度法によっ
て糖度を計測するものである(文献5)。それ以外の光
を用いた新しい計測の試みとしては、近年、Muram
atsuらによってレーザドップラー振動計(Lase
r Doppler Vibronmeter;LD
V)を用いた果実硬度測定法が開発された(文献6)。
(3) Many fruit measurement methods similar to the above method have been reported from the late 1980s to the 1990s, and most of them measure sugar content by near infrared spectrophotometry ( Reference 5). In recent years, Muram has been trying to make new measurements using other light.
Laser Doppler vibrometer (Lase
r Doppler Vibronmeter; LD
The fruit hardness measurement method using V) was developed (Reference 6).

【0015】この方法は、振動台に載せた果実に5−2
000Hzの振動を与え、果実を伝わる振動を果実上部
でLDVによって検出し、高速フーリエ変換計によって
周波数解析を行うものである。周波数スペクトルから得
られる共鳴周波数は、キウイ・リンゴにおいて果肉の硬
度と良い相関を示した。けれども、果実の流通現場、例
えば選果場などでの熟度判定を考えたときには、用いる
LDV・高速フーリエ変換計ともに高価な機器であり、
かつ、振動に由来する周波数スペクトルの取得を必要と
するため計測の高速化が困難であり、適用は容易ではな
い。
According to this method, the fruit placed on the shaking table is 5-2.
A vibration of 000 Hz is applied, the vibration transmitted through the fruit is detected by the LDV at the upper part of the fruit, and the frequency is analyzed by the fast Fourier transform meter. The resonance frequency obtained from the frequency spectrum showed a good correlation with the hardness of pulp in kiwi apple. However, when considering the maturity judgment at the fruit distribution site, for example, a fruit sorting field, both the LDV and the fast Fourier transform meter used are expensive equipment,
Moreover, since it is necessary to acquire the frequency spectrum derived from vibration, it is difficult to speed up the measurement, and the application is not easy.

【0016】さらに、今年、パルスレーザを用いた時間
分解リフレクタンス計測によって、果実の光吸収と光散
乱を同時に評価する方法が報告された(文献7)。この
方法は、今後、最も有効な果実の光計測法と成りうる可
能性を有しているが、計測装置は極めて高価であるため
先の方法と同様に、実用化は容易ではない。
Furthermore, this year, a method for simultaneously evaluating light absorption and light scattering of fruits by time-resolved reflectance measurement using a pulse laser was reported (Reference 7). Although this method has the possibility of becoming the most effective optical measurement method for fruits in the future, it is not easy to put it to practical use as with the previous method because the measurement device is extremely expensive.

【0017】(文献1)Bittner,D.R.an
d K.H.Norris(1968)“Optica
l properties of selected
fruits vs. maturity” Tran
saction of the American S
ociety of Agricultural En
gineer,11(4):534−536. (文献2)Birth,G.S.and G.L.Za
chariah(1973)“Spectrophot
ometer for biologicalappl
ications” Transaction of
the American Society of A
gricultural Engineer,16
(2):371−373. (文献3)Birth,G.S.,G.G.Dull,
J.B.Magee,H.T.Chan,and C.
B.Cavaletto(1983)“Anoptic
al method for estimating
papayamaturity” Journal o
f the American Society fo
r Horticultural Science,1
09(1):62−66. (文献4)Birth,G.S.,G.G.Dull,
W.T.Renfroe and S.J.Kays
(1985)“NondestructiveSpec
trometric Determination o
f Dry Matter in Onions”Jo
urnal of the American Soc
iety for Horticultural Sc
ience,110(2):297−303. (文献5)河野澄夫(1999)“果実・野菜等の非破
壊選別” 書籍名:生体・環境計測へ向けた近赤外セン
シング技術 編者:竹内菊朗、関壽、牧内正男、高橋秀
夫、第1章第4節 p.210−217. (文献6)Muramatsu,N.,N.Sakur
ai,N.Wada,R.Yamamoto,K.Ta
naka,T.Asakura,Y.Ishikawa
−Takano,D.J.Nevins(2000)
“Remotesensing of fruit t
extural changes with a la
ser Doppler vibrometer” J
ournal of the American So
ciety for Horticultural S
cience,125(1):120−127. (文献7)Cubeddu,R.,C.D’Andre
a,A.Pifferi, P.Taroni,A.T
orricelli,G.Valentini,C.D
over,D.Johnson,M.Ruiz−Alt
isent and C.Valero(2001)
“Nondestructive quantific
ation of chemical and phy
sicalproperties of fruits
by time−resolved reflect
ance spectroscopy in the
wavelength range 650−1000
nm” AppliedOptics,40(4):5
38−543.
(Reference 1) Bittner, D.M. R. an
d K. H. Norris (1968) "Optica
l properties of selected
fruits vs. maturity ”Tran
action of the American S
ociety of Agricultural En
gineer, 11 (4): 534-536. (Reference 2) Birth, G .; S. and G.D. L. Za
charahh (1973) "Spectrophoto
ometer for biologicalappl
ications ”Transaction of
the American Society of A
graticular engineer, 16
(2): 371-373. (Reference 3) Birth, G .; S. , G. G. Dull,
J. B. Magee, H .; T. Chan, and C.I.
B. Cavaletto (1983) "Anopic
al method for estimating
“Papamathurity” Journal o
f the American Society fo
r Horticultural Science, 1
09 (1): 62-66. (Reference 4) Birth, G .; S. , G. G. Dull,
W. T. Renfroe and S.M. J. Kays
(1985) "Nonstructural Spec.
trometric Determination o
f Dry Matter in Onions "Jo
urnal of the American Soc
yety for Horticultural Sc
ience, 110 (2): 297-303. (Reference 5) Sumio Kono (1999) "Non-destructive selection of fruits and vegetables" Book title: Near-infrared sensing technology for biological / environmental measurement Editors: Kikuro Takeuchi, Satoshi Seki, Masao Makiuchi, Hideo Takahashi, No. 1 Chapter 1, Section 4 p. 210-217. (Reference 6) Muramatsu, N. et al. , N .; Sakura
ai, N.N. Wada, R.M. Yamamoto, K .; Ta
naka, T .; Asakura, Y .; Ishikawa
-Takano, D .; J. Nevins (2000)
"Remote sensing of fruit t
external changes with a la
ser Doppler vibrometer "J
individual of the American So
city for horticultural S
science, 125 (1): 120-127. (Reference 7) Cubeddu, R .; , C. D'Andre
a, A. Pifferi, P.P. Taroni, A .; T
orricelli, G .; Valentini, C.I. D
over, D.I. Johnson, M .; Ruiz-Alt
isent and C.I. Valero (2001)
"Nonstructural quantitative
ation of chemical and phy
social properties of fruits
by time-resolved reflect
ance spectroscopy in the
wavelength range 650-1000
nm "Applied Optics, 40 (4): 5
38-543.

【0018】[0018]

【発明が解決しようとする課題】前述したように、果物
の食べ頃(熟度)を非破壊的に捉える方法の開発が待た
れている。本発明は、桃・キウイフルーツ・洋ナシ(特
にラ・フランス)などのように、収穫後の追熟過程で糖
度・外見がほとんど変化せず、熟度の判定が困難な果実
を対象として、熟度の最大の指標である硬度の低下に対
応する熟度の判定指標を与える果実の非破壊熟度判定方
法及びその装置に関するものであり、この計測原理を実
現し、選果場などでの使用が可能な簡便な仕組みで、迅
速に、かつ非破壊的に果物の熟度を判定する果実の非破
壊熟度判定方法及びその装置を提供することを目的とす
る。
As described above, development of a method for nondestructively capturing the eating season (ripening level) of fruits is awaited. The present invention is intended for fruits such as peaches, kiwifruits, pears (especially La France) whose sugar content and appearance hardly change during the post-harvest ripening process and whose maturity is difficult to determine. The present invention relates to a non-destructive ripeness judgment method for fruit and a device for giving a judgment index of ripeness corresponding to a decrease in hardness, which is the largest index of ripeness. An object of the present invention is to provide a fruit nondestructive maturity determination method and device for quickly and nondestructively determining a fruit ripeness with a simple mechanism that can be used.

【0019】[0019]

【課題を解決するための手段】本発明は、上記目的を達
成するために、〔1〕果実の非破壊熟度判定方法におい
て、絞り込んだ照射光を果実に対して照射し、その果実
の熟れ具合に由来する果実組織の変化を、果実によって
散乱された光の強度を光検出器で測定することにより、
非破壊的に果実の熟度の判定を行うことを特徴とする。
In order to achieve the above object, the present invention provides [1] a method for determining the nondestructive maturity of a fruit, which comprises irradiating the fruit with a narrowed irradiation light to ripen the fruit. The change in the fruit tissue due to the condition, by measuring the intensity of the light scattered by the fruit with a photodetector,
It is characterized by nondestructively determining the ripeness of fruits.

【0020】〔2〕上記〔1〕記載の果実の非破壊熟度
判定方法において、前記照射光の果実表面での散乱は、
熟度との相関が低い果皮の状態の影響を多く受けるため
に、これをできる限り除外し、果肉の散乱特性の変化を
抽出することを特徴とする。
[2] In the fruit nondestructive maturity determination method described in [1] above, the scattering of the irradiation light on the fruit surface is
Since it is influenced by the condition of the skin that has a low correlation with the maturity, it is characterized by excluding it as much as possible and extracting the change in the scattering characteristics of the pulp.

【0021】〔3〕上記〔1〕記載の果実の非破壊熟度
判定方法において、偏光性を有する照射光を用いて、前
記果実からの散乱による偏光解消を検出することを特徴
とする。
[3] The method for determining the nondestructive maturity of a fruit according to the above [1], characterized in that depolarization due to scattering from the fruit is detected by using irradiation light having a polarization property.

【0022】〔4〕果実の非破壊熟度判定装置におい
て、絞り込んだ照射光を果実の中心へ向けて照射する手
段と、前記果実の果実組織の変化に対応する果実によっ
て散乱された光の強度を計測する光検出器とを具備する
ことを特徴とする。
[4] In the nondestructive fruit ripeness judging device, means for irradiating the narrowed irradiation light toward the center of the fruit, and the intensity of the light scattered by the fruit corresponding to the change in the fruit tissue of the fruit. And a photodetector for measuring.

【0023】〔5〕上記〔4〕記載の果実の非破壊熟度
判定装置において、前記果実の果皮からの散乱光を除外
する手段を有することを特徴とする。
[5] The nondestructive ripeness judging apparatus for a fruit according to the above [4], characterized by having a means for excluding scattered light from the pericarp of the fruit.

【0024】〔6〕上記〔4〕記載の果実の非破壊熟度
判定装置において、前記光検出器の位置が照射光軸から
所定角ずれた軸上に設定されることを特徴とする。
[6] In the fruit non-destructive maturity determination device described in [4], the position of the photodetector is set on an axis deviated by a predetermined angle from the irradiation optical axis.

【0025】〔7〕上記〔6〕記載の果実の非破壊熟度
判定装置において、果実の果皮からの散乱光を除外する
手段が、前記果実の果皮と前記光検出器間に介在する複
数枚のピンホール板であることを特徴とする。
[7] In the apparatus for determining the nondestructive maturity of fruit according to the above [6], a means for excluding scattered light from the skin of the fruit is a plurality of sheets interposed between the skin of the fruit and the photodetector. It is a pinhole plate of.

【0026】〔8〕上記〔6〕記載の果実の非破壊熟度
判定装置において、果実の果皮からの散乱光を除外する
手段が、果実の果皮と前記光検出器間に介在する光ファ
イバであることを特徴とする。
[8] In the fruit nondestructive maturity determination device according to [6], the means for eliminating scattered light from the fruit skin is an optical fiber interposed between the fruit skin and the photodetector. It is characterized by being.

【0027】[0027]

〔9〕上記〔6〕記載の果実の非破壊熟度
判定装置において、果実の果皮からの散乱光を除外する
手段が、果実の果皮に直接接触して配置される光検出器
であることを特徴とする。
[9] In the fruit nondestructive maturity determination device according to [6], the means for eliminating scattered light from the fruit skin is a photodetector arranged in direct contact with the fruit skin. Characterize.

【0028】〔10〕上記〔4〕記載の果実の非破壊熟
度判定装置において、前記光検出器と果実の間に果実内
部に焦点位置を有するレンズを配置することを特徴とす
る。
[10] In the fruit non-destructive maturity judging device according to the above [4], a lens having a focal position inside the fruit is arranged between the photodetector and the fruit.

【0029】〔11〕上記〔4〕記載の果実の非破壊熟
度判定装置において、前記照射光軸方向の後方散乱光を
ビームスプリッタを介して前記光検出器に導入し、これ
を検出することを特徴とする。
[11] In the fruit non-destructive maturity determination device according to the above [4], the backscattered light in the irradiation optical axis direction is introduced into the photodetector via a beam splitter and detected. Is characterized by.

【0030】〔12〕上記〔11〕記載の果実の非破壊
熟度判定装置において、前記照射光の光路に前記ビーム
スプリッタに換えて偏光ビームスプリッタを配置するこ
とを特徴とする。
[12] In the fruit nondestructive maturity determining device described in [11], a polarizing beam splitter is arranged in the optical path of the irradiation light instead of the beam splitter.

【0031】〔13〕上記〔11〕記載の果実の非破壊
熟度判定装置において、前記照射光の光路にビームスプ
リッタ及び偏光ビームスプリッタを配置することを特徴
とする。
[13] In the fruit nondestructive maturity determining apparatus described in [11], a beam splitter and a polarizing beam splitter are arranged in the optical path of the irradiation light.

【0032】[0032]

【発明の実施の形態】以下、本発明の実施の形態につい
て詳細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described in detail below.

【0033】図1は本発明の第1実施例を示す果実の非
破壊熟度判定装置の模式図である。
FIG. 1 is a schematic view of a fruit non-destructive maturity judging device showing a first embodiment of the present invention.

【0034】この図において、Sは光源、L1は第1の
レンズ(コリメート用レンズ)、Aは減光フィルタ、P
1は第1の偏光板、L2は第2のレンズ(集光レン
ズ)、Fは測定対象となる果実、P2は第2の偏光板、
L3は第3のレンズ(集光レンズ)、Dは光検出器であ
る。
In this figure, S is the light source, L1 is the first lens (collimating lens), A is the neutral density filter, and P is
1 is the first polarizing plate, L2 is the second lens (condensing lens), F is the fruit to be measured, P2 is the second polarizing plate,
L3 is a third lens (condenser lens), and D is a photodetector.

【0035】そこで、光源Sからの光(照射光)を測定
対象となる果実Fに照射し、果実Fからの散乱光の強度
を照射光軸に対して角度θの方向から光検出器Dによっ
て測定する。このとき、果実の内部の散乱情報を含まな
い果実Fの表面での散乱(反射)光の影響を低く抑える
ために、照射光は果実Fの表面に対してほぼ垂直に(照
射光軸がほぼ果実Fの中心を通るように)照射し、光検
出器Dに表面からの反射光が入らない位置にまで測定光
軸をずらし、さらにレンズの焦点位置を測定対象の内部
に置くことで、主として内部からの散乱光を検出する。
Therefore, the light (irradiation light) from the light source S is irradiated onto the fruit F to be measured, and the intensity of the scattered light from the fruit F is measured by the photodetector D from the direction of the angle θ with respect to the irradiation optical axis. taking measurement. At this time, in order to suppress the influence of scattered (reflected) light on the surface of the fruit F that does not include scattering information inside the fruit, the irradiation light is almost perpendicular to the surface of the fruit F (the irradiation optical axis is almost Mainly by irradiating (through the center of the fruit F), shifting the measurement optical axis to a position where the reflected light from the surface does not enter the photodetector D, and further placing the focal position of the lens inside the measurement target. Detects scattered light from inside.

【0036】角度θは、0°付近では表面での反射光が
測定の妨げとなり、90°付近では内部からの散乱光が
微弱になってしまうため、おおよそ20°から70°の
範囲が適当である。
When the angle θ is around 0 °, the reflected light on the surface hinders the measurement, and around 90 °, the scattered light from the inside becomes weak, so that the range of about 20 ° to 70 ° is appropriate. is there.

【0037】この実施例において、光源Sとしては、レ
ーザ、レーザダイオード、スーパールミネッセントダイ
オード、ライトエミッティングダイオードやランプ光源
などが使用可能であるが、出力光の指向性が低い光源の
場合、コリメート用レンズL1および、集光レンズL2
が必要となる。ただし、光源Sやコリメート用レンズL
1の性能によってコリメートされた光束が十分に小さい
場合には、集光用レンズL2は必要でない。
In this embodiment, a laser, a laser diode, a super luminescent diode, a light emitting diode, a lamp light source or the like can be used as the light source S, but in the case of a light source having a low directivity of output light, Collimating lens L1 and condenser lens L2
Is required. However, the light source S and the collimating lens L
When the luminous flux collimated by the performance of 1 is sufficiently small, the condenser lens L2 is not necessary.

【0038】減光フィルタAは、光源Sの出力光量が大
きすぎて、照射光によって果実Fに損傷が生じる、また
は、散乱光が光検出器Dの検出限界を超える場合に、照
射光のパワーを減衰するために用いる。照射光の光波長
は、以下の条件を満たすことが望ましく、候補となる波
長帯は、600−650nmおよび700−1200n
mである。(a)果皮・果肉などに含まれる光吸収成分
(例として、クロロフィル、ポリフェノール)の主たる
吸収波長帯から外れていること、(b)水の主たる光吸
収波長帯から外れていること、(c)これらの条件を満
たし、かつ検出可能な散乱光が得られる限りにおいて
は、短波長の光であるほどよい。
The neutral density filter A has a power of the irradiation light when the output light amount of the light source S is too large and the fruit F is damaged by the irradiation light or the scattered light exceeds the detection limit of the photodetector D. Used to damp. The light wavelength of the irradiation light desirably satisfies the following condition, and the candidate wavelength bands are 600-650 nm and 700-1200n.
m. (A) Out of the main absorption wavelength band of the light-absorbing components (for example, chlorophyll and polyphenol) contained in the skin / flesh, (b) Out of the main absorption wavelength band of water, (c As long as these conditions are satisfied and detectable scattered light is obtained, shorter wavelength light is better.

【0039】偏光性を有する光を入射光とし散乱による
偏光解消度も計測する場合は、第1の偏光板P1によっ
て照射光の偏光面を固定し、第2の偏光板P2によって
測定する偏光面を変化させ、散乱光の偏光特性(偏光角
と光強度の相関)を測定する。ただし、この偏光を用い
た計測方法は、常に有効とは限らない。例えば、果実F
表面の形状に起因して照射光の偏光性のほとんどが失わ
れるような場合には、内部からの散乱光の偏光特性を求
めることは意味がなく、測定精度の低下を招くだけにな
ってしまう。
When the depolarization degree due to scattering is measured by using light having a polarization property as incident light, the polarization plane of the irradiation light is fixed by the first polarizing plate P1 and the polarization plane measured by the second polarizing plate P2. And the polarization characteristics of scattered light (correlation between polarization angle and light intensity) are measured. However, the measurement method using this polarized light is not always effective. For example, fruit F
When most of the polarization of the irradiation light is lost due to the shape of the surface, it is meaningless to obtain the polarization characteristics of the scattered light from the inside, and it only leads to a decrease in measurement accuracy. .

【0040】光検出器Dとしては、CCD、フォトダイ
オードや光電子増倍管などが使用可能である。検出系と
しては、光検出器Dに加えて、果実Fからの散乱光を光
検出器Dに導入する際に果実F表面からの反射光の影響
を最小限にするために、測定視野を限定する光学系を要
する。
As the photodetector D, a CCD, a photodiode, a photomultiplier tube or the like can be used. As a detection system, in addition to the photodetector D, the measurement field of view is limited in order to minimize the influence of the reflected light from the surface of the fruit F when introducing the scattered light from the fruit F into the photodetector D. Requires an optical system.

【0041】図1では、第3の集光レンズL3がその役
割を果たす。これ以外にも、図2に示すように、ピンホ
ール板P1 ,P2 を用いたり、図3に示すように、光フ
ァイバーOFを用いたり、図4に示すように、光検出器
Dの直付けによって、同様に測定視野の限定(表面から
の反射光の除外)が可能である。図2では、2つのピン
ホール板を用いて測定視野を限定しているが、光検出器
Dの受光面が十分に小さい場合、ピンホール板1つでも
測定軸方向の散乱光のみの抽出が可能である。
In FIG. 1, the third condenser lens L3 plays that role. In addition to this, as shown in FIG. 2, pinhole plates P 1 and P 2 are used, as shown in FIG. 3, an optical fiber OF is used, and as shown in FIG. With the attachment, the measurement field of view can be similarly limited (excluding reflected light from the surface). In FIG. 2, the measurement field of view is limited by using two pinhole plates, but when the light receiving surface of the photodetector D is sufficiently small, only one pinhole plate can extract only scattered light in the measurement axis direction. It is possible.

【0042】次に、本発明の第2実施例について説明す
る。
Next, a second embodiment of the present invention will be described.

【0043】図5は本発明の第2実施例を示す果実の非
破壊熟度判定装置の模式図である。
FIG. 5 is a schematic view of a fruit non-destructive maturity judging device showing a second embodiment of the present invention.

【0044】この図において、BSはビームスプリッタ
(偏光ビームスプリッタ:PBSでもよい)、L4は第
4のレンズ(集光レンズ)であり、その他の部分は図1
の第1実施例と同様であり、それらの説明は省略する。
In this figure, BS is a beam splitter (polarizing beam splitter: PBS may be used), L4 is a fourth lens (condensing lens), and other parts are shown in FIG.
The first embodiment is similar to the first embodiment, and the description thereof will be omitted.

【0045】光源Sからの光を果実Fに照射し、果実F
からの照射光軸方向への後方散乱光をビームスプリッタ
BSを介して光検出器Dによって測定する。照射系の光
源S・コリメート用レンズL1・減光フィルタA・集光
レンズL2に関しては、第1実施例と同様である。
The fruit F is irradiated with the light from the light source S, and the fruit F
The backscattered light in the direction of the irradiation optical axis is measured by the photodetector D via the beam splitter BS. The light source S of the irradiation system, the collimating lens L1, the neutral density filter A, and the condenser lens L2 are the same as in the first embodiment.

【0046】集光レンズL3は焦点位置を果実F内部に
置き、これによって果実F表面での散乱(反射)光の影
響を低く抑え、主として果実F内部からの散乱光を検出
するために用いる。集光レンズL3からの光を集光レン
ズL4によって光検出器Dに導入する。ここで、表面か
らの反射光に出来るだけ妨害されずに内部からの散乱光
を集めるためには、集光レンズL3は、開口数が大きい
(レンズ径が大きく、かつ焦点距離が小さい)ことが望
ましい。開口数が大きいほど、焦点付近(果実Fの内
部)以外からの散乱光が集光レンズL3によって平行光
束になり難く、結果として集光レンズL4で光検出器D
に集光され難くなる。
The condenser lens L3 is used for detecting the scattered light from the inside of the fruit F mainly by placing the focus position inside the fruit F, thereby suppressing the influence of the scattered (reflected) light on the surface of the fruit F. The light from the condenser lens L3 is introduced into the photodetector D by the condenser lens L4. Here, in order to collect the scattered light from the inside without being disturbed by the reflected light from the surface as much as possible, the condenser lens L3 must have a large numerical aperture (a large lens diameter and a small focal length). desirable. The larger the numerical aperture, the more difficult it is for scattered light from other than near the focus (inside the fruit F) to become a parallel light flux by the condenser lens L3, and as a result, the photodetector D by the condenser lens L4.
It becomes difficult to be focused on.

【0047】さらに、表面での反射光の影響を抑えるた
めには、光検出器DとしてCCDカメラのような2次元
光検出系を用いて、以下のような測定・データ処理を行
う。
Further, in order to suppress the influence of reflected light on the surface, the following measurement / data processing is performed using a two-dimensional photodetection system such as a CCD camera as the photodetector D.

【0048】まず、散乱光の2次元光強度分布(散乱光
プロファイル)〔データS〕を測定する。これとは別
に、集光レンズL3の焦点を果実表面に合わせて、果実
表面からの散乱光プロファイル〔データR〕を測定す
る。データSからデータRの寄与を除去して、内部散乱
光の強度プロファイルを取得する。
First, a two-dimensional light intensity distribution (scattered light profile) [data S] of scattered light is measured. Separately from this, the focusing lens L3 is focused on the fruit surface, and the scattered light profile [data R] from the fruit surface is measured. The intensity profile of the internal scattered light is obtained by removing the contribution of the data R from the data S.

【0049】なお、果実Fに偏光を入射し、散乱光の偏
光情報を測定する場合には、ビームスプリッタBSに換
えて偏光ビームスプリッタPBSを用いることによっ
て、照射光をP偏光にし散乱光のS偏光成分を光検出器
Dで測定する。
When polarized light is incident on the fruit F and the polarization information of the scattered light is measured, the polarized light is converted into P polarized light by using the polarized beam splitter PBS instead of the beam splitter BS, and the scattered light S is scattered. The polarization component is measured by the photo detector D.

【0050】次に、本発明の第3実施例について説明す
る。
Next, a third embodiment of the present invention will be described.

【0051】図6は本発明の第3実施例を示す果実の非
破壊熟度判定装置の模式図である。
FIG. 6 is a schematic diagram of a fruit nondestructive maturity judging device showing a third embodiment of the present invention.

【0052】この図において、PBSは偏光ビームスプ
リッタ、L5は第5のレンズ(集光レンズ)、L6は第
6のレンズ(集光レンズ)、D1,D2は光検出器であ
り、その他の部分は、前記した実施例と同様である。
In this figure, PBS is a polarization beam splitter, L5 is a fifth lens (condensing lens), L6 is a sixth lens (condensing lens), D1 and D2 are photodetectors, and other parts. Is the same as the above-mentioned embodiment.

【0053】この実施例によれば、図6に示すように、
散乱光のP偏光成分とS偏光成分を同時に検出すること
ができる。照射光を偏光ビームスプリッタPBSにより
P偏光にし、散乱光を偏光ビームスプリッタPBS、お
よびビームスプリッタBSを介し各々光検出器D1,D
2に導入する。このとき、光検出器D1によってP偏光
成分、光検出器D2によってS偏光成分が、それぞれ検
出される。得られた2つの偏光成分の光強度から、偏光
面の状態をベクトルとして得ることができ、これを用い
て熟度を判定する。 〔計測の実施例〕洋ナシの中でも特に、追熟過程での外
見・糖度の変化の乏しい品種であるラ・フランスを対象
として、本発明の計測方法を実施した実験について以下
に述べる。
According to this embodiment, as shown in FIG.
It is possible to detect the P-polarized component and the S-polarized component of the scattered light at the same time. The irradiation light is converted into P-polarized light by the polarization beam splitter PBS, and the scattered light is passed through the polarization beam splitter PBS and the beam splitter BS to detect photodetectors D1 and D, respectively.
Introduce to 2. At this time, the photodetector D1 detects the P-polarized component and the photodetector D2 detects the S-polarized component. From the obtained light intensities of the two polarization components, the state of the polarization plane can be obtained as a vector, and this is used to determine the maturity. [Example of measurement] Among the pears, an experiment in which the measurement method of the present invention is carried out will be described below, targeting La France, which is a variety having a small change in appearance and sugar content during the ripening process.

【0054】図7は本発明の実験測定系の模式図であ
る。
FIG. 7 is a schematic diagram of the experimental measurement system of the present invention.

【0055】He−Neレーザ(λ=633nm)10
1の出力光を減光フィルタ102・偏光板103を介し
てラ・フランス果実試料104に照射し、照射光軸に対
し60°の角度において、偏光板(偏波面は偏光板10
3に対して90°)105を透過した散乱光を集光レン
ズ付きのCCDカメラ106にて検出した。
He-Ne laser (λ = 633 nm) 10
The output light of No. 1 is applied to the La France fruit sample 104 through the neutral density filter 102 and the polarizing plate 103, and the polarizing plate (the polarization plane is the polarizing plate 10) at an angle of 60 ° with respect to the irradiation optical axis.
The scattered light transmitted through 90 ° with respect to 3 was detected by the CCD camera 106 with a condenser lens.

【0056】測定光軸の位置・集光レンズの焦点位置
は、以下のように設定した。果実(試料)104表面の
照射光入射部位に、測定光軸および集光レンズ焦点を一
致させた後に、検出系を果実(試料)104に対して横
平行移動させる。この設定において、集光レンズの焦点
は、試料104表面から約10mm内部に位置する。
The position of the measuring optical axis and the focal position of the condenser lens were set as follows. After the measurement optical axis and the focus of the condenser lens are matched with the irradiation light incident portion on the surface of the fruit (sample) 104, the detection system is moved in parallel with the fruit (sample) 104. In this setting, the focus of the condenser lens is located within about 10 mm from the surface of the sample 104.

【0057】実験試料として、収穫後直ちに2℃に1〜
2ヶ月貯蔵(低温処理を兼ねる)したラ・フランス果実
を用いた。追熟は、低温処理した果実を15℃に移し貯
蔵することで開始した。十分に熟れるまでの約3週間の
間、3〜5日おきに同一個体3個について計測を実施し
た。各個体について2〜5箇所を計測し、その平均値を
測定値とした。熟れの進行の指標として、同様の処理・
貯蔵をした果実試料について、同期間3〜5日おきに3
−4個ずつ果実硬度計を用いて定法通りに果肉の硬度を
求めた。
As an experimental sample, 1 to 2 ° C. immediately after harvesting
La France fruit stored for 2 months (also serving as low temperature treatment) was used. The additional ripening was started by transferring the low temperature-treated fruit to 15 ° C and storing it. Measurements were performed on 3 identical individuals every 3-5 days for approximately 3 weeks until fully ripe. For each individual, 2 to 5 points were measured, and the average value was used as the measured value. Similar treatment as an indicator of ripening progress
For stored fruit samples, every 3-5 days during the same period, 3
The hardness of the flesh was determined according to a standard method using a fruit hardness tester for each 4 pieces.

【0058】図8に、追熟処理中の果実(黒丸、実線)
と、対照として2℃で貯蔵した果実(白丸、点線)の硬
度(Lbs)の推移を示した。横軸は、追熟開始からの
経過日数、および貯蔵日数を示す。低温貯蔵した果実の
硬度は、ほとんど低下しなかったが、追熟処理を施した
果実の硬度は、処理開始から12日までに大幅に低下
し、16日間で約1/5まで低下した。この硬度の低下
から、この実験で施した追熟処理によって、試料果実の
熟度が増したことが確認された。硬度が十分に低下した
16日目の果実は、その食味においても十分な‘おいし
さ’を示していた。
FIG. 8 shows the fruit during the ripening process (black circle, solid line).
As a control, changes in hardness (Lbs) of fruits (white circles, dotted line) stored at 2 ° C. are shown. The horizontal axis indicates the number of days elapsed from the start of additional ripening and the number of days of storage. The hardness of the fruit stored at low temperature hardly decreased, but the hardness of the fruit subjected to the ripening treatment significantly decreased from the start of the treatment to 12 days, and decreased to about 1/5 in 16 days. From this decrease in hardness, it was confirmed that the ripeness of the sample fruit was increased by the additional ripening treatment performed in this experiment. The fruits on the 16th day, which had a sufficiently reduced hardness, exhibited a sufficient “deliciousness” in the taste.

【0059】図9に、追熟処理期間中の果実の光散乱測
定値(任意単位)の推移を示した。図中の#1〜3は、
追熟測定を行った果実各個体に対応する。縦軸の測定値
は、散乱光量に対応する。それぞれの果実の測定値は、
追熟開始後10日前後までに大幅に上昇し、それ以降の
期間では約10%の増減を示した。これらの測定値の推
移は、硬度の低下(図8参照)によって表される熟度の
増加と良く一致する。追熟過程における果実内部の組織
構造の変化が、側方散乱光量の増加に寄与していると考
えられる。得られた実験データを基にして、散乱光計測
装置での測定値とラ・フランス果実の硬度の対応関係
は、 (ラ・フランス果実の硬度)=−0.0158×(測定値)+10.4 …(1) と表される。
FIG. 9 shows the transition of the light scattering measurement value (arbitrary unit) of the fruit during the ripening treatment period. # 1 to # 3 in the figure are
It corresponds to each fruit individual for which the ripening measurement was performed. The measurement value on the vertical axis corresponds to the amount of scattered light. The measured value of each fruit is
It increased significantly by about 10 days after the start of additional ripening, and increased or decreased about 10% in the period thereafter. The transition of these measured values is in good agreement with the increase in maturity represented by the decrease in hardness (see FIG. 8). It is considered that the change of the tissue structure inside the fruit during the ripening process contributes to the increase of the side scattered light amount. Based on the obtained experimental data, the correspondence between the measured value by the scattered light measuring device and the hardness of the La France fruit is: (Hardness of the La France fruit) =-0.0158 × (measured value) +10. 4 is expressed as (1).

【0060】図10に追熟過程の果実について、果肉硬
度の実測値と上記の関係式(1)を用いて散乱光測定値
から求めた硬度の予測値を示した。実測値・予測値とも
に同一果実個体について求めたものではなく試料各々3
個についての平均値を用いたが、良く一致することが確
認された。
FIG. 10 shows the actually measured values of the flesh hardness of fruits in the ripening process and the predicted values of the hardness obtained from the scattered light measurement values using the above relational expression (1). Both measured and predicted values were not obtained for the same fruit individual, but for each sample 3
The average value for each was used, but it was confirmed that there was good agreement.

【0061】ここで用いた関係式は、ラ・フランスに関
する当実施例のデータに限って求めた対応関係である。
より計測個体数を多くすれば、より有効な対応関係式を
手に入れることが可能であるが、図10に示したように
上記式(1)でも十分に利用可能である。
The relational expression used here is a correspondence relation obtained only for the data of this embodiment regarding La France.
If the number of measured individuals is increased, a more effective correspondence relational expression can be obtained, but as shown in FIG. 10, the above expression (1) can also be sufficiently used.

【0062】なお、本発明は上記実施例に限定されるも
のではなく、本発明の趣旨に基づいて種々の変形が可能
であり、これらを本発明の範囲から排除するものではな
い。
The present invention is not limited to the above embodiments, and various modifications can be made based on the spirit of the present invention, and these modifications are not excluded from the scope of the present invention.

【0063】[0063]

【発明の効果】以上、詳細に説明したように、本発明に
よれば、以下のような効果を奏することができる。
As described in detail above, according to the present invention, the following effects can be achieved.

【0064】(A)簡便な装置で果実の熟度を非破壊的
に計測することができ、食べ頃の判定が可能となる。
(A) The ripeness of fruits can be measured non-destructively with a simple device, and it becomes possible to judge when to eat.

【0065】(B)選果場などで実施することにより、
市場に供給する商品の品質を保証することによる価格の
上昇が期待される。さらに、一律な追熟処理では食べ頃
に達していなかった果実を選別し、食べ頃になるまで処
理することで、単なる等級分けとは異なり、生産者・消
費者の双方にプラスになる価値を生み出すことになる。
(B) By carrying out at a sorting field,
It is expected that prices will increase by guaranteeing the quality of products that are supplied to the market. Furthermore, by selecting the fruits that have not reached the time of eating by uniform ripening treatment and processing until the time of eating, unlike mere grading, it creates positive value for both producers and consumers. become.

【0066】(C)非破壊的計測方法であるため、単一
の果実の連続的な変化を追いかけることが可能である。
したがって、果実の成熟に関わる研究の場で用いること
により、‘熟れのメカニズム’の解明・追熟処理法の改
良などを大いに促進することができる。
(C) Since it is a non-destructive measuring method, it is possible to follow a continuous change of a single fruit.
Therefore, when it is used in the field of research related to fruit ripening, the elucidation of the'ripening mechanism 'and the improvement of the ripening treatment method can be greatly promoted.

【0067】(D)長期的展望においては、果樹農業に
経済的利得を与えるとともに、消費者に対しても‘安心
しておいしい果実を購入する’喜びを与えることができ
る。ここから波及する果物流通の拡大効果を通して、農
業・商業における経済効果は著大である。
(D) From a long-term perspective, it is possible to give economic benefits to fruit tree farming and to give consumers the joy of'buying delicious fruits with peace of mind '. Economic effects in agriculture and commerce are remarkable through the expansion of fruit distribution that spreads from here.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例を示す果実の非破壊熟度判
定装置の模式図である。
FIG. 1 is a schematic diagram of a fruit nondestructive maturity determining apparatus according to a first embodiment of the present invention.

【図2】本発明の第1実施例を示す果実の非破壊熟度判
定装置の部分の変形例(その1)である。
FIG. 2 is a modification (No. 1) of the portion of the fruit nondestructive maturity determining apparatus according to the first embodiment of the present invention.

【図3】本発明の第1実施例を示す果実の非破壊熟度判
定装置の部分の変形例(その2)である。
FIG. 3 is a modified example (No. 2) of the portion of the fruit nondestructive maturity determining apparatus according to the first embodiment of the present invention.

【図4】本発明の第1実施例を示す果実の非破壊熟度判
定装置の部分の変形例(その3)である。
FIG. 4 is a modification (No. 3) of the portion of the fruit nondestructive maturity determining apparatus according to the first embodiment of the present invention.

【図5】本発明の第2実施例を示す果実の非破壊熟度判
定装置の模式図である。
FIG. 5 is a schematic diagram of a fruit nondestructive maturity determining apparatus according to a second embodiment of the present invention.

【図6】本発明の第3実施例を示す果実の非破壊熟度判
定装置の模式図である。
FIG. 6 is a schematic diagram of a fruit nondestructive maturity determining apparatus according to a third embodiment of the present invention.

【図7】本発明の実験測定系の模式図である。FIG. 7 is a schematic diagram of an experimental measurement system of the present invention.

【図8】追熟処理中の果実と対照として2℃で貯蔵した
果実の硬度(Lbs)の推移を示す図である。
FIG. 8 is a graph showing a change in hardness (Lbs) of a fruit that has been subjected to ripening treatment and a fruit that has been stored at 2 ° C. as a control.

【図9】追熟処理期間中の果実の測定値の推移を示す図
である。
FIG. 9 is a diagram showing changes in the measured values of fruits during the ripening treatment period.

【図10】追熟過程の果実について、果肉硬度の実測値
と関係式(1)を用いて散乱光測定値から求めた硬度の
予測値を示す図である。
FIG. 10 is a diagram showing an actual measurement value of flesh hardness and a predicted hardness value obtained from scattered light measurement values using the relational expression (1) for fruits in the ripening process.

【符号の説明】[Explanation of symbols]

A 減光フィルタ D,D1,D2 光検出器 F 測定対象となる果実 S 光源 L1 第1のレンズ(コリメート用レンズ) L2 第2のレンズ(集光レンズ) L3 第3のレンズ(集光レンズ) L4 第4のレンズ(集光レンズ) L5 第5のレンズ(集光レンズ) L6 第6のレンズ(集光レンズ) P1 第1の偏光板 P2 第2の偏光板 P1 ,P2 ピンホール板 OF 光ファイバー BS ビームスプリッタ PBS 偏光ビームスプリッタ 101 He−Neレーザ 102 減光フィルタ 103,105 偏光板 104 ラ・フランス果実試料 106 CCDカメラA Dark filter D, D1, D2 Photodetector F Fruit to be measured S Light source L1 First lens (collimating lens) L2 Second lens (condensing lens) L3 Third lens (condensing lens) L4 Fourth lens (collective lens) L5 Fifth lens (collective lens) L6 Sixth lens (collective lens) P1 First polarizing plate P2 Second polarizing plate P 1 , P 2 Pinhole plate OF Optical fiber BS Beam splitter PBS Polarization beam splitter 101 He-Ne laser 102 Dark filter 103, 105 Polarizing plate 104 La France fruit sample 106 CCD camera

───────────────────────────────────────────────────── フロントページの続き (72)発明者 チャン キンプイ 山形県山形市城西町5−27−12 (72)発明者 仲野 英秋 山形県西村山郡河北町谷地丙64 Fターム(参考) 2G059 AA05 BB11 EE02 EE05 FF01 GG01 GG02 GG04 HH01 HH02 JJ11 JJ19 JJ22 JJ25 JJ30 KK04 LL04 MM01 NN01 PP10   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Chang Kimpui             5-27-12 Josaimachi, Yamagata City, Yamagata Prefecture (72) Inventor Hideaki Nakano             64 Yachi, Hebei-cho, Nishimurayama-gun, Yamagata Prefecture F term (reference) 2G059 AA05 BB11 EE02 EE05 FF01                       GG01 GG02 GG04 HH01 HH02                       JJ11 JJ19 JJ22 JJ25 JJ30                       KK04 LL04 MM01 NN01 PP10

Claims (13)

【特許請求の範囲】[Claims] 【請求項1】 絞り込んだ照射光を果実に対して照射
し、該果実の熟れ具合に由来する果実組織の変化を、果
実によって散乱された光の強度を光検出器で測定するこ
とにより、非破壊的に果実の熟度の判定を行うことを特
徴とする果実の非破壊熟度判定方法。
1. By irradiating a narrowed irradiation light onto a fruit and measuring the change in the fruit tissue derived from the ripening condition of the fruit, the intensity of the light scattered by the fruit is measured by a photodetector. A method for determining the non-destructive maturity of a fruit, which comprises destructively determining the maturity of the fruit.
【請求項2】 請求項1記載の果実の非破壊熟度判定方
法において、前記照射光の果実表面での散乱は、熟度と
の相関が低い果皮の状態の影響を多く受けるために、こ
れをできる限り除外し、果肉の散乱特性の変化を抽出す
ることを特徴とする果実の非破壊熟度判定方法。
2. The method for determining the non-destructive maturity of fruit according to claim 1, wherein the scattering of the irradiation light on the fruit surface is greatly affected by the state of the pericarp, which has a low correlation with the maturity. The method for determining the non-destructive maturity of fruits, which comprises removing as much as possible and extracting changes in scattering characteristics of pulp.
【請求項3】 請求項1記載の果実の非破壊熟度判定方
法において、偏光性を有する照射光を用いて、前記果実
からの散乱による偏光解消を検出することを特徴とする
果実の非破壊熟度判定方法。
3. The fruit nondestructive maturity determination method according to claim 1, wherein depolarization due to scattering from the fruit is detected by using irradiation light having a polarization property. Maturity judgment method.
【請求項4】(a)絞り込んだ照射光を果実の中心へ向
けて照射する手段と、(b)前記果実の果実組織の変化
に対応する果実によって散乱された光の強度を計測する
光検出器とを具備することを特徴とする果実の非破壊熟
度判定装置。
4. (a) A means for irradiating a focused irradiation light toward the center of the fruit, and (b) a light detection for measuring the intensity of the light scattered by the fruit corresponding to the change in the fruit tissue of the fruit. An apparatus for determining the nondestructive maturity of fruit, which comprises a container.
【請求項5】 請求項4記載の果実の非破壊熟度判定装
置において、前記果実の果皮からの散乱光を除外する手
段を有することを特徴とする果実の非破壊熟度判定装
置。
5. The fruit nondestructive maturity determination device according to claim 4, further comprising means for excluding scattered light from the fruit skin.
【請求項6】 請求項4記載の果実の非破壊熟度判定装
置において、前記光検出器の位置が照射光軸から所定角
ずれた軸上に設定されることを特徴とする果実の非破壊
熟度判定装置。
6. The fruit nondestructive ripeness determination device according to claim 4, wherein the position of the photodetector is set on an axis deviated from the irradiation optical axis by a predetermined angle. Maturity determination device.
【請求項7】 請求項6記載の果実の非破壊熟度判定装
置において、果実の果皮からの散乱光を除外する手段
が、前記果実の果皮と前記光検出器間に介在するピンホ
ール板であることを特徴とする果実の非破壊熟度判定装
置。
7. The fruit nondestructive maturity determining device according to claim 6, wherein the means for eliminating scattered light from the fruit skin is a pinhole plate interposed between the fruit skin and the photodetector. A nondestructive maturity determination device for fruits, characterized by being present.
【請求項8】 請求項6記載の果実の非破壊熟度判定装
置において、果実の果皮からの散乱光を除外する手段
が、果実の果皮と前記光検出器間に介在する光ファイバ
であることを特徴とする果実の非破壊熟度判定装置。
8. The fruit non-destructive maturity determining device according to claim 6, wherein the means for eliminating scattered light from the fruit skin is an optical fiber interposed between the fruit skin and the photodetector. Non-destructive maturity determination device for fruits.
【請求項9】 請求項6記載の果実の非破壊熟度判定装
置において、果実の果皮からの散乱光を除外する手段
が、果実の果皮に直接接触して配置される光検出器であ
ることを特徴とする果実の非破壊熟度判定装置。
9. The fruit nondestructive maturity determining device according to claim 6, wherein the means for eliminating scattered light from the fruit skin is a photodetector arranged in direct contact with the fruit skin. Non-destructive maturity determination device for fruits.
【請求項10】 請求項4記載の果実の非破壊熟度判定
装置において、前記光検出器と果実の間に果実内部に焦
点位置を有するレンズを配置することを特徴とする果実
の非破壊熟度判定装置。
10. The fruit nondestructive ripeness determination apparatus according to claim 4, wherein a lens having a focal position inside the fruit is arranged between the photodetector and the fruit. Degree determination device.
【請求項11】 請求項4記載の果実の非破壊熟度判定
装置において、前記照射光軸方向の後方散乱光をビーム
スプリッタを介して前記光検出器に導入し、これを検出
することを特徴とする果実の非破壊熟度判定装置。
11. The fruit nondestructive maturity determination device according to claim 4, wherein the backscattered light in the irradiation optical axis direction is introduced into the photodetector through a beam splitter and detected. Non-destructive maturity determination device for fruits.
【請求項12】 請求項11記載の果実の非破壊熟度判
定装置において、前記照射光の光路に前記ビームスプリ
ッタに換えて偏光ビームスプリッタを配置することを特
徴とする果実の非破壊熟度判定装置。
12. The fruit nondestructive maturity determination device according to claim 11, wherein a polarizing beam splitter is arranged in the optical path of the irradiation light instead of the beam splitter. apparatus.
【請求項13】 請求項11記載の果実の非破壊熟度判
定装置において、前記照射光の光路にビームスプリッタ
及び偏光ビームスプリッタを配置することを特徴とする
果実の非破壊熟度判定装置。
13. The fruit nondestructive maturity determination device according to claim 11, wherein a beam splitter and a polarization beam splitter are arranged in an optical path of the irradiation light.
JP2001219481A 2001-07-19 2001-07-19 Method and apparatus for nondestructive judgment of ripe level of fruit Pending JP2003035669A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001219481A JP2003035669A (en) 2001-07-19 2001-07-19 Method and apparatus for nondestructive judgment of ripe level of fruit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001219481A JP2003035669A (en) 2001-07-19 2001-07-19 Method and apparatus for nondestructive judgment of ripe level of fruit

Publications (1)

Publication Number Publication Date
JP2003035669A true JP2003035669A (en) 2003-02-07

Family

ID=19053477

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001219481A Pending JP2003035669A (en) 2001-07-19 2001-07-19 Method and apparatus for nondestructive judgment of ripe level of fruit

Country Status (1)

Country Link
JP (1) JP2003035669A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005207833A (en) * 2004-01-21 2005-08-04 Sysmex Corp Optical device for turbidity detection, and turbidity detection device using it
ITPD20090081A1 (en) * 2009-04-03 2010-10-04 Univ Bologna Alma Mater METHOD AND DEVICE FOR THE DETERMINATION OF A PARAMETER OF MATURATION AND CONSERVATION OF FRUITS BELONGING TO THE FAMILY OF THE ACTINIDIES
JP2018132325A (en) * 2017-02-13 2018-08-23 国立研究開発法人物質・材料研究機構 Non-destructive inspection method and device for degree of ripening of western pear by smell measurement

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6128866A (en) * 1984-07-18 1986-02-08 Toshimitsu Musha Measuring method and apparatus for immuno-reaction using fluctuating intensity of light
JPS62291547A (en) * 1986-06-11 1987-12-18 Olympus Optical Co Ltd Method for measuring concentration of substance
JPH01501567A (en) * 1986-10-24 1989-06-01 ブリティッシュ・テクノロジー・グループ・リミテッド Optical device and method
JPH01301147A (en) * 1988-05-28 1989-12-05 Mitsui Mining & Smelting Co Ltd Method and device for measuring quality of vegitable and fruit
JPH03176645A (en) * 1989-12-06 1991-07-31 Mitsubishi Heavy Ind Ltd Component measuring instrument of food
JPH05130995A (en) * 1991-11-14 1993-05-28 Olympus Optical Co Ltd Optical tomographinc imaging device using spatial difference
JPH05273130A (en) * 1992-03-24 1993-10-22 Nikon Corp Light echo microscope
JPH0618408A (en) * 1992-03-19 1994-01-25 Maki Seisakusho:Kk Diffuse reflection light measuring optical system and reflection spectroscopic measuring instrument
JPH09318548A (en) * 1996-05-24 1997-12-12 Sumitomo Metal Mining Co Ltd Nondestructive taste properties measuring apparatus
JPH10104079A (en) * 1996-09-25 1998-04-24 Bunshi Bio Photonics Kenkyusho:Kk Depolarization imaging device
JPH10120795A (en) * 1996-10-17 1998-05-12 Tosoh Corp Measurement of gelation degree of poly(vinyl chloride) and device therefor
WO1998052037A1 (en) * 1997-05-15 1998-11-19 Sinclair International Limited Assessment of the condition of fruit and vegetables
JPH11230901A (en) * 1998-02-09 1999-08-27 Shimadzu Corp Measuring apparatus for reflection of light
JP2000153238A (en) * 1998-11-20 2000-06-06 Sumitomo Metal Mining Co Ltd Nondestructive food taste property measuring device of vegetables and fruits
JP2000221134A (en) * 1999-02-02 2000-08-11 Kubota Corp Light-projecting/receiving apparatus for spectroscopic analysis apparatus
JP2000258342A (en) * 1999-03-11 2000-09-22 Shimadzu Corp On-line spectral sensor
WO2000079247A1 (en) * 1999-06-21 2000-12-28 Kabushikikaisha Kajitsuhihakaihinshitsukenkyujo Side multiple-lamp on-line inside quality inspecting device
JP2001066245A (en) * 1999-08-26 2001-03-16 Japan Science & Technology Corp Apparatus for observing light wave reflecting tomographic image

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6128866A (en) * 1984-07-18 1986-02-08 Toshimitsu Musha Measuring method and apparatus for immuno-reaction using fluctuating intensity of light
JPS62291547A (en) * 1986-06-11 1987-12-18 Olympus Optical Co Ltd Method for measuring concentration of substance
JPH01501567A (en) * 1986-10-24 1989-06-01 ブリティッシュ・テクノロジー・グループ・リミテッド Optical device and method
JPH01301147A (en) * 1988-05-28 1989-12-05 Mitsui Mining & Smelting Co Ltd Method and device for measuring quality of vegitable and fruit
JPH03176645A (en) * 1989-12-06 1991-07-31 Mitsubishi Heavy Ind Ltd Component measuring instrument of food
JPH05130995A (en) * 1991-11-14 1993-05-28 Olympus Optical Co Ltd Optical tomographinc imaging device using spatial difference
JPH0618408A (en) * 1992-03-19 1994-01-25 Maki Seisakusho:Kk Diffuse reflection light measuring optical system and reflection spectroscopic measuring instrument
JPH05273130A (en) * 1992-03-24 1993-10-22 Nikon Corp Light echo microscope
JPH09318548A (en) * 1996-05-24 1997-12-12 Sumitomo Metal Mining Co Ltd Nondestructive taste properties measuring apparatus
JPH10104079A (en) * 1996-09-25 1998-04-24 Bunshi Bio Photonics Kenkyusho:Kk Depolarization imaging device
JPH10120795A (en) * 1996-10-17 1998-05-12 Tosoh Corp Measurement of gelation degree of poly(vinyl chloride) and device therefor
WO1998052037A1 (en) * 1997-05-15 1998-11-19 Sinclair International Limited Assessment of the condition of fruit and vegetables
JP2001525928A (en) * 1997-05-15 2001-12-11 シンクレア、インターナショナル、リミテッド Evaluation of fruit and vegetable condition
JPH11230901A (en) * 1998-02-09 1999-08-27 Shimadzu Corp Measuring apparatus for reflection of light
JP2000153238A (en) * 1998-11-20 2000-06-06 Sumitomo Metal Mining Co Ltd Nondestructive food taste property measuring device of vegetables and fruits
JP2000221134A (en) * 1999-02-02 2000-08-11 Kubota Corp Light-projecting/receiving apparatus for spectroscopic analysis apparatus
JP2000258342A (en) * 1999-03-11 2000-09-22 Shimadzu Corp On-line spectral sensor
WO2000079247A1 (en) * 1999-06-21 2000-12-28 Kabushikikaisha Kajitsuhihakaihinshitsukenkyujo Side multiple-lamp on-line inside quality inspecting device
JP2001066245A (en) * 1999-08-26 2001-03-16 Japan Science & Technology Corp Apparatus for observing light wave reflecting tomographic image

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005207833A (en) * 2004-01-21 2005-08-04 Sysmex Corp Optical device for turbidity detection, and turbidity detection device using it
JP4632670B2 (en) * 2004-01-21 2011-02-16 シスメックス株式会社 Turbidity detection optical device and turbidity detection device using the same
ITPD20090081A1 (en) * 2009-04-03 2010-10-04 Univ Bologna Alma Mater METHOD AND DEVICE FOR THE DETERMINATION OF A PARAMETER OF MATURATION AND CONSERVATION OF FRUITS BELONGING TO THE FAMILY OF THE ACTINIDIES
JP2018132325A (en) * 2017-02-13 2018-08-23 国立研究開発法人物質・材料研究機構 Non-destructive inspection method and device for degree of ripening of western pear by smell measurement

Similar Documents

Publication Publication Date Title
Kawano et al. Nondestructive determination of sugar content in satsuma mandarin using near infrared (NIR) transmittance
US8072605B2 (en) Method and apparatus for determining quality of fruit and vegetable products
Slaughter et al. Nondestructive determination of total and soluble solids in fresh prune using near infrared spectroscopy
Cayuela Vis/NIR soluble solids prediction in intact oranges (Citrus sinensis L.) cv. Valencia Late by reflectance
Jha et al. Non‐destructive determination of acid–brix ratio of tomato juice using near infrared spectroscopy
Saranwong et al. Performance of a portable near infrared instrument for Brix value determination of intact mango fruit
Jha et al. Authentication of sweetness of mango juice using Fourier transform infrared-attenuated total reflection spectroscopy
Peirs et al. PH—Postharvest technology: Comparison of fourier transform and dispersive near-infrared reflectance spectroscopy for apple quality measurements
Peiris et al. Near-infrared spectrometric method for nondestructive determination of soluble solids content of peaches
Ignat et al. Forecast of apple internal quality indices at harvest and during storage by VIS-NIR spectroscopy
Van Beers et al. Optimal illumination-detection distance and detector size for predicting Braeburn apple maturity from Vis/NIR laser reflectance measurements
JPH06186159A (en) Non-destructive measurement method for fruits sugar degree with near-infrared transmission spectrum
Beghi et al. Rapid monitoring of grape withering using visible near‐infrared spectroscopy
JP2002122540A (en) Fresh product evaluating device and method
JPH01301147A (en) Method and device for measuring quality of vegitable and fruit
JPH01216265A (en) Nondestructive measurement for quality of fruit and vegetable by near infra red rays
JP2003035669A (en) Method and apparatus for nondestructive judgment of ripe level of fruit
Guthrie et al. Influence of environmental and instrumental variables on the non-invasive prediction of Brix in pineapple using near infrared spectroscopy
JP2004317381A (en) Apparatus for nondestructively measuring sugar content of fruits and vegetables
JPH06213804A (en) Method and apparatus for measuring percentage sugar content
JP3857191B2 (en) Method and apparatus for internal quality inspection of fruits and vegetables
Kanchanomai et al. Nondestructive determination of quality management in table grapes using Near Infrared Spectroscopy (NIRS) technique
TW202117306A (en) Method for measuring chlorophyll content and method for determining maturity of fruit
Liu et al. Optical system for measurement of internal pear quality using near-infrared spectroscopy
Dull et al. Nondestructive evaluation of internal quality

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20031031

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040129

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040702

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060801

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060929

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070109