JP2004317381A - Apparatus for nondestructively measuring sugar content of fruits and vegetables - Google Patents

Apparatus for nondestructively measuring sugar content of fruits and vegetables Download PDF

Info

Publication number
JP2004317381A
JP2004317381A JP2003113498A JP2003113498A JP2004317381A JP 2004317381 A JP2004317381 A JP 2004317381A JP 2003113498 A JP2003113498 A JP 2003113498A JP 2003113498 A JP2003113498 A JP 2003113498A JP 2004317381 A JP2004317381 A JP 2004317381A
Authority
JP
Japan
Prior art keywords
sugar content
light
fruits
vegetables
transmitted light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003113498A
Other languages
Japanese (ja)
Other versions
JP3903147B2 (en
Inventor
Yoshiaki Shimomura
義昭 下村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagasaki Prefectural Government
Original Assignee
Nagasaki Prefectural Government
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagasaki Prefectural Government filed Critical Nagasaki Prefectural Government
Priority to JP2003113498A priority Critical patent/JP3903147B2/en
Publication of JP2004317381A publication Critical patent/JP2004317381A/en
Application granted granted Critical
Publication of JP3903147B2 publication Critical patent/JP3903147B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/02Food
    • G01N33/025Fruits or vegetables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3563Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing solids; Preparation of samples therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/359Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using near infrared light

Abstract

<P>PROBLEM TO BE SOLVED: To provide a small-sized portable apparatus for nondestructively measuring a sugar content of fruits and vegetables without an error using transmitted light from a fruit or vegetable obtained by irradiating the fruit or vegetable with monochromatic light having a specific wavelength. <P>SOLUTION: The apparatus comprises a light source control section 220 which irradiates a measurement point of the fruit or vegetable with light 11, 12 of two different near-infrared wavelength ranges, light detectors 51, 52 which receive transmitted light 12, 22 and 13, 23 generated by the light 11, 12 passing through the measurement point, and detect the amount of transmitted light received at two separate points. Relative transmittance, the ratio between the amount of transmitted light of the same wavelength at the two detection points, is calculated for each wavelength, and using the relative transmittance for each wavelength, the sugar content of the fruit and vegetable is calculated. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、青果物の甘味に関する指標を測定する青果物糖度の非破壊測定装置に関し、詳しくは特定波長の単色光を青果物に照射して得られる青果物からの透過光から青果物糖度を非破壊的に誤差なく測定する技術に関する。
【0002】
【従来の技術】
一般に、野菜,果実等の青果物の出荷時には、形状,色などの外観検査に加え、糖度等の内的品質の検査による等級選定が必要である。さらには、こうした糖度の内的品質を栽培管理にフィードバックできることが望まれている。従来、青果物の糖度は数個のサンプルから抽出した果汁を用いて、化学分析あるいは屈折率糖度計による破壊方式で行われるのが一般的である。この破壊方式は測定時間が長いとともに青果物個々の糖度測定ができず、またサンプル抽出したロット内での糖度のばらつき等の問題があり、近年では青果物の糖度測定を非破壊で迅速に行う手法として、近赤外領域の波長の光を用いた方法が研究開発あるいは実用化されている。
【0003】
そこで、近赤外領域の波長の光を青果物に照射し、その反射光を受光して特定波長の吸光度を測定し、この測定値から青果物糖度を測定する技術が開示されている(例えば非特許文献1及び特許文献1,2参照)。非特許文献1の技術では、近赤外領域の波長の光を含む光源からの光を青果物に照射し、果皮表面及び果皮に近い果肉層で拡散反射した光のスペクトルを回折格子等から構成される分光器を用いて計測し、その拡散反射スペクトルから下記計算式に従い青果物の糖度を算出する方式を提案している。
【0004】
【数1】

Figure 2004317381
【0005】
ここで、4つの特定波長にλ=870nm,λ=878nm,λ=889nm,λ=906nmを採用することを提案している。ここで、C:糖濃度,A:吸光度,λ:波長を示す。またk,k,k,k,kは実測糖度を用いて最小2乗法で決定された係数である。
【0006】
ところで、前記従来の糖度測定装置の場合、検出される反射光は表皮近傍からの反射光がほとんどで、得られる糖濃度も表皮近傍の糖濃度となる。本方式の場合、表皮の薄いリンゴや桃では有効であるが、表皮の厚いミカンやメロンに前記方式を適用した場合、反射光は皮の部分からの成分だけとなり、実の成分情報がほとんど含まれず、実の糖度計測が困難である。
【0007】
このような問題点に対して、皮の厚い青果物に対して近赤外領域の波長の光で糖濃度計測を実現する透過光を利用した技術が開示されている(例えば特許文献3,4及び非特許文献2参照)。特許文献3及び非特許文献2の技術では、近赤外領域の波長の光を青果物に照射して照射位置とほぼ反対側で透過光を検出し、分光器により得た透過光スペクトルを用いて吸光度及び吸光度の二次微分値を計算し、5つの特定波長の吸光度の二次微分値を用いて下記式により糖度を算出することを提案している。
【0008】
【数2】
Figure 2004317381
【0009】
ここで、C:糖濃度,A:吸光度,λ:波長を示す。またki(i=0,1,2,3,4)は、5つの特定波長λ=745nm,λ=769nm,λ=786nm,λ=914nm,λ=844nmで、実測糖度を用いて最小2乗法で決定された係数を示す。以上、前記青果物からの透過光を検出することで皮の厚いミカンに対して良好な測定精度を得ている。ところで、数2に表れる吸光度の2階微分値は近似的に下記式で表される。
【0010】
【数3】
Figure 2004317381
【0011】
吸光度の2階微分値を算出するには、特定波長(λ)前後の波長の吸光度が必要になる。つまり、数2を用いて糖度を算出するには5つの特定波長にその前後の波長を加え15ヶ以上の波長での吸光度が必要になる。15ヶ以上の波長を有する前記光源としては、近赤外領域で連続した波長成分を含んだハロゲンランプ等の白色光源が一般的に用いられる。前記白色光源を青果物に照射して得られる透過光から特定波長のスペクトルを得るには回折格子等から構成される複雑な分光器が必要になるため、実用化されている装置のほとんどが大型の据え置きタイプとなっている。
【0012】
このような問題点に対し、本件出願人は近赤外領域の波長の光を用いた青果物の糖度測定装置において、桃やリンゴなど皮の薄い青果物のみならず皮の厚いミカンやメロン等の青果物の糖濃度が測定でき、しかも従来の糖度測定装置のように回折格子等から構成される複雑な分光器を必要としない青果物の非破壊糖度測定装置を発明し、出願している(特願2001−309190号)。
【0013】
この青果物の非破壊糖度測定装置を図10に基づいて説明する。波長の異なる2つの照射光102,202を青果物1に照射するための光源10,20と反射プリズム40,レンズ41を備え、また照射光102,202の一部101,201を検出するためのサンプリングミラー42,レンズ43,NDフィルター45,光検出器44を備えている。さらに青果物1からの透過光103,203を検出するためにレンズ50と光検出器51を、また信号処理部230,中央制御部200,表示部210,光源制御部220を備えている。
【0014】
中央制御部200は、信号処理部230でデジタル化された光検出器44,51からの検出信号をもとに、後述する算定式で青果物の糖度を算出し、表示部210で表示する。光源制御部220は、光源10,20に電流を供給するための図示しない電源とスイッチ部を有している。中央制御部200からの指令信号に従い、光源制御部220のスイッチ部により光源10,20への電流供給のON,OFF制御が行われる。
【0015】
以上の構成を有する糖度測定装置の動作を説明する。まず、中央制御部200からの指令信号に従い、光源制御部220から光源10のみに電流が供給される。光源10から発した照射光102はプリズム40を透過し、レンズ41により青果物1に照射される。サンプリングミラー42により照射光102から一部取り出されたモニター光101はレンズ43で光検出器44の受光面に集められる。一方、青果物1からの透過光103はレンズ50で光検出器51の受光面に集められる。
【0016】
光検出器44,51から、それぞれモニター光101,透過光103の光強度に比例した検出信号(電圧)が出力され、信号処理部230でデジタル化処理される。デジタル化処理された光検出器44,51からの検出電圧V44,V51を基に中央制御部200で単色光源10から発した照射光102に対する青果物1の透過率Tが算出される。
【0017】
中央制御部200で行われるの透過率Tの算出方法について説明する。モニター光101,照射光102,透過光103の光量をそれぞれI,I,Iとする。単色光源10から発した照射光102に対する青果物1の透過率Tは次式で求められる。
=I/I=I/I/k・・・(1.4)
【0018】
ここで、kはサンプリングミラー42の反射率,NDフィルター45の透過率によって決まる定数を表す。次に光検出器44,51における光量−電圧変換係数をそれぞれβ44,β51とすると光検出器44,51で検出される検出信号(電圧)V44,V51は下記式で表される。
44=β44*I・・・(1.5)
51=β51*I・・・(1.6)
【0019】
これらの各式(1.4),(1.5),(1.6)より、青果物1の透過率Tは下記式で算出される。
=(β44/β51/k)×V51/V44・・・(1.7)
【0020】
ここで、( )内の値は、糖度測定装置固有の定数で、透過率の値が分かった材料等を用いて簡単に校正することができる。単色光源20から発する照射光202に対する透過率Tも前記T同様にして測定することができる。青果物1の糖度は、算出した透過率T,Tを用いて下記式で算出する。
C=k+k*ln(T)/ln(T)・・・(1.8)
【0021】
ここでk,kは実測糖度を用いて最小2乗法で決定された係数を示す。式(1.8)を用いて糖度推定を行うための最適な波長の組み合わせとして、2つの異なった波長が950〜1010nmの範囲と1020〜1080nmの範囲の中からそれぞれ選ばれたものであることを提案している。
【0022】
以上前記した先願発明によれば、2種類の特定波長の単色光を青果物に照射し、その透過光を検出する。検出された透過光には青果物内部の実の糖度情報が含まれており、みかんやメロンのように皮の厚い青果物の糖度測定が可能となる。また、2種類の特定波長の単色光を用いた本発明の糖度測定装置では、白色光源を用いた従来の糖度測定装置のように透過または反射光スペクトルを検出するための複雑な分光器を必要としない装置が実現でき、また光源に小型の半導体レーザー等を用いることができるため、小型・軽量の糖度測定装置が実現できる。
【0023】
しかしながら、この先願発明には、前記照射光102(202)の照射位置Pと透過光103(203)の検出位置Pとの直線距離rが、図11に示すように果実の大きさ等に依存してわずかに変化する。その変化量δr=r−r’とすると、δr=1mmあたり約4Brix%の糖度の測定誤差が生じてしまうという欠点があり、果実の大きさに合わせて直線距離rの変化量δrを調整する機構を設けたとしても、果実の糖度計としての精度を実現するにはδrを0.2mm以下にする高精度な調整が必要になる問題があった。
【0024】
【特許文献1】
特開平2−147940号公報
【特許文献2】
特開平4−208842号公報
【特許文献3】
特開平6−186159号公報
【特許文献4】
特開平6−213804号公報
【非特許文献1】
園芸学会誌、61,445(1992)
【非特許文献2】
園芸学会誌、62,465(1993)
【0025】
【発明が解決しようとする課題】
本発明が解決しようとする課題は、従来のこれらの問題点を解消し、特定波長の単色光を青果物に照射して得られる青果物からの透過光から青果物糖度を非破壊的に誤差なく測定する小型で携帯容易な青果物の糖度測定装置を提供することにある。
【0026】
【課題を解決するための手段】
かかる課題を解決した本発明の構成は、
1) 青果物の測定部位に複数の異なる波長からなる光を照射する照射手段を設け、同照射手段の光が青果物の測定部位を透過した透過光を異なる距離をおいた2箇所で受光してその透過光量を検出する透過光量検出手段を設け、同透過光量検出手段で検出した2箇所での同波長の透過光量の比である相対透過度を各波長毎に算出し、同各波長の相対透過度を用いて青果物の糖度を算定する演算手段を設けた青果物の非破壊糖度測定装置
2) 照射手段が、2つの異なる波長の光を照射するもので、演算手段が、2箇所で検出した各透過光量のうち透過距離が短い方をI λ1,I λ2とし、透過距離が長い方をI λ1,I λ2とし、2つの異なる波長の相対透過度Rλ1,Rλ2を式Rλ1=I λ1/I λ1,Rλ2=I λ2/I λ2とし、予め実測した糖度と相対透過度Rλ1,Rλ2を用いて次式の係数k,kを求め、糖度Cを式C=k+k*ln(Rλ1)/ln(Rλ2)に従って算定するようにしたものである前記1)記載の青果物の非破壊糖度測定装置
3) 照射手段が、2つの異なる波長の光を照射するもので、演算手段が、2箇所で検出した各透過光量のうち透過距離が短い方をI λ1,I λ2とし、透過距離が長い方をI λ1,I λ2とし、2つの異なる波長の相対透過度Rλ1,Rλ2を式Rλ1=I λ1/I λ1,Rλ2=I λ2/I λ2とし、同各相対透過度Rλ ,Rλ に基づいて2つの異なる波長の吸光度A,Aを式A=−1n(Rλ ),A=−1n(Rλ2)とし、予め実測した糖度と吸光度A,Aを用いて次式の係数k,kを求め、糖度Cを式C=k+k*A/Aに従って算定するようにしたものである前記1)記載の青果物の非破壊糖度測定装置
4) 照射手段が照射する2つの異なる波長の光が、940〜1000nmの範囲と1040〜1090nmの範囲の近赤外領域の中から選ばれたものである前記2)又は3)記載の青果物の非破壊糖度測定装置
5) 照射手段が、3つの波長の光を照射するもので、演算手段が、2箇所で検出した各透過光量のうち透過距離が短い方をI λ1,I λ2,I λ3とし、透過距離が長い方をI λ1,I λ2,I λ3とし、3つの波長の相対透過度Rλ1,Rλ2,Rλ3を式Rλ1=I λ1/I λ1,Rλ2=I λ2/I λ2,Rλ3=I λ3/I λ3とし、予め実測した糖度と相対透過度Rλ1,Rλ2,Rλ3を用いて次式の係数k,kを求め、糖度Cを式C=k+k*ln(Rλ1/Rλ3)/ln(Rλ2/Rλ3)に従って算定するようにしたものである前記1)記載の青果物の非破壊糖度測定装置
6) 照射手段が、3つの波長の光を照射するもので、演算手段が、2箇所で検出した各透過光量のうち透過距離が短い方をI λ1,I λ2,I λ3とし、透過距離が長い方をI λ1,I λ2,I λ3とし、3つの波長の相対透過度Rλ1,Rλ2,Rλ3を式Rλ1=I λ1/I λ1,Rλ2=I λ2/I λ2,Rλ3=I λ3/I λ3とし、同各相対透過度Rλ ,Rλ ,Rλ3に基づいて3つの異なる波長の吸光度A,A,Aを式A=−1n(Rλ ),A=−1n(Rλ2),A=−1n(Rλ3)とし、予め実測した糖度と吸光度A,A,Aを用いて次式の係数k,kを求め、糖度Cを式C=k+k*(A−A)/(A−A)に従って算定するようにしたものである前記1)記載の青果物の非破壊糖度測定装置
7) 照射手段が照射する3つの異なる波長の光が、その内2つが940〜1000nmの範囲と1040〜1090nmの範囲の近赤外領域の中から選ばれたもので、残りの1つが910〜930nm又は1010〜1030nmの範囲の近赤外領域の中から選ばれたものである前記5)又は6)記載の青果物の非破壊糖度測定装置。
にある。
【0027】
【発明の実施の形態】
本発明において、照射手段で異なる複数の単色光を青果物に照射すると、単色光は青果物内部で散乱・吸収を受けて果外に放射されて透過光となる。この透過光を透過光量検出手段で単色光の照射位置から異なる距離をおいた2箇所で検出する。検出した2つの透過光からその比である相対透過度を計算し、同相対透過度を用いて青果物の糖度を算出する。検出された透過光には青果物内部の実の糖度情報が含まれており、ミカンやメロンのように皮の厚い青果物の糖度測定が可能となる。
【0028】
また、光源に2ヶの単色光源を用いることで、白色光源を用いた従来の糖度測定装置のように透過または反射光スペクトルを検出するための複雑な分光器を必要としない装置が実現できる。また、果実の大きさに依存して単色光の照射位置と透過光の検出位置との直線距離が変化しても、糖濃度の測定誤差への影響を少なくした青果物の非破壊糖度測定装置が実現できる。
【0029】
なお、本発明で用いている透過光量I λ1,I λ1及び相対透過度Rλ1の各記号は、I,Iの数字が検出位置を示し、λ1,λ2,λ3は波長の種類を示しているものである。以下、本発明の各実施例を図面に基づいて基本的に説明する。
【0030】
【実施例】
実施例1(図1,2参照):図1に示す実施例1の糖度測定装置は、照射光11,21を青果物1に照射するための光源10,20と、反射プリズム40,レンズ41を備える。また青果物1からの透過光12,22を検出するためにレンズ50と光検出器51から構成される透過光量検出手段Iと、透過光13,23を検出するためにレンズ60と光検出器61から構成される透過光量検出手段IIを備え、さらに信号処理部230,中央制御部200,表示部210,光源制御部220を備えている。
【0031】
中央制御部200は、信号処理部230でデジタル化された光検出器51,61からの検出信号をもとに、後述する算定式で青果物の糖度を算出し、表示部210で表示する。光源制御部220は、光源10,20に電流を供給するための図示しない電源、スイッチ部を有している。中央制御部200からトリガ信号T10(T20)がスイッチ部に入力されると、トリガ信号T10(T20)の立ち上がりに同期してスイッチ部がONとなり、光源10(光源20)に電流が供給される。
【0032】
以上の構成を有する糖度測定装置の動作を説明する。まず、中央制御部200から送信されるトリガ信号T10がHighとなると、光源制御部220の図示しないスイッチ部がトリガ信号T10の立ち上がりに同期してONとなり、光源10に電流が供給され単色光11が発生する。一方、トリガ信号T20はLowのままとなっており、光源20には電流が供給されず照射光21は発生していない。
【0033】
次に、光源10から発した照射光11はプリズム40を透過してレンズ41により青果物1上に照射され、照射光11は青果物内部で散乱・吸収を受けて果外のあらゆる方向に放射されて透過光となる。前記照射光11の照射位置Pから直線距離r離れた青果物1上の位置Pからの透過光12はレンズ50で光検出器51の受光面に集められ、前記照射光11の照射位置Pから直線距離r離れた青果物1上の位置Pからの透過光13はレンズ60で光検出器61の受光面に集められる。なお、図1ではr<rとし、光検出器51,61にはフォトダイオードを用いている。
【0034】
光検出器51,61からそれぞれ透過光12,13の光強度に比例した検出信号が出力され、信号処理部230でデジタル化処理される。デジタル化処理された光検出器51,61からの検出信号を基に中央制御部200で後述する算定式で相対透過度Rλ1が算出される。相対透過度Rλ1の算出演算が終わると、トリガ信号T10がLowに、またトリガ信号T20がHighになる。このトリガ信号T10(T20)に基づき、前記光源制御部220内の図示しないスイッチ部の開閉により、光源10がOFF(消灯)し、光源20がON(点灯)する。
【0035】
続いて、前述した照射光11による透過相対度Rλ1の算出手順と同様に、照射光21による相対透過度Rλ2の算出が実行される。照射光21による相対透過度Rλ2の算出演算が終了するとトリガ信号T10、T20はともにLowとなり、光源10,20はともにOFF(消灯)して、青果物1の糖度計測作業は終了する。中央制御部200では算出した相対透過度Rλ1,Rλ2から青果物1の糖度を後述する算定式で算出し、その結果を表示部210に表示する。
【0036】
次に、中央制御部200で行われる相対透過度Rλ1,Rλ2の算出方法について説明する。照射光11,透過光12,13の光量をそれぞれI λ1,I λ1,I λ1とする。照射光11に対する青果物1の相対透過度Rλ1は下記式で表される。
λ1=I λ1/I λ1・・・(1.9)
【0037】
光検出器51,61における光量−電圧変換係数をそれぞれβ51,β61とすると、光検出器51,61で検出される検出信号(電圧)V51,V61は下記式で表される。
51=β51*I λ1・・・(1.10)
61=β61*I λ1・・・(1.11)
【0038】
これら各式(1.9),(1.10),(1.11)より、青果物1の相対透過度Rλ1は下記式で算出され、照射光11の光量I λ1に依存しない形で表される。
λ1=(β51/β61)*V61/V51・・・(1.12)
【0039】
ここで、( )内の値は、糖度測定装置固有の定数で、光量が分かった光源を用いて簡単に校正することができる。照射光21に対する青果物1の相対透過度Rλ2の算出も前記照射光11に対する青果物1の相対透過度Rλ1と同様にして求めることができる。青果物1の糖度Cは、算出した相対透過度Rλ1,Rλ2を用いて下記式で算出する。
C=k+k*ln(Rλ1)/ln(Rλ2)・・・(1.13)
【0040】
ここでk,kは実測糖度を用いて最小2乗法で決定された係数を示す。式(1.13)を用いて糖度推定を行うための異なる2つの波長として、実施例1では940〜1000nmの範囲と1040〜1090nmの範囲の中からそれぞれ選ばれた波長としている。
【0041】
また、前記した波長範囲にある照射光11,21を発する光源10,20としてレーザーを用いることができる。このレーザーに半導体レーザーを用いれば、小型の糖度測定装置が実現できる。また、発光ダイオード等の発光素子を光源10,20に用いることも可能である。また近赤外領域の波長の光を連続的に発する白色光源を光源10,20に用いる場合、光源10,20からの光を前述した波長のみを透過させる光学フィルターを用いることで実現しても良い。さらに、図2に示すように光源10,20からの照射光11,21を光ファイバー700を用いて青果物1に照射し、さらに青果物1上の検出点P、Pからの透過光12,13(22,23)を光ファイバー701,702を用いて前記光検出器51,61に導光してもよい。
【0042】
実施例2(図3参照):図3に示す実施例2は、3つの波長を用いた青果物の非破壊糖度測定装置の例である。図3に示す実施例2の糖度測定装置は、照射光11,21,31を青果物1に照射するための光源10,20,30と、レンズ410,420,430と、光ファイバー710,720,730及び同各光ファイバー710,720,730を束ねて青果物1に前記照射光11,21,31を照射する光ファイバー700を備えている。また青果物1からの透過光12,22,32を検出するための光ファイバー701,レンズ50,光検出器51から構成される透過光量検出手段Iと、透過光13,23,33を検出するための光ファイバー702,レンズ60,光検出器61から構成される透過光量検出手段IIを備え、さらに信号処理部230,中央制御部200,表示部210,光源制御部220を備えている。
【0043】
中央制御部200は、信号処理部230でデジタル化された光検出器51,61からの検出信号をもとに、後述する算定式で青果物の糖度を算出し、表示部210で表示する。光源制御部220は、光源10,20,30に電流を供給するための図示しない電源,スイッチ部を有している。中央制御部200からトリガ信号T10(T20,T30)がスイッチ部に入力されると、トリガ信号T10(T20,T30)の立ち上がりに同期してスイッチ部がONとなり、光源10(光源20,光源30)に電流が供給される。
【0044】
各照射光11,21,31に対応した青果物1の相対透過度Rλ1,Rλ2,Rλ3は前記実施例1と同様の手順で算出することができる。青果物1の糖度は、算出した相対透過度Rλ1,Rλ2,Rλ3を用いて下記式で算出する。
C=k+k*ln(Rλ1/Rλ3)/ln(Rλ2/Rλ3)・・・(1.14)
【0045】
ここでk,kは実測糖度を用いて最小2乗法で決定された係数を示す。式(1.14)を用いて糖度推定を行うための異なる3つの波長として、実施例2では照射光11,21が940〜1000nmの範囲と1040〜1090nmの範囲の中からそれぞれ選ばれたものとし、また残りの照射光31が910〜930nm又は1010〜1030nmの範囲の中から選ばれた波長としている。
【0046】
実施例3(図4参照):実施例1,2では青果物に照射する光を波長の異なる2つ又は3つの単色光に限定して説明した。これにより、白色光源を用いた従来の糖度測定装置のように透過、または反射光スペクトルを検出するための複雑な分光器を必要としない装置が実現できる。また、果実の大きさに依存して単色光の照射位置と透過光の検出位置との直線距離が変化しても、糖濃度の測定誤差への影響を少なくした青果物の非破壊糖度測定装置が実現できる。
【0047】
一方、従来の白色光源と分光器を用いた青果物の非破壊糖度測定装置においても、果実の大きさに依存して単色光の照射位置と透過光の検出位置との直線距離が変化しても、糖濃度の測定誤差への影響を少なくすることができる。従来の白色光源と分光器を用いた青果物の非破壊糖度測定装置に適用した例を図4を用いて説明する。
【0048】
図4に示した非破壊糖度測定装置では、近赤外領域の波長の光を含むハロゲンランプ等の白色光源100とその電源110を備え,光源100からの光101をレンズ120と光ファイバー700を介して青果物1に照射する。青果物1に照射された光101は果実内部で散乱・吸収を受けて果外のあらゆる方向に放射されて透過光となる。光ファイバー700による光101の青果物1上の照射位置Pから直線距離r,rの青果物1上の位置P,Pからの透過光102,103を光ファイバー701,702により分光器300まで導光する。分光器300はレンズ320,310と、シャッター321,311,プリズム330,回折格子340,多チャンネル検出器350から構成される。
【0049】
多チャンネル検出器350にはCCD等のリニアアレイセンサーが用いられる。位置Pから放射された透過光102の透過スペクトルを計測する場合、シャッター311が開き、多チャンネル検出器350上に透過光102の透過スペクトルSが得られる。この場合、シャッター321は閉まっている。同様にして位置Pから放射された透過光103の透過スペクトルSを測定する場合、シャッター321が開き、多チャンネル検出器350上に透過光103の透過スペクトルSが得られる。この場合、シャッター311は閉まっている。以上の様にして測定した前記透過スペクトルS,Sから透過率スペクトルT=S/Sを算出する。得られた透過率スペクトルから式(1.13),式(1.14)に従い糖度Cを算出することができる。
【0050】
各実施例の非破壊糖度測定方法について検討した結果を図5〜11に示す。図5は透明な石英セル容器に入れたグルコース水溶液に種々の波長の単色光を照射し、その透過率スペクトルTを算出し、その透過率から下記式により算出される吸光度比γと糖濃度の相関についてSN比η>4となる波長の組み合わせ領域を斜線で示している。
γ=ln(T(λ))/ln(T(λ))・・・(1.15)
【0051】
SN比ηは式(1.15)で表される吸光度比γと糖濃度の関係を直線回帰した場合の回帰直線の傾きβ,回帰誤差σを用いてη=(β/σ)で定義した。つまり吸光度比γを用いた糖度の推定誤差は(1/η)0.5で算出され、図7中、η>4以上となる領域での波長の組み合わせを用いた吸光度比γによる糖濃度の推定誤差は0.5wt%以下となっている。図7より940〜1000nmの範囲と1040〜1090nmの範囲を四角で囲んだ領域は前記吸光度比γで糖濃度を推定する為の最適な波長の組み合わせであることがわかる。
【0052】
上記波長の最適な組み合わせの中から、市販の半導体レーザーで入手できる波長980nm,1060nmを選択し、その波長での吸光度比γと水溶液中のグルコース濃度との関係を図6に示す。吸光度γによる測定誤差は0.3wt%以下を実現している。
【0053】
一方、果実などの散乱体に対しても、グルコース水溶液で得られた最適な波長の組み合わせがそのまま成り立つ。図7に果実を模した散乱体に対して、吸光度比γと糖濃度の関係について文献「A.Ishimaru:Wave Propagation and Scattering in Random Media, Academic Press, New York(1978)」を参考に理論計算した結果を示す。図7の計算では波長として980nm,1060nmを選択した。図1で説明した直線距離r,rをそれぞれ30mm,40mmに設定した。等価散乱係数は糖濃度,波長によらず一定とし、ここでは0.44mm−1とした。また波長,糖濃度に依存した吸収係数はグルコース水溶液を用いて測定した結果を用いた。図7より水溶液と同じ波長の組み合わせにおいて吸光度比γと糖濃度の相関が高いことがわかる。
【0054】
次に、図2に示した実施例2の非破壊糖度測定装置で実際にリンゴに対して糖度を測定した結果を図8に示す。光源には波長980nm,1060nmの市販の半導体レーザーを用いた。測定誤差として0.8Brix%以下が得られ、本発明の有効性が立証された。
【0055】
次に、実施例1,2記載の糖度測定装置において、図1中直線距離rを変化させた場合の糖度の測定誤差について解析した結果を図9に示す。図10に示した従来技術では、直線距離が1mm変化すると約4wt%の測定誤差が生じる。非破壊糖度計に要求される精度が1wt%であることから、直線距離の変化を0.2mm以下にしなければならない。直線距離の調整機構を設けても高精度な調整機構が必要になる。一方、実施例1の装置では直線距離の変化1mmに対して糖度の測定誤差が1wt%以下で従来技術の1/4以下となる。さらに実施例2を用いた糖度計では直線距離の変化に対する糖度の測定誤差が従来技術の約1/60となる。
【0056】
【発明の効果】
以上説明したように、本発明によれば複数の異なる特定波長の単色光を青果物に照射し、その透過光を前記単色光の照射位置からの直線距離が異なる位置でそれぞれ検出する。検出された透過光には青果物内部の実の糖度情報が含まれており、ミカンやメロンのように皮の厚い青果物の糖度測定が可能となる。また、2〜3種類の特定波長の単色光を用いた本発明の糖度測定装置では、白色光源を用いた従来の糖度測定装置のように透過又は反射光スペクトルを検出するための複雑な分光器を必要としない装置が実現でき、また光源に小型の半導体レーザー等を用いることができるため、小型・軽量の糖度測定装置が実現できる。さらに、果実の大きさに依存して単色光の照射位置と透過光の検出位置との直線距離が変化しても、糖濃度の測定誤差への影響を少なくした青果物の非破壊糖度測定装置が実現できる。
【図面の簡単な説明】
【図1】実施例1の非破壊糖度測定装置の説明図である。
【図2】実施例1の非破壊糖度測定装置の説明図である。
【図3】実施例2の非破壊糖度測定装置の説明図である。
【図4】実施例3の非破壊糖度測定装置の説明図である。
【図5】グルコース水溶液における最適波長の組み合わせ領域を示す図である。
【図6】グルコース水溶液における吸光度比と糖濃度の関係を示す図である。
【図7】果実を模した散乱体での吸光度比と糖濃度の関係を示す図である。
【図8】実施例1の非破壊糖度測定装置でリンゴを測定した結果を示す図である。
【図9】果実の大きさの変化による測定誤差を示す図である。
【図10】従来技術における青果物の糖度測定装置の説明図である。
【図11】従来技術における青果物の糖度測定装置の説明図である。
【符号の説明】
1、1’ 青果物
10,20,30 光源
11,21,31 照射光
12,13 透過光
22,23 透過光
32,33 透過光
41,43 レンズ
50,60 レンズ
40 プリズム
44,51,61 光検出器
42 サンプリングミラー
45 NDフィルター
100 白色光源
110 白色光源用電源
120 レンズ
200 中央制御部
210 表示部
220 光源制御部
230 信号処理部
300 分光器
310,320 レンズ
311,321 シャッター
330 プリズム
340 回折格子
350 多チャンネル検出器
410,420,430 レンズ
700,701,702 光ファイバー
710,720,730 光ファイバー[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a non-destructive measuring device for the sugar content of fruits and vegetables that measures an index relating to the sweetness of fruits and vegetables, and more specifically, non-destructively measuring the sugar content of fruits and vegetables from transmitted light from fruits and vegetables obtained by irradiating fruits and vegetables with monochromatic light having a specific wavelength. Technology for measuring without
[0002]
[Prior art]
Generally, at the time of shipment of fruits and vegetables such as vegetables and fruits, it is necessary to select a grade by inspection of internal quality such as sugar content in addition to appearance inspection of shape and color. Furthermore, it is desired that the internal quality of the sugar content can be fed back to cultivation management. Conventionally, the sugar content of fruits and vegetables is generally determined by chemical analysis using fruit juice extracted from several samples or by a destructive method using a refractive index refractometer. This destruction method has a long measurement time and cannot measure the sugar content of each fruit or vegetable, and there are problems such as variation in the sugar content within the lot from which the sample was extracted. A method using light having a wavelength in the near infrared region has been researched and developed or put into practical use.
[0003]
Therefore, there is disclosed a technique for irradiating fruits and vegetables with light having a wavelength in the near-infrared region, measuring the absorbance of a specific wavelength by receiving the reflected light, and measuring the sugar content of the fruits and vegetables from the measured value (for example, non-patented). Reference 1 and Patent Documents 1 and 2). In the technique of Non-Patent Document 1, light from a light source including light having a wavelength in the near-infrared region is irradiated on fruits and vegetables, and the spectrum of light diffusely reflected on the pericarp surface and the pericarp layer near the pericarp is constituted by a diffraction grating or the like. We have proposed a method of measuring the sugar content of fruits and vegetables from the diffuse reflectance spectrum using the following spectrometer.
[0004]
[Expression 1]
Figure 2004317381
[0005]
Here, four specific wavelengths λ1= 870 nm, λ2= 878 nm, λ3= 889 nm, λ4= 906 nm is proposed. Here, C: sugar concentration, A: absorbance, and λ: wavelength. Also k0, K1, K2, K3, K4Is a coefficient determined by the least squares method using the measured sugar content.
[0006]
By the way, in the case of the conventional sugar content measuring device, most of the detected reflected light is reflected light from the vicinity of the epidermis, and the obtained sugar concentration is also the sugar concentration near the epidermis. In the case of this method, it is effective for apples and peaches with a thin skin, but when the above method is applied to oranges and melons with a thick skin, the reflected light is only the component from the skin part, and most of the actual component information is included It is difficult to measure the actual sugar content.
[0007]
In order to solve such a problem, techniques using transmitted light for measuring sugar concentration with light having a wavelength in the near-infrared region for fruits and vegetables having a thick skin are disclosed (for example, Patent Documents 3 and 4 and Non-Patent Document 2). In the techniques of Patent Literature 3 and Non-Patent Literature 2, fruits and vegetables are irradiated with light having a wavelength in the near-infrared region, transmitted light is detected at a position substantially opposite to the irradiation position, and a transmitted light spectrum obtained by a spectroscope is used. It has been proposed to calculate the absorbance and the second derivative of the absorbance, and to calculate the sugar content by the following formula using the second derivative of the absorbance at five specific wavelengths.
[0008]
[Expression 2]
Figure 2004317381
[0009]
Here, C: sugar concentration, A: absorbance, and λ: wavelength. Also, ki (i = 0, 1, 2, 3, 4) has five specific wavelengths λ.1= 745 nm, λ2= 769 nm, λ3= 786 nm, λ4= 914 nm, λ5= 844 nm, the coefficient determined by the least squares method using the measured sugar content. As described above, by detecting the transmitted light from the fruits and vegetables, good measurement accuracy is obtained for oranges with a thick skin. By the way, the second derivative of the absorbance shown in Expression 2 is approximately expressed by the following equation.
[0010]
[Equation 3]
Figure 2004317381
[0011]
To calculate the second derivative of the absorbance, a specific wavelength (λ0) Absorbance at the wavelengths before and after is required. That is, in order to calculate the sugar content using Equation 2, the absorbance at 15 or more wavelengths is required by adding the wavelengths before and after the five specific wavelengths. As the light source having 15 or more wavelengths, a white light source such as a halogen lamp containing a continuous wavelength component in the near infrared region is generally used. To obtain a spectrum of a specific wavelength from transmitted light obtained by irradiating the fruits and vegetables with the white light source, a complicated spectroscope composed of a diffraction grating or the like is required, and therefore most of practically used apparatuses are large-sized. It is a stationary type.
[0012]
In order to solve such a problem, the present applicant has developed a sugar content measuring apparatus for fruits and vegetables using light having a wavelength in the near-infrared region, and not only fruits and vegetables having a thin skin such as peaches and apples but also fruits and vegetables such as oranges and melons having a thick skin. Has been invented and applied for a non-destructive sugar content measuring device for fruits and vegetables, which can measure the sugar concentration of fruits and vegetables and does not require a complicated spectroscope composed of a diffraction grating or the like as in the conventional sugar content measuring device (Japanese Patent Application 2001). No. 309190).
[0013]
The nondestructive sugar content measuring device for fruits and vegetables will be described with reference to FIG. Light sources 10 and 20 for irradiating fruits and vegetables 1 with two irradiation lights 102 and 202 having different wavelengths are provided, a reflecting prism 40 and a lens 41, and sampling for detecting parts 101 and 201 of the irradiation lights 102 and 202. A mirror 42, a lens 43, an ND filter 45, and a photodetector 44 are provided. Further, a lens 50 and a photodetector 51 for detecting the transmitted lights 103 and 203 from the fruits and vegetables 1, and a signal processing unit 230, a central control unit 200, a display unit 210, and a light source control unit 220 are provided.
[0014]
The central control unit 200 calculates the sugar content of the fruits and vegetables using a calculation formula described later based on the detection signals from the photodetectors 44 and 51 digitized by the signal processing unit 230, and displays the sugar content on the display unit 210. The light source control unit 220 has a power supply and a switch unit (not shown) for supplying current to the light sources 10 and 20. In accordance with a command signal from the central control unit 200, ON / OFF control of current supply to the light sources 10 and 20 is performed by the switch unit of the light source control unit 220.
[0015]
The operation of the sugar content measuring device having the above configuration will be described. First, in accordance with a command signal from the central control unit 200, current is supplied only from the light source control unit 220 to the light source 10. Irradiation light 102 emitted from the light source 10 passes through the prism 40 and is irradiated on the fruit and vegetable 1 by the lens 41. The monitor light 101 partially extracted from the irradiation light 102 by the sampling mirror 42 is collected on a light receiving surface of a photodetector 44 by a lens 43. On the other hand, the transmitted light 103 from the fruits and vegetables 1 is collected by the lens 50 on the light receiving surface of the photodetector 51.
[0016]
Detection signals (voltages) proportional to the light intensities of the monitor light 101 and the transmitted light 103 are output from the photodetectors 44 and 51, respectively, and digitized by the signal processing unit 230. The detection voltage V from the photodetectors 44 and 51 that have been digitized44, V51The transmittance T of the fruits and vegetables 1 to the irradiation light 102 emitted from the monochromatic light source 10 by the central control unit 200 based on1Is calculated.
[0017]
The transmittance T performed by the central control unit 2001The calculation method of will be described. The amounts of the monitor light 101, the irradiation light 102, and the transmitted light 1031, I2, I3And Transmittance T of fruits and vegetables 1 to irradiation light 102 emitted from monochromatic light source 101Is obtained by the following equation.
T1= I3/ I2= I3/ I1/K...(1.4)
[0018]
Here, k represents a constant determined by the reflectance of the sampling mirror 42 and the transmittance of the ND filter 45. Next, the light amount-voltage conversion coefficients in the photodetectors 44 and 51 are respectively represented by β44, Β51, The detection signal (voltage) V detected by the photodetectors 44 and 5144, V51Is represented by the following equation.
V44= Β44* I1... (1.5)
V51= Β51* I3... (1.6)
[0019]
From these equations (1.4), (1.5), and (1.6), the transmittance T of the fruit and vegetable 1 is obtained.1Is calculated by the following equation.
T1= (Β44/ Β51/ K) × V51/ V44... (1.7)
[0020]
Here, the values in parentheses are constants specific to the sugar content measuring device, and can be easily calibrated using a material or the like whose transmittance value is known. Transmittance T for irradiation light 202 emitted from monochromatic light source 202Also said T1It can be measured in the same manner. The sugar content of the fruit and vegetable 1 is calculated by the calculated transmittance T1, T2Is calculated using the following equation.
C = k0+ K1* Ln (T1) / Ln (T2) ... (1.8)
[0021]
Where k0, K1Indicates a coefficient determined by the least squares method using the measured sugar content. Two different wavelengths are selected from a range of 950 to 1010 nm and a range of 1020 to 1080 nm, respectively, as an optimal combination of wavelengths for estimating the sugar content using equation (1.8). Has been proposed.
[0022]
According to the above-mentioned prior invention, fruits and vegetables are irradiated with two types of monochromatic light having specific wavelengths, and the transmitted light is detected. The detected transmitted light contains the sugar content information of the fruits inside the fruits and vegetables, and the sugar content of fruits and vegetables having a thick skin such as tangerines and melons can be measured. In addition, the sugar content measuring device of the present invention using two types of monochromatic light of a specific wavelength requires a complicated spectroscope for detecting a transmitted or reflected light spectrum like a conventional sugar content measuring device using a white light source. Since a small semiconductor laser or the like can be used as a light source, a small and lightweight sugar content measuring device can be realized.
[0023]
However, this prior invention does not include the irradiation position P of the irradiation light 102 (202).0And the detection position P of the transmitted light 103 (203)111 slightly changes depending on the size of the fruit and the like as shown in FIG. If the change amount δr = rr ′, there is a disadvantage that a measurement error of about 4 Brix% per δr = 1 mm occurs, and the change amount δr of the linear distance r is adjusted according to the size of the fruit. Even if a mechanism is provided, there has been a problem that high-precision adjustment of δr to 0.2 mm or less is required in order to realize the accuracy of a fruit sugar meter.
[0024]
[Patent Document 1]
JP-A-2-147940
[Patent Document 2]
JP-A-4-208842
[Patent Document 3]
JP-A-6-186159
[Patent Document 4]
JP-A-6-213804
[Non-patent document 1]
Journal of Horticultural Society, 61, 445 (1992)
[Non-patent document 2]
Journal of Horticultural Society, 62, 465 (1993)
[0025]
[Problems to be solved by the invention]
The problem to be solved by the present invention is to solve these conventional problems and non-destructively measure the sugar content of fruits and vegetables from transmitted light from fruits and vegetables obtained by irradiating fruits and vegetables with monochromatic light of a specific wavelength. It is an object of the present invention to provide a small and easy-to-carry fruit and vegetable sugar content measuring device.
[0026]
[Means for Solving the Problems]
The configuration of the present invention that has solved such a problem includes:
1) Irradiation means for irradiating light having a plurality of different wavelengths to a measurement site of fruits and vegetables is provided, and the light of the irradiation means receives transmitted light transmitted through the measurement site of fruits and vegetables at two places at different distances. A transmitted light amount detecting means for detecting the transmitted light amount is provided, and a relative transmittance, which is a ratio of a transmitted light amount of the same wavelength at two places detected by the transmitted light amount detecting means, is calculated for each wavelength, and a relative transmittance of each wavelength is calculated. Of non-destructive sugar content of fruits and vegetables provided with calculation means for calculating sugar content of fruits and vegetables using the degree
2) The irradiating means irradiates two different wavelengths of light, and the calculating means determines that the shorter one of the transmitted light amounts detected at two locations has a shorter transmission distance.1 . λ1, I1 . λ2And the longer transmission distance is I2 . λ1, I2 . λ2And the relative transmittance R of two different wavelengthsλ1, Rλ2To the formula Rλ1= I2 . λ1/ I1 . λ1, Rλ2= I2 . λ2/ I1 . λ2And the previously measured sugar content and relative permeability Rλ1, Rλ2And the coefficient k of the following equation0, K1And the sugar content C is calculated by the formula C = k0+ K1* Ln (Rλ1) / Ln (Rλ2The non-destructive sugar content measuring device for fruits and vegetables according to the above 1), which is calculated according to the method described in 1) above.
3) The irradiating means irradiates light of two different wavelengths, and the calculating means determines that the shorter of the transmission distance among the respective transmitted light amounts detected at two locations1 . λ1, I1 . λ2And the longer transmission distance is I2 . λ1, I2 . λ2And the relative transmittance R of two different wavelengthsλ1, Rλ2To the formula Rλ1= I2 . λ1/ I1 . λ1, Rλ2= I2 . λ2/ I1 . λ2And the relative transmittance Rλ 1, Rλ 2Absorbance A at two different wavelengths based on1, A2To the formula A1= -1n (Rλ 1), A2= -1n (Rλ2) And the previously measured sugar content and absorbance A1, A2And the coefficient k of the following equation0, K1And the sugar content C is calculated by the formula C = k0+ K1* A1/ A2The non-destructive sugar content measuring device for fruits and vegetables according to the above 1), wherein the sugar content is calculated according to the following.
4) The fruit or vegetable according to 2) or 3) above, wherein the two different wavelengths of light emitted by the irradiating means are selected from a near infrared region in a range of 940 to 1000 nm and a range of 1040 to 1090 nm. Non-destructive sugar content measuring device
5) The irradiating means irradiates light of three wavelengths, and the calculating means determines that one of the transmitted light amounts detected at two points, which has a shorter transmission distance, is I1 . λ1, I1 . λ2, I1 . λ3And the longer transmission distance is I2 . λ1, I2 . λ2, I2 . λ3And the relative transmittance R of the three wavelengthsλ1, Rλ2, Rλ3To the formula Rλ1= I2 . λ1/ I1 . λ1, Rλ2= I2 . λ2/ I1 . λ2, Rλ3= I2 . λ3/ I1 . λ3And the previously measured sugar content and relative permeability Rλ1, Rλ2, Rλ3And the coefficient k of the following equation0, K1And the sugar content C is calculated by the formula C = k0+ K1* Ln (Rλ1/ Rλ3) / Ln (Rλ2/ Rλ3The non-destructive sugar content measuring device for fruits and vegetables according to the above 1), which is calculated according to the method described in 1) above.
6) The irradiating means irradiates light of three wavelengths, and the arithmetic means determines that the shorter of the transmission distance among the respective transmitted light amounts detected at two locations is equal to I1 . λ1, I1 . λ2, I1 . λ3And the longer transmission distance is I2 . λ1, I2 . λ2, I2 . λ3And the relative transmittance R of the three wavelengthsλ1, Rλ2, Rλ3To the formula Rλ1= I2 . λ1/ I1 . λ1, Rλ2= I2 . λ2/ I1 . λ2, Rλ3= I2 . λ3/ I1 . λ3And the relative transmittance Rλ 1, Rλ 2, Rλ3Absorbance A at three different wavelengths based on1, A2, A3To the formula A1= -1n (Rλ 1), A2= -1n (Rλ2), A3= -1n (Rλ3) And the previously measured sugar content and absorbance A1, A2, A3And the coefficient k of the following equation0, K1And the sugar content C is calculated by the formula C = k0+ K1* (A1-A3) / (A2-A3The non-destructive sugar content measuring device for fruits and vegetables according to the above 1), which is calculated according to the method described in 1) above.
7) The light of three different wavelengths irradiated by the irradiation means, two of which are selected from the near infrared region in the range of 940 to 1000 nm and 1040 to 1090 nm, and the remaining one is 910 to 910 The nondestructive sugar content measuring device for fruits and vegetables according to the above 5) or 6), which is selected from the near infrared region in the range of 930 nm or 1010 to 1030 nm.
It is in.
[0027]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, when a plurality of different monochromatic lights are irradiated on fruits and vegetables by the irradiating means, the monochromatic lights are scattered and absorbed inside the fruits and vegetables, radiated outside the fruits, and become transmitted light. This transmitted light is detected at two places at different distances from the irradiation position of the monochromatic light by the transmitted light amount detecting means. The relative transmittance, which is the ratio of the two detected transmitted lights, is calculated, and the sugar content of the fruit or vegetable is calculated using the relative transmittance. The detected transmitted light contains the sugar content information of the fruits inside the fruits and vegetables, and the sugar content of fruits and vegetables with a thick skin such as oranges and melons can be measured.
[0028]
Further, by using two monochromatic light sources as the light source, it is possible to realize an apparatus that does not require a complicated spectroscope for detecting a transmitted or reflected light spectrum like a conventional sugar content measuring apparatus using a white light source. In addition, even if the linear distance between the irradiation position of monochromatic light and the detection position of transmitted light changes depending on the size of the fruit, a nondestructive sugar content measuring device for fruits and vegetables that reduces the influence on the measurement error of the sugar concentration is reduced. realizable.
[0029]
The transmitted light amount I used in the present invention1 . λ1, I2 . λ1And relative transmittance Rλ1Each symbol is I1, I2Indicate the detection position, and λ1, λ2, λ3 indicate the type of wavelength. Hereinafter, each embodiment of the present invention will be basically described with reference to the drawings.
[0030]
【Example】
Example 1 (see FIGS. 1 and 2): The sugar content measuring device of Example 1 shown in FIG. 1 includes light sources 10 and 20 for irradiating irradiation light 11 and 21 to fruits and vegetables 1, a reflecting prism 40 and a lens 41. Prepare. Further, a transmitted light amount detecting means I composed of a lens 50 and a photodetector 51 for detecting the transmitted lights 12 and 22 from the fruits and vegetables 1, and a lens 60 and a photodetector 61 for detecting the transmitted lights 13 and 23. And a signal processing unit 230, a central control unit 200, a display unit 210, and a light source control unit 220.
[0031]
The central control unit 200 calculates the sugar content of fruits and vegetables using a calculation formula described later based on the detection signals from the photodetectors 51 and 61 digitized by the signal processing unit 230, and displays the sugar content on the display unit 210. The light source control unit 220 has a power supply and a switch unit (not shown) for supplying current to the light sources 10 and 20. Trigger signal T from central control unit 20010(T20) Is input to the switch section, the trigger signal T10(T20The switch unit is turned on in synchronization with the rise of ()), and current is supplied to the light source 10 (light source 20).
[0032]
The operation of the sugar content measuring device having the above configuration will be described. First, the trigger signal T transmitted from the central control unit 20010Becomes High, a switch unit (not shown) of the light source control unit 220 triggers the trigger signal T.10Is turned on in synchronization with the rise of the current, the current is supplied to the light source 10, and the monochromatic light 11 is generated. On the other hand, the trigger signal T20Remains low, no current is supplied to the light source 20, and no irradiation light 21 is generated.
[0033]
Next, the irradiation light 11 emitted from the light source 10 passes through the prism 40 and is irradiated on the fruits and vegetables 1 by the lens 41. The irradiation light 11 is scattered and absorbed inside the fruits and vegetables and radiated in all directions outside the fruits. It becomes transmitted light. The irradiation position P of the irradiation light 110Linear distance r from1Position P on the distant fruits and vegetables 11Transmitted light 12 is collected by the lens 50 on the light receiving surface of the photodetector 51, and is irradiated with the irradiation position P of the irradiation light 11.0Linear distance r from2Position P on the distant fruits and vegetables 12Transmitted light 13 is collected by a lens 60 on a light receiving surface of a photodetector 61. In FIG. 1, r1<R2The photodiodes are used for the photodetectors 51 and 61.
[0034]
Detection signals proportional to the light intensities of the transmitted lights 12 and 13 are output from the photodetectors 51 and 61, respectively, and are digitized by the signal processing unit 230. Based on the detection signals from the photodetectors 51 and 61 that have been digitized, the central control unit 200 calculates the relative transmittance R using a calculation formula described later.λ1Is calculated. Relative transmittance Rλ1Is completed, the trigger signal T10Is Low and the trigger signal T20Becomes High. This trigger signal T10(T20), The light source 10 is turned off (turned off) and the light source 20 is turned on (turned on) by opening and closing a switch unit (not shown) in the light source control unit 220.
[0035]
Subsequently, the transmission relative degree R by the irradiation light 11 described above.λ1, The relative transmittance R by the irradiation light 21λ2Is calculated. Relative transmittance R by irradiation light 21λ2When the calculation of the calculation is completed, the trigger signal T10, T20Are both Low, the light sources 10 and 20 are both turned off (turned off), and the work of measuring the sugar content of the fruits and vegetables 1 ends. The central control unit 200 calculates the relative transmittance Rλ1, Rλ2, The sugar content of the fruits and vegetables 1 is calculated by a calculation formula described later, and the result is displayed on the display unit 210.
[0036]
Next, the relative transmittance R performed by the central control unit 200λ1, Rλ2The calculation method of will be described. The light amounts of the irradiation light 11 and the transmitted lights 12 and 13 are respectively represented by I0 . λ1, I1 . λ1, I2 . λ1And Relative transmittance R of fruits and vegetables 1 to irradiation light 11λ1Is represented by the following equation.
Rλ1= I2 . λ1/ I1 . λ1... (1.9)
[0037]
The light-amount-to-voltage conversion coefficients in the photodetectors 51 and 61 are β51, Β61Then, the detection signal (voltage) V detected by the photodetectors 51 and 6151, V61Is represented by the following equation.
V51= Β51* I1 . λ1... (1.10.)
V61= Β61* I2 . λ1... (1.11)
[0038]
From these equations (1.9), (1.10) and (1.11), the relative transmittance R of the fruit and vegetable 1 is obtained.λ1Is calculated by the following equation, and the light amount I of the irradiation light 11 is0 . λ1Is expressed in a form independent of.
Rλ1= (Β51/ Β61) * V61/ V51... (1.12)
[0039]
Here, the values in parentheses are constants specific to the sugar content measuring device, and can be easily calibrated using a light source whose light quantity is known. Relative transmittance R of fruits and vegetables 1 to irradiation light 21λ2The relative transmittance R of the fruits and vegetables 1 to the irradiation light 11 is also calculated.λ1Can be obtained in the same manner as The sugar content C of fruit and vegetable 1 is calculated relative permeability Rλ1, Rλ2Is calculated using the following equation.
C = k0+ K1* Ln (Rλ1) / Ln (Rλ2) ... (1.13)
[0040]
Where k0, K1Indicates a coefficient determined by the least squares method using the measured sugar content. In the first embodiment, two different wavelengths for estimating the sugar content using the formula (1.13) are wavelengths selected respectively from the range of 940 to 1000 nm and the range of 1040 to 1090 nm.
[0041]
In addition, lasers can be used as the light sources 10 and 20 that emit the irradiation light 11 and 21 in the above-described wavelength range. If a semiconductor laser is used as this laser, a small sugar content measuring device can be realized. Further, a light emitting element such as a light emitting diode can be used for the light sources 10 and 20. When a white light source that continuously emits light having a wavelength in the near-infrared region is used as the light sources 10 and 20, it can be realized by using an optical filter that transmits light from the light sources 10 and 20 through only the above-described wavelengths. good. Further, as shown in FIG. 2, the irradiation light 11 and 21 from the light sources 10 and 20 are radiated to the fruit and vegetable 1 using the optical fiber 700, and the detection point P on the fruit and vegetable 1 is further increased.1, P2May be guided to the photodetectors 51 and 61 by using optical fibers 701 and 702.
[0042]
Example 2 (see FIG. 3): Example 2 shown in FIG. 3 is an example of a nondestructive sugar content measuring device for fruits and vegetables using three wavelengths. The sugar content measuring device according to the second embodiment shown in FIG. 3 includes light sources 10, 20, 30 for irradiating the irradiation light 11, 21, 31 to the fruits and vegetables 1, lenses 410, 420, 430, and optical fibers 710, 720, 730. And an optical fiber 700 for bundling the optical fibers 710, 720, 730 and irradiating the fruits and vegetables 1 with the irradiation light 11, 21, 31. Also, a transmitted light amount detecting means I composed of an optical fiber 701, a lens 50, and a photodetector 51 for detecting the transmitted light 12, 22, 32 from the fruit and vegetable 1, and a detecting device for detecting the transmitted light 13, 23, 33. A transmission light amount detecting means II including an optical fiber 702, a lens 60, and a photodetector 61 is provided. Further, a signal processing unit 230, a central control unit 200, a display unit 210, and a light source control unit 220 are provided.
[0043]
The central control unit 200 calculates the sugar content of fruits and vegetables using a calculation formula described later based on the detection signals from the photodetectors 51 and 61 digitized by the signal processing unit 230, and displays the sugar content on the display unit 210. The light source control unit 220 has a power supply and a switch unit (not shown) for supplying current to the light sources 10, 20, and 30. Trigger signal T from central control unit 20010(T20, T30) Is input to the switch section, the trigger signal T10(T20, T30) Is turned on in synchronization with the rising edge of ()), and a current is supplied to the light source 10 (the light source 20, the light source 30).
[0044]
Relative transmittance R of fruits and vegetables 1 corresponding to each irradiation light 11, 21, 31λ1, Rλ2, Rλ3Can be calculated in the same procedure as in the first embodiment. The sugar content of fruit and vegetable 1 is calculated relative permeability Rλ1, Rλ2, Rλ3Is calculated using the following equation.
C = k0+ K1* Ln (Rλ1/ Rλ3) / Ln (Rλ2/ Rλ3) ... (1.14)
[0045]
Where k0, K1Indicates a coefficient determined by the least squares method using the measured sugar content. In Example 2, the irradiation light 11 and 21 were selected from a range of 940 to 1000 nm and a range of 1040 to 1090 nm as three different wavelengths for performing the sugar content estimation using the formula (1.14). And the remaining irradiation light 31 has a wavelength selected from the range of 910 to 930 nm or 1010 to 1030 nm.
[0046]
Third Embodiment (see FIG. 4): In the first and second embodiments, the light irradiated on fruits and vegetables is limited to two or three monochromatic lights having different wavelengths. This makes it possible to realize a device that does not require a complicated spectroscope for detecting a transmitted or reflected light spectrum, unlike a conventional sugar content measuring device using a white light source. In addition, even if the linear distance between the irradiation position of monochromatic light and the detection position of transmitted light changes depending on the size of the fruit, a nondestructive sugar content measuring device for fruits and vegetables that reduces the influence on the measurement error of the sugar concentration is reduced. realizable.
[0047]
On the other hand, even in a conventional nondestructive sugar content measuring device for fruits and vegetables using a white light source and a spectroscope, even if the linear distance between the irradiation position of monochromatic light and the detection position of transmitted light changes depending on the size of the fruit. In addition, the influence of the sugar concentration on the measurement error can be reduced. An example applied to a conventional non-destructive sugar content measuring device for fruits and vegetables using a white light source and a spectroscope will be described with reference to FIG.
[0048]
The non-destructive sugar content measuring device shown in FIG. 4 includes a white light source 100 such as a halogen lamp including light having a wavelength in the near-infrared region, and a power supply 110. Light 101 from the light source 100 is transmitted through a lens 120 and an optical fiber 700. And irradiate the fruits and vegetables 1. The light 101 applied to the fruits and vegetables 1 is scattered and absorbed inside the fruits and emitted in all directions outside the fruits to become transmitted light. Irradiation position P of light 101 on fruits and vegetables 1 by optical fiber 7000Linear distance r from1, R2Position P on vegetable 11, P2Are transmitted to the spectroscope 300 by the optical fibers 701 and 702. The spectroscope 300 includes lenses 320 and 310, shutters 321 and 311, a prism 330, a diffraction grating 340, and a multi-channel detector 350.
[0049]
As the multi-channel detector 350, a linear array sensor such as a CCD is used. Position P1When measuring the transmission spectrum of the transmitted light 102 emitted from, the shutter 311 is opened and the transmission spectrum S of the transmitted light 102 is displayed on the multi-channel detector 350.1Is obtained. In this case, the shutter 321 is closed. Similarly, position P2Spectrum S of transmitted light 103 emitted from2Is measured, the shutter 321 is opened, and the transmission spectrum S of the transmitted light 103 is displayed on the multi-channel detector 350.2Is obtained. In this case, the shutter 311 is closed. The transmission spectrum S measured as described above1, S2From the transmittance spectrum T = S2/ S1Is calculated. The sugar content C can be calculated from the obtained transmittance spectrum according to the equations (1.13) and (1.14).
[0050]
5 to 11 show the results of the examination of the non-destructive sugar content measurement method in each example. FIG. 5 shows that the glucose aqueous solution placed in a transparent quartz cell container is irradiated with monochromatic light of various wavelengths, its transmittance spectrum T is calculated, and the absorbance ratio γ and the sugar concentration calculated from the transmittance by the following equation are calculated. The shaded area indicates the combination of wavelengths where the SN ratio η> 4 for the correlation.
γ = ln (T (λ1)) / Ln (T (λ2)) ... (1.15)
[0051]
The SN ratio η is calculated by using the slope β of the regression line and the regression error σ when the relationship between the absorbance ratio γ and the sugar concentration represented by the formula (1.15) is linearly regressed, and η = (β / σ)2Defined. That is, the estimation error of the sugar content using the absorbance ratio γ is (1 / η)0.5In FIG. 7, the estimation error of the sugar concentration based on the absorbance ratio γ using the combination of wavelengths in the region where η> 4 or more is 0.5 wt% or less. From FIG. 7, it can be seen that the region surrounded by a square in the range of 940 to 1000 nm and the range of 1040 to 1090 nm is an optimal combination of wavelengths for estimating the sugar concentration based on the absorbance ratio γ.
[0052]
Wavelengths of 980 nm and 1060 nm, which can be obtained with commercially available semiconductor lasers, are selected from the above optimum combinations of wavelengths. FIG. 6 shows the relationship between the absorbance ratio γ at that wavelength and the glucose concentration in the aqueous solution. The measurement error due to the absorbance γ is 0.3 wt% or less.
[0053]
On the other hand, even for a scatterer such as a fruit, the optimum combination of wavelengths obtained with an aqueous glucose solution holds as it is. The theoretical calculation of the relationship between the absorbance ratio γ and the sugar concentration for the scatterer simulating a fruit in FIG. 7 with reference to the document “A. Ishimaru: Wave Propagation and Scattering in Random Media, Academic Press, New York (1978)”. The results obtained are shown. In the calculation of FIG. 7, 980 nm and 1060 nm were selected as the wavelengths. The linear distance r described in FIG.1, R2Was set to 30 mm and 40 mm, respectively. The equivalent scattering coefficient is constant regardless of the sugar concentration and wavelength, and is 0.44 mm here.-1It was. As the absorption coefficient depending on the wavelength and the sugar concentration, a result measured using an aqueous glucose solution was used. FIG. 7 shows that the correlation between the absorbance ratio γ and the sugar concentration is high in the same combination of wavelengths as in the aqueous solution.
[0054]
Next, FIG. 8 shows the results of actually measuring the sugar content of apples using the nondestructive sugar content measuring device of Example 2 shown in FIG. A commercially available semiconductor laser having a wavelength of 980 nm and 1060 nm was used as a light source. A measurement error of 0.8 Brix% or less was obtained, demonstrating the effectiveness of the present invention.
[0055]
Next, in the sugar content measuring devices described in Examples 1 and 2, the linear distance r in FIG.1FIG. 9 shows the result of analysis on the measurement error of the sugar content when the value was changed. In the prior art shown in FIG. 10, a measurement error of about 4 wt% occurs when the linear distance changes by 1 mm. Since the accuracy required for the non-destructive sugar content meter is 1 wt%, the change in the linear distance must be 0.2 mm or less. Even if a linear distance adjusting mechanism is provided, a high-precision adjusting mechanism is required. On the other hand, in the apparatus of the first embodiment, the measurement error of the sugar content is 1 wt% or less for a change in the linear distance of 1 mm, which is 1/4 or less of the conventional technology. Further, in the saccharimeter using the second embodiment, the measurement error of the saccharimeter with respect to the change of the linear distance is about 1/60 of that of the conventional art.
[0056]
【The invention's effect】
As described above, according to the present invention, fruits and vegetables are irradiated with a plurality of monochromatic lights having different specific wavelengths, and the transmitted light is detected at positions having different linear distances from the irradiation positions of the monochromatic lights. The detected transmitted light contains the sugar content information of the fruits inside the fruits and vegetables, and the sugar content of fruits and vegetables with a thick skin such as oranges and melons can be measured. Further, in the sugar content measuring device of the present invention using two or three types of monochromatic light having a specific wavelength, a complicated spectroscope for detecting a transmitted or reflected light spectrum like a conventional sugar content measuring device using a white light source is used. And a small-sized semiconductor laser or the like can be used as a light source, so that a small and lightweight sugar content measuring device can be realized. Furthermore, even if the linear distance between the irradiation position of monochromatic light and the detection position of transmitted light changes depending on the size of the fruit, a nondestructive sugar content measuring device for fruits and vegetables that reduces the influence on the measurement error of the sugar concentration has been developed. realizable.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram of a non-destructive sugar content measuring device of Example 1.
FIG. 2 is an explanatory view of a non-destructive sugar content measuring device of Example 1.
FIG. 3 is an explanatory diagram of a non-destructive sugar content measuring device of Example 2.
FIG. 4 is an explanatory view of a nondestructive sugar content measuring device according to a third embodiment.
FIG. 5 is a diagram showing an optimum wavelength combination region in an aqueous glucose solution.
FIG. 6 is a diagram showing the relationship between the absorbance ratio and the sugar concentration in an aqueous glucose solution.
FIG. 7 is a diagram showing the relationship between the absorbance ratio of a scatterer imitating a fruit and the sugar concentration.
FIG. 8 is a diagram showing the results of measuring apples with the nondestructive sugar content measuring device of Example 1.
FIG. 9 is a view showing a measurement error due to a change in fruit size.
FIG. 10 is an explanatory view of a sugar content measuring device for fruits and vegetables in a conventional technique.
FIG. 11 is an explanatory view of an apparatus for measuring sugar content of fruits and vegetables in a conventional technique.
[Explanation of symbols]
1,1 'fruits and vegetables
10,20,30 Light source
11, 21, 31 Irradiation light
12,13 transmitted light
22, 23 transmitted light
32,33 Transmitted light
41, 43 lenses
50, 60 lenses
40 Prism
44,51,61 Photodetector
42 Sampling mirror
45 ND filter
100 white light source
110 White light source power supply
120 lenses
200 Central control unit
210 Display
220 Light source controller
230 signal processing unit
300 spectrometer
310, 320 lens
311,321 Shutter
330 Prism
340 diffraction grating
350 Multi-channel detector
410, 420, 430 lenses
700,701,702 Optical fiber
710, 720, 730 Optical fiber

Claims (7)

青果物の測定部位に複数の異なる波長からなる光を照射する照射手段を設け、同照射手段の光が青果物の測定部位を透過した透過光を異なる距離をおいた2箇所で受光してその透過光量を検出する透過光量検出手段を設け、同透過光量検出手段で検出した2箇所での同波長の透過光量の比である相対透過度を各波長毎に算出し、同各波長の相対透過度を用いて青果物の糖度を算定する演算手段を設けた青果物の非破壊糖度測定装置。Irradiation means for irradiating light of different wavelengths to the measurement site of fruits and vegetables is provided, and the light of the irradiation means receives the transmitted light transmitted through the measurement site of fruits and vegetables at two places at different distances, and the amount of transmitted light Is provided, and the relative transmittance, which is the ratio of the amount of transmitted light of the same wavelength at two locations detected by the transmitted light amount detector, is calculated for each wavelength, and the relative transmittance of each wavelength is calculated. A nondestructive sugar content measuring device for fruits and vegetables, provided with arithmetic means for calculating the sugar content of fruits and vegetables using the same. 照射手段が、2つの異なる波長の光を照射するもので、演算手段が、2箇所で検出した各透過光量のうち透過距離が短い方をI λ1,I λ2とし、透過距離が長い方をI λ1,I λ2とし、2つの異なる波長の相対透過度Rλ1,Rλ2を式Rλ1=I λ1/I λ1,Rλ2=I λ2/I λ2とし、予め実測した糖度と相対透過度Rλ1,Rλ2を用いて次式の係数k,kを求め、糖度Cを式C=k+k*ln(Rλ1)/ln(Rλ2)に従って算定するようにしたものである請求項1記載の青果物の非破壊糖度測定装置。The irradiating means irradiates light of two different wavelengths, and the calculating means determines which one of the transmitted light amounts detected at two locations has a shorter transmission distance as I 1 . λ1, I 1. λ2, and the longer transmission distance I 2 . λ1, I 2. λ2, and the relative transmittances R λ1 and R λ2 of two different wavelengths are represented by the formula R λ1 = I 2 . λ1 / I 1 . λ1, R λ2 = I 2. λ2 / I 1 . λ2 , the coefficients k 0 and k 1 of the following equation are obtained using the previously measured sugar content and the relative transmittances R λ1 and R λ2 , and the sugar content C is calculated as C = k 0 + k 1 * ln (R λ1 ) / ln ( The nondestructive sugar content measuring apparatus for fruits and vegetables according to claim 1, wherein the apparatus is calculated according to Rλ2 ). 照射手段が、2つの異なる波長の光を照射するもので、演算手段が、2箇所で検出した各透過光量のうち透過距離が短い方をI λ1,I λ2とし、透過距離が長い方をI λ1,I λ2とし、2つの異なる波長の相対透過度Rλ1,Rλ2を式Rλ1=I λ1/I λ1,Rλ2=I λ2/I λ2とし、同各相対透過度Rλ ,Rλ に基づいて2つの異なる波長の吸光度A,Aを式A=−1n(Rλ ),A=−1n(Rλ2)とし、予め実測した糖度と吸光度A,Aを用いて次式の係数k,kを求め、糖度Cを式C=k+k*A/Aに従って算定するようにしたものである請求項1記載の青果物の非破壊糖度測定装置。The irradiating means irradiates light of two different wavelengths, and the calculating means determines which one of the transmitted light amounts detected at two locations has a shorter transmission distance as I 1 . λ1, I 1. λ2, and the longer transmission distance I 2 . λ1, I 2. λ2, and the relative transmittances R λ1 and R λ2 of two different wavelengths are represented by the formula R λ1 = I 2 . λ1 / I 1 . λ1, R λ2 = I 2. λ2 / I 1 . λ2 , the absorbances A 1 and A 2 at two different wavelengths are calculated based on the relative transmittances R λ 1 and R λ 2 as A 1 = -1n (R λ 1 ) and A 2 = -1n (R λ 2 ), The coefficients k 0 and k 1 of the following equation are obtained using the previously measured sugar content and the absorbances A 1 and A 2 , and the sugar content C is calculated according to the formula C = k 0 + k 1 * A 1 / A 2. The non-destructive sugar content measuring device for fruits and vegetables according to claim 1, which is prepared. 照射手段が照射する2つの異なる波長の光が、940〜1000nmの範囲と1040〜1090nmの範囲の近赤外領域の中から選ばれたものである請求項2又は3記載の青果物の非破壊糖度測定装置。The non-destructive sugar content of fruits and vegetables according to claim 2 or 3, wherein the two different wavelengths of light irradiated by the irradiation means are selected from a near infrared region in a range of 940 to 1000 nm and a range of 1040 to 1090 nm. measuring device. 照射手段が、3つの波長の光を照射するもので、演算手段が、2箇所で検出した各透過光量のうち透過距離が短い方をI λ1,I λ2,I λ3とし、透過距離が長い方をI λ1,I λ2,I λ3とし、3つの波長の相対透過度Rλ1,Rλ2,Rλ3を式Rλ1=I λ1/I λ1,Rλ2=I λ2/I λ2,Rλ3=I λ3/I λ3とし、予め実測した糖度と相対透過度Rλ1,Rλ2,Rλ3を用いて次式の係数k,kを求め、糖度Cを式C=k+k*ln(Rλ1/Rλ3)/ln(Rλ2/Rλ3)に従って算定するようにしたものである請求項1記載の青果物の非破壊糖度測定装置。The irradiating means irradiates light of three wavelengths, and the calculating means determines which one of the transmitted light amounts detected at two places, having a shorter transmission distance, as I 1 . λ1, I 1. λ2 , I 1 . λ3, and the longer transmission distance I 2 . λ1, I 2. λ2, I 2. λ3, and the relative transmittances R λ1 , R λ2 , R λ3 of the three wavelengths are represented by the formula R λ1 = I 2 . λ1 / I 1 . λ1, R λ2 = I 2. λ2 / I 1 . λ2, R λ3 = I 2. λ3 / I 1 . λ3 , the coefficients k 0 , k 1 of the following equation are obtained using the previously measured sugar content and the relative permeability R λ1 , R λ2 , R λ3 , and the sugar content C is calculated by the equation C = k 0 + k 1 * ln (R λ1 / 2. The nondestructive sugar content measuring device for fruits and vegetables according to claim 1, wherein the calculation is performed in accordance with ( Rλ3 ) / ln ( Rλ2 / Rλ3 ). 照射手段が、3つの波長の光を照射するもので、演算手段が、2箇所で検出した各透過光量のうち透過距離が短い方をI λ1,I λ2,I λ3とし、透過距離が長い方をI λ1,I λ2,I λ3とし、3つの波長の相対透過度Rλ1,Rλ2,Rλ3を式Rλ1=I λ1/I λ1,Rλ2=I λ2/I λ2,Rλ3=I λ3/I λ3とし、同各相対透過度Rλ ,Rλ ,Rλ3に基づいて3つの異なる波長の吸光度A,A,Aを式A=−1n(Rλ ),A=−1n(Rλ2),A=−1n(Rλ3)とし、予め実測した糖度と吸光度A,A,Aを用いて次式の係数k,kを求め、糖度Cを式C=k+k*(A−A)/(A−A)に従って算定するようにしたものである請求項1記載の青果物の非破壊糖度測定装置。The irradiating means irradiates light of three wavelengths, and the calculating means determines which one of the transmitted light amounts detected at two places, having a shorter transmission distance, as I 1 . λ1, I 1. λ2 , I 1 . λ3, and the longer transmission distance I 2 . λ1, I 2. λ2, I 2. λ3, and the relative transmittances R λ1 , R λ2 , R λ3 of the three wavelengths are represented by the formula R λ1 = I 2 . λ1 / I 1 . λ1, R λ2 = I 2. λ2 / I 1 . λ2, R λ3 = I 2. λ3 / I 1 . and [lambda] 3, the respective relative transmittance R λ 1, R λ 2, the R [lambda] 3 absorbance A 1 for three different wavelengths on the basis of, A 2, A 3 wherein A 1 = -1n (R λ 1 ), A 2 = -1n (R λ2), and a 3 = -1n (R λ3) , determine the coefficients k 0, k 1 of the following equation using the sugar content and the absorbance a 1, a 2, a 3 which measuring beforehand, sugar content C the formula C = k 0 + k 1 * (a 1 -A 3) / (a 2 -A 3) is obtained so as to calculate in accordance with claim 1 fruits or vegetables nondestructive sugar content measuring apparatus according. 照射手段が照射する3つの異なる波長の光が、その内2つが940〜1000nmの範囲と1040〜1090nmの範囲の近赤外領域の中から選ばれたもので、残りの1つが910〜930nm又は1010〜1030nmの範囲の近赤外領域の中から選ばれたものである請求項5又は6記載の青果物の非破壊糖度測定装置。The light of three different wavelengths irradiated by the irradiation means, two of which are selected from the near infrared region in the range of 940 to 1000 nm and 1040 to 1090 nm, and the other one is 910 to 930 nm or The nondestructive sugar content measuring device for fruits and vegetables according to claim 5 or 6, which is selected from the near infrared region in the range of 1010 to 1030 nm.
JP2003113498A 2003-04-17 2003-04-17 Non-destructive sugar content measuring device for fruits and vegetables Expired - Lifetime JP3903147B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003113498A JP3903147B2 (en) 2003-04-17 2003-04-17 Non-destructive sugar content measuring device for fruits and vegetables

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003113498A JP3903147B2 (en) 2003-04-17 2003-04-17 Non-destructive sugar content measuring device for fruits and vegetables

Publications (2)

Publication Number Publication Date
JP2004317381A true JP2004317381A (en) 2004-11-11
JP3903147B2 JP3903147B2 (en) 2007-04-11

Family

ID=33473385

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003113498A Expired - Lifetime JP3903147B2 (en) 2003-04-17 2003-04-17 Non-destructive sugar content measuring device for fruits and vegetables

Country Status (1)

Country Link
JP (1) JP3903147B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007271575A (en) * 2006-03-31 2007-10-18 Nagasaki Prefecture Nondestructive measuring device of light scattering body
JP2009085712A (en) * 2007-09-28 2009-04-23 Nagasaki Prefecture Nondestructive measurement instrument for light scatterer
JP2009098033A (en) * 2007-10-17 2009-05-07 Takara Keiki Seisakusho:Kk Apparatus and method for measuring sugar content of fruit vegetables
GB2498086A (en) * 2011-12-23 2013-07-03 Maf Agrobotic Non-destructive detection of defects in fruits and vegetables
JP2014240786A (en) * 2013-06-12 2014-12-25 淳司 神成 Component concentration analyzer using light-emitting diode, and measuring apparatus using light-emitting diode
CN109856081A (en) * 2019-03-13 2019-06-07 西北农林科技大学 Portable kiwi fruit sugar fast non-destructive detection method and device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9464983B2 (en) 2010-07-12 2016-10-11 Seiko Epson Corporation Concentration determination apparatus, probe, concentration determination method, and program
JP5761708B2 (en) 2011-03-23 2015-08-12 セイコーエプソン株式会社 Concentration determination method and concentration determination apparatus
CN103575690B (en) * 2013-11-05 2015-08-26 中国科学院微电子研究所 Based on the fruit maturity detection system of infrared gas sensor

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007271575A (en) * 2006-03-31 2007-10-18 Nagasaki Prefecture Nondestructive measuring device of light scattering body
JP4714822B2 (en) * 2006-03-31 2011-06-29 長崎県 Non-destructive measuring device for light scatterers
JP2009085712A (en) * 2007-09-28 2009-04-23 Nagasaki Prefecture Nondestructive measurement instrument for light scatterer
JP2009098033A (en) * 2007-10-17 2009-05-07 Takara Keiki Seisakusho:Kk Apparatus and method for measuring sugar content of fruit vegetables
GB2498086A (en) * 2011-12-23 2013-07-03 Maf Agrobotic Non-destructive detection of defects in fruits and vegetables
GB2498086B (en) * 2011-12-23 2015-11-11 Maf Agrobotic Device and method for non-destructive detection of defects in fruits and vegetables
JP2014240786A (en) * 2013-06-12 2014-12-25 淳司 神成 Component concentration analyzer using light-emitting diode, and measuring apparatus using light-emitting diode
CN109856081A (en) * 2019-03-13 2019-06-07 西北农林科技大学 Portable kiwi fruit sugar fast non-destructive detection method and device

Also Published As

Publication number Publication date
JP3903147B2 (en) 2007-04-11

Similar Documents

Publication Publication Date Title
JP2517858B2 (en) Nondestructive measurement method of fruit sugar content by near infrared transmission spectrum
EP0317121B1 (en) Spectroscopic method and apparatus for measuring sugar concentrations
RU2265827C2 (en) Methods and device of double-ray ir-transform spectroscopy for detecting tested matter in samples with low penetrability
KR101226782B1 (en) Method of Measuring Calorie of Object and Device of Measuring Calorie of Object
US20080269580A1 (en) System for Non-Invasive Measurement of Bloold Glucose Concentration
JP2000506048A (en) Calibration for subsequent monitoring of biological compounds
JPH0749304A (en) Method and apparatus for measuring internal information of scattering absorbent
JP2005292128A (en) Method and apparatus for measuring calorific value of material body
JPH07501884A (en) Using light-emitting diode harmonic wavelengths for near-infrared quantitative analysis
Xie et al. Measurement and calculation methods on absorption and scattering properties of turbid food in Vis/NIR range
JP3903147B2 (en) Non-destructive sugar content measuring device for fruits and vegetables
JP4714822B2 (en) Non-destructive measuring device for light scatterers
KR20070041662A (en) Measuring analytes from an electromagnetic spectrum using a wavelength router
KR20100082476A (en) Development of portable type based noninvasive saccharometer
JP4052461B2 (en) Non-invasive measuring device for blood glucose level
JP4747371B2 (en) Food calorie measuring method and food calorie measuring device
KR102477678B1 (en) NDIR glucose detection in liquids
JP2003114191A (en) Method and instrument for nondestructively measuring sugar content of vegetable and fruit
US20140307258A1 (en) Optical analyte measurement
KR100883153B1 (en) Instrument for noninvasively measuring blood sugar level
JPH06213804A (en) Method and apparatus for measuring percentage sugar content
JPH11248622A (en) Urinalysis device
JPH0763674A (en) Measuring method of sugar content of vegetables or fruits
JP2004045096A (en) Apparatus for determining bio-component
CA2376747A1 (en) Apparatus for quantitative in vivo optical measurement of a mammalian analyte concentration and use thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060123

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060905

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061025

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061207

R150 Certificate of patent or registration of utility model

Ref document number: 3903147

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060123

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100119

Year of fee payment: 3

S202 Request for registration of non-exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R315201

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100119

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100119

Year of fee payment: 3

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S202 Request for registration of non-exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R315201

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100119

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100119

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110119

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110119

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120119

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130119

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term