JP2003114191A - Method and instrument for nondestructively measuring sugar content of vegetable and fruit - Google Patents

Method and instrument for nondestructively measuring sugar content of vegetable and fruit

Info

Publication number
JP2003114191A
JP2003114191A JP2001309190A JP2001309190A JP2003114191A JP 2003114191 A JP2003114191 A JP 2003114191A JP 2001309190 A JP2001309190 A JP 2001309190A JP 2001309190 A JP2001309190 A JP 2001309190A JP 2003114191 A JP2003114191 A JP 2003114191A
Authority
JP
Japan
Prior art keywords
fruits
light
vegetables
sugar content
monochromatic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001309190A
Other languages
Japanese (ja)
Inventor
Yoshiaki Shimomura
義昭 下村
Yoshito Nagata
良人 永田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagasaki Prefectural Government
Original Assignee
Nagasaki Prefectural Government
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagasaki Prefectural Government filed Critical Nagasaki Prefectural Government
Priority to JP2001309190A priority Critical patent/JP2003114191A/en
Publication of JP2003114191A publication Critical patent/JP2003114191A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method and a small-sized instrument by which the sugar contents of vegetables and fruits can be measured nondestructively without using any diffraction grating nor multi-channel detector. SOLUTION: The small-sized instrument is provided with light sources 101a and 101b, a reflecting prism 22, and a condenser lens 21 for projecting monochromatic light rays upon a vegetable or fruit 1. The instrument is also provided with a sampling mirror 33, a condenser lens 31, and a photodetector 32 for detecting parts of the monochromatic light rays 101a and 101b. In addition, the instrument is also provided with a condenser lens 41 and a photodetector 42 for detecting parts of light rays transmitted through the vegetable or fruit 1. Moreover, the instrument is also provided with a signal processing section 230, a central control section 200, a displaying section 210, and a light control section 220. The control section 200 measures the quantities of the projected light rays and transmitted light rays from the voltage or fruit 1 detected by means of the photodetectors 32 and 42 and calculates the transmittance Ta and Tb or absorbance Abs a and Abs b from the detected voltages and the sugar content of the vegetable or fruit 1 from the values of the Ta and Tb or Abs- a and Abs- b by using formulae (1) and (2).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、青果物の甘味に関
する指標を測定する青果物糖度の非破壊測定方法及び装
置に関し、特定波長の単色光を青果物に照射して得られ
る青果物からの透過光から青果物糖度を非破壊的に測定
する青果物の糖度測定技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a nondestructive method and apparatus for measuring sugar content of fruits and vegetables for measuring an index relating to sweetness of fruits and vegetables, which is obtained by irradiating fruits and vegetables with monochromatic light of a specific wavelength. The present invention relates to a technique for measuring the sugar content of fruits and vegetables which non-destructively measures the sugar content.

【0002】[0002]

【従来の技術】一般に、野菜、果実等の青果物の出荷時
には、形状、色などの外観検査に加え、糖度等の内的品
質の検査による等級選定が必要である。さらにはこうし
た糖度の内的品質を栽培管理にフィードバックできるこ
とが望まれている。従来、青果物の糖度は数個のサンプ
ルから抽出した果汁を用いて、化学分析、あるいは屈折
率糖度計による破壊方式で行われるのが一般的である。
この破壊方式の場合、測定時間が長い、また青果物個々
の糖度測定はできず、サンプル抽出したロット内での糖
度のばらつき等の問題があった。そこで、近年では青果
物の糖度測定を非破壊で、迅速に行う手法として近赤外
領域の波長の光を用いた方法が研究開発、あるいは実用
化されている。
2. Description of the Related Art In general, when fruits and vegetables such as vegetables and fruits are shipped, it is necessary to select a grade by inspecting internal quality such as sugar content in addition to appearance inspection such as shape and color. Furthermore, it is desired to be able to feed back such internal quality of sugar content to cultivation management. Conventionally, the sugar content of fruits and vegetables is generally performed by using a juice extracted from several samples, by chemical analysis, or by a destructive method using a refractometer.
In the case of this destruction method, the measurement time is long, and the sugar content of individual fruits and vegetables cannot be measured, and there are problems such as variations in sugar content within the sampled lot. Therefore, in recent years, as a nondestructive and quick method for measuring the sugar content of fruits and vegetables, a method using light having a wavelength in the near infrared region has been researched, developed, or put into practical use.

【0003】近赤外領域の波長の光を青果物に照射し、
その反射光を受光して特定波長の吸光度を測定し、この
測定値から青果物糖度を測定する従来装置として、特開
平2−147940号公報、(園芸学会誌、61,44
5(1992))、特開平4−208842号公報に掲
載されたものがある。以下特開平4−208842号公
報記載の従来装置について図6を参照しながら説明す
る。
Irradiating fruits and vegetables with light having a wavelength in the near infrared region,
As a conventional device for receiving the reflected light to measure the absorbance at a specific wavelength and measuring the sugar content of fruits and vegetables from the measured value, Japanese Patent Application Laid-Open No. 2-147940, (Journal of Horticultural Science, 61, 44).
5 (1992)) and Japanese Patent Application Laid-Open No. 4-208842. A conventional device disclosed in Japanese Patent Laid-Open No. 4-208842 will be described below with reference to FIG.

【0004】2500nm以下の近赤外領域の波長の光
を用いた従来の青果物の糖度測定装置は、図に示すよう
に、2500nm以下の近赤外領域の波長の光を含む光
源300、光源300からの光301を被検対象の青果
物1に照射し、さらに青果物1からの反射光302を受
光するための同軸光ファイバー50、同軸ファイバー5
0で受光した反射光302を分光するための分光器6
0、分光器60で測定された反射スペクトルから糖度を
演算する中央制御部200、中央制御部200で算出さ
れた糖度を表示する表示部210を備える。また、分光
器60は入射スリット61、回折格子62、多チャンネ
ル検出器63から構成される。入射スリット61に入射
した反射光302は回折格子62でスペクトルに分散
し、多チャンネル検出器63で反射光302のスペクト
ルが検出される。多チャンネル検出器63にはCCD等
のリニアアレイセンサーが用いられる。
A conventional sugar content measuring device for fruits and vegetables using light having a wavelength in the near-infrared region of 2500 nm or less has a light source 300 and a light source 300 including light having a wavelength in the near-infrared region of 2500 nm or less, as shown in the figure. The coaxial optical fiber 50 and the coaxial fiber 5 for irradiating the fruits and vegetables 1 to be inspected with the light 301 from the same and further receiving the reflected light 302 from the fruits and vegetables 1.
Spectrometer 6 for splitting the reflected light 302 received at 0
0, a central control unit 200 that calculates the sugar content from the reflection spectrum measured by the spectroscope 60, and a display unit 210 that displays the sugar content calculated by the central control unit 200. The spectroscope 60 is composed of an entrance slit 61, a diffraction grating 62, and a multi-channel detector 63. The reflected light 302 incident on the entrance slit 61 is dispersed into a spectrum by the diffraction grating 62, and the spectrum of the reflected light 302 is detected by the multi-channel detector 63. A linear array sensor such as a CCD is used for the multi-channel detector 63.

【0005】また、中央制御部200は分光器60で検
出された反射光302の反射スペクトルから吸光度、及
び吸光度の二次微分を算出する。糖度は2ヶの特定波長
888、912nmでの吸光度の二次微分値を用いて下
記式数5で算出される。
The central control unit 200 also calculates the absorbance and the second derivative of the absorbance from the reflection spectrum of the reflected light 302 detected by the spectroscope 60. The sugar content is calculated by the following formula 5 using the second derivative of the absorbance at two specific wavelengths of 888 and 912 nm.

【0006】[0006]

【数5】 [Equation 5]

【0007】ここで、C;糖濃度、A;吸光度、λ;波
長を示す。また、k0、k1、k2 、は実測糖度を用いて
最小2乗法で決定された係数である。
Here, C: sugar concentration, A: absorbance, λ: wavelength. Further, k0, k1, and k2 are coefficients determined by the least square method using the actually measured sugar content.

【0008】また、(園芸学会誌、61,445(19
92))記載の方法は、上記特開平4−208842号
公報記載の糖度測定装置と同様の方法で吸光度の二次微
分値を算出し、4ヶの特定波長での二次微分値を用いて
下記式の数6による糖度推定の方法を提案している。
In addition, (Journal of the Horticultural Society, 61, 445 (19
92)), the second derivative of the absorbance is calculated by the same method as the sugar content measuring device described in JP-A-4-208842, and the second derivative at four specific wavelengths is used. A method for estimating the sugar content according to the following equation 6 is proposed.

【0009】[0009]

【数6】 [Equation 6]

【0010】ここで、4ヶの特定波長にλ1=870n
m、λ1=878nm、λ1=889nm、λ1=906
nmを採用することを提案している。
Here, λ1 = 870n for four specific wavelengths
m, λ1 = 878 nm, λ1 = 889 nm, λ1 = 906
It is proposed to adopt nm.

【0011】[0011]

【発明が解決しようとする課題】前記特開平2−147
940号公報、(園芸学会誌、61,445(199
2))、特開平4−208842号公報、記載の従来の
糖度測定装置の場合、検出される反射光は表皮近傍から
の反射光がほとんどで、得られる糖濃度も表皮近傍の糖
濃度となる。本方式の場合、表皮の薄いリンゴ、桃では
有効であるが、一方、表皮の厚いミカン、メロンに前記
方式を適用した場合、反射光は皮の部分からの成分だけ
となり、実の成分情報がほとんど含まれず、実の糖度計
測が困難である。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention
940 publication, (Journal of the Horticultural Society, 61,445 (199
2)), in the conventional sugar content measuring device described in JP-A-4-208842, most of the reflected light detected is reflected light from the vicinity of the epidermis, and the obtained sugar concentration is also the sugar concentration near the epidermis. . In the case of this method, it is effective for apples and peaches with thin epidermis, while on the other hand, when the above method is applied to oranges and melons with thick epidermis, the reflected light is only the component from the skin part, and the actual component information is Since it contains almost no sugar, it is difficult to measure the actual sugar content.

【0012】このような問題点に対して、特開平6−1
86159号公報、(園芸学会誌、62,465(19
93))、特開平6−213804号公報は皮の厚い青
果物に対して近赤外領域の波長の光をもちいた糖濃度計
測を実現するため、透過光を利用する方法を提案してい
る。透過光を用いた特開平6−186159号公報、及
び(園芸学会誌、62,465(1993))記載の方
式では、図1に示した糖濃度の測定装置同様、近赤外領
域の波長の光を青果物に照射し、照射位置とほぼ反対側
で透過光を検出し、図1同様の分光器6により透過光ス
ペクトルを得る。前記得られた透過光スペクトルを用
い、吸光度、さらに吸光度の二次微分値を計算し、5ヶ
の特定波長の吸光度の二次微分値を用いて、下記式の数
7により糖度を算出することを提案している。
To solve such a problem, Japanese Patent Laid-Open No. 6-1
86159, (Journal of the Horticultural Society, 62, 465 (19
93)), JP-A-6-213804 proposes a method of utilizing transmitted light in order to realize sugar concentration measurement using light having a wavelength in the near infrared region for fruits and vegetables with thick skin. In the method described in JP-A-6-186159 using transmitted light and (Journal of the Horticultural Society of Japan, 62,465 (1993)), as in the sugar concentration measuring device shown in FIG. The fruits and vegetables are irradiated with light, the transmitted light is detected on the side substantially opposite to the irradiation position, and the transmitted light spectrum is obtained by the spectroscope 6 similar to FIG. Using the obtained transmitted light spectrum, the absorbance, and further the second derivative of the absorbance is calculated, and the second derivative of the absorbance at the five specific wavelengths is used to calculate the sugar content by the following formula (7). Is proposed.

【0013】[0013]

【数7】 [Equation 7]

【0014】ここで、C;糖濃度、A;吸光度、λ;波
長を示す。またki(i=1,・・・4)は、5ヶの特
定波長λ1=745nm、λ2=769nm、λ3=78
6nm、λ4=914nm、λ5=844nmで、実測糖度
を用いて最小2乗法で決定された係数を示す。以上、上
記青果物からの透過光を検出することで皮の厚いみかん
に対して良好な測定精度を得ている。
Here, C: sugar concentration, A: absorbance, λ: wavelength. Further, ki (i = 1, ... 4) is five specific wavelengths λ1 = 745 nm, λ2 = 769 nm, λ3 = 78.
The coefficients determined by the least squares method using the actually measured sugar content are shown at 6 nm, λ4 = 914 nm, and λ5 = 844 nm. As described above, by detecting the transmitted light from the fruits and vegetables, good measurement accuracy is obtained for a thick-tipped mandarin orange.

【0015】ところで、数6に表れる吸光度の2階微分
値は近似的に下記式の数8で表される。
By the way, the second-order differential value of the absorbance shown in equation 6 is approximately represented by equation 8 below.

【0016】[0016]

【数8】 [Equation 8]

【0017】吸光度の2階微分値を算出するには、特定
波長(λ0 )前後の波長の吸光度が必要になる。つま
り、数4の数式を用いて糖度を算出するには5ヶの特定
波長にその前後の波長を加え15ヶ以上の波長での吸光
度が必要になる。15ヶ以上の波長を有する前記光源と
しては、近赤外領域で連続した波長成分を含んだハロゲ
ンランプ等の白色光源が一般的に用いられる。前記白色
光源を青果物に照射して得られる透過光から特定波長の
スペクトルを得るには入射スリット61、回折格子6
2、多チャンネル検出器63等から構成される複雑な分光
器60が必要になるため、実用化されている装置のほと
んどが大型の据え置きタイプとなっている。
In order to calculate the second-order differential value of the absorbance, the absorbance of the wavelength around the specific wavelength (λ0) is required. That is, in order to calculate the sugar content using the mathematical formula of Equation 4, the absorbance at 15 or more wavelengths is required by adding the wavelengths before and after the 5 specific wavelengths. As the light source having 15 or more wavelengths, a white light source such as a halogen lamp containing a continuous wavelength component in the near infrared region is generally used. In order to obtain a spectrum of a specific wavelength from transmitted light obtained by irradiating fruits and vegetables with the white light source, an entrance slit 61 and a diffraction grating 6
2. Since a complicated spectroscope 60 including a multi-channel detector 63 and the like is required, most of the practically used devices are large stationary types.

【0018】本発明が解決しようとする課題は、従来の
かかる問題点を解消し、近赤外領域の波長の光を用いた
青果物の糖度測定方法・装置において、桃、リンゴなど
皮の薄い青果物のみならず皮の厚いみかん、メロン等の
青果物の糖濃度が非破壊で測定でき、しかも従来の糖度
測定装置のように回折格子等から構成される複雑な分光
器を必要としない青果物非破壊の糖度測定方法及び装置
を提供することにある。
The problem to be solved by the present invention is to solve the above-mentioned conventional problems and to provide a method and apparatus for measuring the sugar content of fruits and vegetables using light having a wavelength in the near-infrared region. Not only can it measure the sugar concentration of fruits and vegetables such as oranges and melons with thick skin in a non-destructive manner, but it does not require a complicated spectroscope composed of a diffraction grating like the conventional sugar content measuring device. It is to provide a method and an apparatus for measuring sugar content.

【0019】[0019]

【課題を解決するための手段】1) 異なった波長の2
つの単色光を青果物に照射して各単色光の光透過率T
a,Tbを計測できる計測装置を備え、複数の実測例の
光透過率Ta,Tbの値とその例の実測の糖度Cの値と
から下記数式の数1の係数k0,k1を決定し、決定され
た係数k0,k1と計測される2つの単色光の光透過率T
a,Tbのデータを用いて下記数9の数式で糖度Cを求
める青果物の非破壊糖度測定方法
[Means for Solving the Problems] 1) 2 of different wavelengths
By irradiating fruits and vegetables with one monochromatic light, the light transmittance T of each monochromatic light
A measuring device capable of measuring a and Tb is provided, and the coefficients k0 and k1 of the following mathematical formula 1 are determined from the values of the light transmittances Ta and Tb of a plurality of measured examples and the measured sugar content C of the example, The determined coefficients k0 and k1 and the light transmittance T of the two monochromatic lights measured
Nondestructive sugar content measuring method for fruits and vegetables using the data of a and Tb to calculate sugar content C by the following mathematical expression 9

【数9】 2) 異なった波長の2つの単色光を青果物に照射して
各単色光の青果物からの透過光より吸光度Abs_a,
Abs_bを計測できる計測装置を備え、複数の実測例
の吸光度Abs_a,Abs_bの値とその例の実測の糖
度Cの値とから下式の数10の係数k0,k1を決定し、
決定されたk0,k1と計測される2つの単色光の吸光度
Abs_a,Abs_bのデータを用いて下記数10の数
式で糖度Cを求める青果物の非破壊糖度測定方法
[Equation 9] 2) Two monochromatic lights of different wavelengths are applied to fruits and vegetables, and the absorbance Abs_a, from the transmitted light of each monochromatic light from the fruits and vegetables,
A measuring device capable of measuring Abs_b is provided, and the coefficients k0 and k1 of the following formula 10 are determined from the values of the absorbances Abs_a and Abs_b of a plurality of measured examples and the value of the actually measured sugar content C of the example,
Non-destructive sugar content measuring method for fruits and vegetables using the data of Abs_a, Abs_b of two monochromatic light measured as k0, k1 determined and the sugar content C by the following mathematical formula 10

【数10】 3) 2つの単色光の波長が950〜1010nmの範
囲と1020〜1080nmの範囲の中からそれぞれ選
ばれたものである前記1)記載の青果物の非破壊糖度測
定方法 4) 2つの単色光の波長が900〜930nmの範囲
と940〜960nmの範囲の中からそれぞれ選ばれた
ものである前記1)記載の青果物の非破壊糖度測定方法 5) 2つの単色光の波長が740〜750nmの範囲
と760〜780nmの範囲の中からそれぞれ選ばれた
ものである前記1)記載の青果物の非破壊糖度測定方法 6) 異なった2つの単色光の光源と、前記光源からの
単色光を青果物に照射するための照射手段と、前記青果
物に照射される前記単色光の照射光量を検出するための
照射光量検出手段と、前記照射手段によって青果物に照
射された2つの単色光の青果物からの透過光量を検出す
る透過光量検出手段と、前記照射光量検出手段で検出し
た照射光量と前記透過光量検出手段で検出した透過光量
から各単色光に対応した2つの光透過率Ta,Tbを算
出し、さらにその値から下記数11の数式から青果物の
糖度Cを算出する演算手段とを設けたことを特徴とする
青果物の非破壊糖度測定装置
[Equation 10] 3) The method for measuring the non-destructive sugar content of fruits and vegetables according to the above 1), wherein the wavelengths of the two monochromatic lights are respectively selected from the range of 950 to 1010 nm and the range of 1020 to 1080 nm 4) The wavelengths of the two monochromatic lights Is selected from the range of 900 to 930 nm and the range of 940 to 960 nm, respectively. 5) The method for measuring nondestructive sugar content of fruits and vegetables according to the above 1) 5) The wavelengths of two monochromatic lights are 740 to 750 nm and 760 nm. The method for measuring non-destructive sugar content of fruits and vegetables according to the above 1), which is each selected from the range of ˜780 nm 6) To irradiate the fruits and vegetables with two different monochromatic light sources and the monochromatic light from the light source Irradiating means, an irradiating light amount detecting means for detecting the irradiating light amount of the monochromatic light with which the fruits and vegetables are irradiated, and Transmitted light amount detecting means for detecting the transmitted light amount of colored light from fruits and vegetables, and two light transmittances Ta corresponding to each monochromatic light from the irradiated light amount detected by the irradiated light amount detecting means and the transmitted light amount detected by the transmitted light amount detecting means. , Tb, and an arithmetic means for calculating the sugar content C of the fruit and vegetables from the formula 11 below from the calculated value, and a nondestructive sugar content measuring device for fruit and vegetables.

【数11】 7) 異なった2つの単色光の光源と、前記光源からの
単色光を青果物に照射するための照射手段と、前記青果
物に照射される前記単色光の照射光量を検出するための
照射光量検出手段と、前記照射手段によって青果物に照
射された2つの単色光の青果物からの透過光量を検出す
る透過光量検出手段と、前記照射光量検出手段で検出し
た照射光量と前記透過光量検出手段で検出した透過光量
から各単色光に対応した2つの吸光度Abs_a,Ab
s_bを算出し、さらにその値から下記数12の数式か
ら青果物の糖度Cを算出する演算手段とを設けたことを
特徴とする青果物の非破壊糖度測定装置
[Equation 11] 7) Two different monochromatic light sources, an irradiation unit for irradiating the fruits and vegetables with the monochromatic light from the light source, and an irradiation light amount detection unit for detecting the irradiation amount of the monochromatic light with which the fruits and vegetables are irradiated. A transmitted light amount detecting means for detecting the amount of transmitted light from the fruits and vegetables of the two monochromatic lights irradiated to the fruits and vegetables by the irradiating means; the amount of emitted light detected by the emitted light amount detecting means and the transmission detected by the transmitted light amount detecting means. Two absorbances Abs_a, Ab corresponding to each monochromatic light from the light amount
A non-destructive sugar content measuring device for fruits and vegetables, characterized by further comprising: a calculating means for calculating s_b, and calculating the sugar content C of the fruits and vegetables from the equation 12 below.

【数12】 8) 2つの単色光の波長が950〜1010nmの範
囲と1020〜1080nmの範囲の中からそれぞれ選
ばれたものである前記6)又は7)記載の青果物の非破
壊糖度測定装置 9) 2つの単色光の波長が900〜930nmの範囲
と940〜960nmの範囲の中からそれぞれ選ばれた
ものである前記6)又は7)記載の青果物の非破壊糖度
測定装置 10) 2つの単色光の波長が740〜750nmの範
囲と760〜780nmの範囲の中からそれぞれ選ばれ
たものである前記6)又は7)記載の青果物の非破壊糖
度測定装置 11) 光源が2つの波長の独立したものが2つあり、
2つの光源の投光が切換式で一つの光源の投光に選択で
き、照射手段と照射光量検出手段と透過光量検出手段が
各単色光で作動できる共用のものであり、その手段のデ
ータ出力に動作した単色光の識別がなされるようにした
前記6)〜10)いずれか記載の青果物の非破壊糖度測
定装置にある。
[Equation 12] 8) The non-destructive sugar content measuring device for fruits and vegetables according to 6) or 7), wherein the wavelengths of two monochromatic lights are respectively selected from a range of 950 to 1010 nm and a range of 1020 to 1080 nm. The non-destructive sugar content measuring device for fruits and vegetables according to the above 6) or 7), wherein the wavelength of light is selected from the range of 900 to 930 nm and the range of 940 to 960 nm, respectively. 10) Two monochromatic light wavelengths are 740 ~ 750nm range and 760 ~ 780nm range respectively selected from the above 6) or 7) non-destructive sugar content measuring apparatus for fruits and vegetables 11) There are two independent light sources of two wavelengths. ,
The projection of two light sources can be switched to select the projection of one light source, and the irradiation means, the irradiation light amount detecting means, and the transmitted light amount detecting means can be operated by each monochromatic light, and the data output of the means is common. The non-destructive sugar content measuring device for fruits and vegetables according to any of 6) to 10) above, wherein the monochromatic light that has operated in the above manner is identified.

【0020】[0020]

【作用】上記のように構成した本発明において、光源か
ら波長の異なる2つの単色光を発生し、照射手段により
青果物に前記2ヶの単色光を照射し、透過光量検出手段
により青果物からの透過光を検出する。照射光は青果物
内部で散乱を受けて果外へ放射され透過光となる。この
2つの透過光から光透過率を計算し、同光透過率から糖
濃度を数1によって算出する。検出された透過光には青
果物内部の実の糖度情報が含まれており、みかん、メロ
ンのように皮の厚い青果物の糖度測定が可能となる。
又、単色光の青果物からの透過光を用いて吸水度を求め
ることによっても、透過光の透過率と同様に数2によっ
て糖度Cを求めることもできる。このように本発明では
光源に2つの単色光源を用いることで、白色光源を用い
た従来の糖度測定装置のように透過、または反射光スペ
クトルを検出するための複雑な分光器を必要としない装
置が実現できる。
In the present invention configured as described above, two monochromatic lights having different wavelengths are generated from the light source, the fruits and vegetables are irradiated with the two monochromatic lights by the irradiating means, and the transmitted light from the fruits and vegetables is detected by the transmitted light amount detecting means. Detect light. The irradiation light is scattered inside the fruits and vegetables and is emitted to the outside of the fruits to be transmitted light. The light transmittance is calculated from these two transmitted lights, and the sugar concentration is calculated from the same light transmittance by the formula 1. The transmitted light detected contains the sugar content information of the fruit inside the fruits and vegetables, and it is possible to measure the sugar content of fruits and vegetables with thick skin such as mandarin oranges and melons.
Also, the sugar content C can be calculated by the equation 2 as in the case of the transmittance of the transmitted light, by calculating the water absorption using the transmitted light from the fruits and vegetables of monochromatic light. As described above, in the present invention, by using two monochromatic light sources as the light source, a device that does not require a complicated spectroscope for detecting a transmitted or reflected light spectrum as in a conventional sugar content measuring device using a white light source. Can be realized.

【0021】[0021]

【発明の実施の形態】本発明に使用する2つの単色光の
波長としては、600nm〜1100nmの範囲の波長
の光が使用されることが多く、誤差が小さい2つの波長
域としては、950〜1010nmと1020〜108
0nmの範囲のものから選ばれる領域、900〜930
nmと940〜960nmの範囲のものから選ばれる領
域、740〜750nmと760〜780nmの範囲か
ら選ばれる領域がグルコース(ブドウ糖)水溶液での青
果物モデル実験では0.5%以下の糖度誤差で良好な範
囲であることが分った。
BEST MODE FOR CARRYING OUT THE INVENTION As the wavelengths of two monochromatic lights used in the present invention, light having a wavelength in the range of 600 nm to 1100 nm is often used. 1010nm and 1024-108
Area selected from the range of 0 nm, 900 to 930
nm and a range of 940 to 960 nm, a range of 740 to 750 nm and a range of 760 to 780 nm are good with a sugar content error of 0.5% or less in a fruit and vegetable model experiment with an aqueous glucose (glucose) solution. It turned out to be a range.

【0022】本発明の単色光はレンズで集束して青果物
に照射し、又透過光も集光レンズで集めて光検出器に受
光させるのがよい。本発明の透過光の光検出器42の位
置は、照射光の青果実の正反対側に置くのが普通である
が、反対側から離れた位置に光検出器を置いても測定可
能である。
The monochromatic light of the present invention is preferably focused by a lens to irradiate fruits and vegetables, and the transmitted light is also preferably collected by a condenser lens and received by a photodetector. The position of the photodetector 42 of the transmitted light of the present invention is usually placed on the opposite side of the fruits and vegetables of the irradiation light, but it can be measured by placing the photodetector at a position distant from the opposite side.

【0023】本発明の単色光の光源としては、レーザ
ー、発光ダイオード又は単色化された電灯光源が使用さ
れ、透過光を受光する光検出器としては、フォトダイオ
ード等が使用される。本発明の光透過率Ta,Tb,吸
光度Abs_a ,Abs_b及び数式の計算、光源の制
御は電子回路及びコンピュータを用いて制御・計算さ
れ、ディスプレイ装置(表示部)に表示される。
A laser, a light emitting diode, or a monochromatic electric light source is used as the monochromatic light source of the present invention, and a photodiode or the like is used as the photodetector for receiving the transmitted light. The light transmittances Ta and Tb, the absorbances Abs_a and Abs_b, and the calculation of mathematical expressions and the control of the light source of the present invention are controlled and calculated using an electronic circuit and a computer, and displayed on a display device (display unit).

【0024】[0024]

【実施例】以下、本発明の実施例を図面に基づいて詳細
に説明する。図1は、実施例の非破壊糖度測定装置の説
明図である。図2は、実施例のトリガ信号と単色光の交
互照射の状態を示す動作説明図である。図3は、糖度測
定精度0.5%以下と1%以下の波長領域を示す波長範
囲マップ図である。図4は、実施例の吸光度の比とグル
コース(ブドウ糖)水溶液濃度との相関図である。図5
は、実施例のSN比ηと波長との関係を示すSN比スペ
クトル図である。図6は、従来の非破壊糖度測定方法を
示す説明図である。
Embodiments of the present invention will now be described in detail with reference to the drawings. FIG. 1 is an explanatory diagram of a non-destructive sugar content measuring device of an example. FIG. 2 is an operation explanatory diagram showing a state of alternate irradiation of the trigger signal and the monochromatic light of the embodiment. FIG. 3 is a wavelength range map diagram showing wavelength regions in which the sugar content measurement accuracy is 0.5% or less and 1% or less. FIG. 4 is a correlation diagram between the ratio of the absorbance and the glucose (glucose) aqueous solution concentration in the example. Figure 5
FIG. 4 is an SN ratio spectrum diagram showing the relationship between the SN ratio η and the wavelength in the example. FIG. 6 is an explanatory view showing a conventional nondestructive sugar content measuring method.

【0025】図1に示す本実施例の非破壊糖度測定装置
は、単色光101a(単色光101b)を青果物1に照
射するための光源10a(光源10b)、反射プリズム
22、及び集光レンズ21を備え、また単色光101a
(単色光101b)の一部を検出するためのサンプリン
グミラー33、集光レンズ31、及び光検出器32を備
えている。さらに青果物1からの透過光104a(10
4b)を検出するために集光レンズ41と光検出器42
を、また信号処理部230、中央制御部200、表示部
210、光源制御部220を備えている。
The non-destructive sugar content measuring apparatus of this embodiment shown in FIG. 1 has a light source 10a (light source 10b) for irradiating the fruit 1 with monochromatic light 101a (monochromatic light 101b), a reflecting prism 22, and a condenser lens 21. And monochromatic light 101a
A sampling mirror 33 for detecting a part of the (monochromatic light 101b), a condenser lens 31, and a photodetector 32 are provided. Further, transmitted light 104a (10
4b) to detect the condenser lens 41 and the photodetector 42.
In addition, a signal processing unit 230, a central control unit 200, a display unit 210, and a light source control unit 220 are provided.

【0026】中央制御部200は、信号処理部230で
デジタル化された光検出器32,42からの検出信号を
もとに、後述する方式で青果物の糖度を算出し、表示器
210で表示する。光源制御部220は、光源10a
(10b)に電流を供給するための図示しない電源、ス
イッチ部を有している。中央制御部200からトリガ信
号TPa(TPb)がスイッチ部に入力されると、トリ
ガ信号TPa(TPb)の立ち上がりに同期してスイッ
チ部がONとなり、光源10a(10b)に電流が供給
される。
The central control unit 200 calculates the sugar content of fruits and vegetables by the method described later based on the detection signals from the photodetectors 32 and 42 digitized by the signal processing unit 230 and displays it on the display 210. . The light source control unit 220 uses the light source 10a.
(10b) has a power supply and a switch unit (not shown) for supplying a current. When the trigger signal TPa (TPb) is input to the switch unit from the central control unit 200, the switch unit is turned on in synchronization with the rising of the trigger signal TPa (TPb), and the current is supplied to the light source 10a (10b).

【0027】以上の構成を有する非破壊糖度測定装置の
動作を説明する。まず、中央制御部200から送信され
るトリガ信号TPaがHighとなる。次に、光源制御
部220の図示しないスイッチ部がトリガ信号TPaの
立ち上がりに同期してONとなり、光源10aに電流が
供給され単色光101aが発生する。一方、トリガ信号
TPbはLowのままとなっており、光源10bには電
流が供給されず単色光101bは発生していない。次
に、光源10aから発した単色光101aは反射プリズ
ム22を透過し、集光レンズ24で平行光になり、その
一部がモニター光102aとしてサンプリングされ、残
りはサンプリングミラー33を透過し、照射光103a
として青果物1に照射される。サンプリングされたモニ
ター光102aは集光レンズ31で光検出器32の受光
面に集められる。一方、青果物1に照射された照射光1
03aは、一部が透過光104aとして青果物1から透
過し、その透過光104aは集光レンズ41で光検出器
42の受光面に集められる。ここで、光検出器32,4
2には、フォトダイオード等を用いることとしている。
The operation of the non-destructive sugar content measuring device having the above-described structure will be described. First, the trigger signal TPa transmitted from the central control unit 200 becomes High. Next, the switch unit (not shown) of the light source control unit 220 is turned on in synchronization with the rising edge of the trigger signal TPa, the current is supplied to the light source 10a, and the monochromatic light 101a is generated. On the other hand, the trigger signal TPb remains Low, so that no current is supplied to the light source 10b and the monochromatic light 101b is not generated. Next, the monochromatic light 101a emitted from the light source 10a is transmitted through the reflection prism 22 and becomes parallel light by the condenser lens 24, a part of which is sampled as the monitor light 102a, and the rest is transmitted through the sampling mirror 33 for irradiation. Light 103a
Is radiated to vegetables and fruits 1. The sampled monitor light 102a is collected by the condenser lens 31 on the light receiving surface of the photodetector 32. On the other hand, the irradiation light 1 radiated on the fruit 1
Part of 03a is transmitted as a transmitted light 104a from the fruits and vegetables 1, and the transmitted light 104a is collected by the condenser lens 41 on the light receiving surface of the photodetector 42. Here, the photodetectors 32, 4
For 2, a photodiode or the like is used.

【0028】光検出器32,42から、それぞれモニタ
ー光102a、透過光104aの光強度に比例した検出
信号が出力され、信号処理部230でデジタル化処理さ
れる。デジタル化処理された光検出器32,42からの
検出信号を基に中央制御部200で後述する方法で吸光
度Abs_aが算出される。
Detection signals proportional to the light intensities of the monitor light 102a and the transmitted light 104a are output from the photodetectors 32 and 42, respectively, and are digitized by the signal processing unit 230. Based on the detection signals from the photodetectors 32 and 42 that have been digitized, the central controller 200 calculates the absorbance Abs_a by a method described later.

【0029】吸光度Abs_aの算出演算が終わると、
トリガ信号TPaがLowに、またトリガ信号TPbが
Highになる。このトリガ信号TPa(TPb)に基
づき、前記光源制御部220内の図示されないスイッチ
部の開閉により、光源10aがOFF(消灯)し、光源
10bがON(点灯)する。続いて、前述した単色光1
01aによる吸光度Abs_aの算出手順と同様に、単
色光101bによる吸光度Abs_bの算出が実行され
る。単色光101bによる吸光度Abs_bの算出演算
が終了するとトリガ信号TPa、TPbはともにLow
となり、光源10a,10bはともにOFF(消灯)し
て、青果物1の糖度計測作業は終了する。中央制御部2
00では算出した吸光度Abs_a、Abs_bから青果
物1の糖度を後述する方法で算出し、その結果を表示部
に表示する。
When the calculation of the absorbance Abs_a is completed,
The trigger signal TPa becomes Low and the trigger signal TPb becomes High. Based on this trigger signal TPa (TPb), the light source 10a is turned off (turned off) and the light source 10b is turned on (lighted) by opening and closing a switch unit (not shown) in the light source control unit 220. Then, the above-mentioned monochromatic light 1
Similar to the procedure for calculating the absorbance Abs_a by 01a, the absorbance Abs_b by the monochromatic light 101b is calculated. When the calculation of the absorbance Abs_b by the monochromatic light 101b is completed, both the trigger signals TPa and TPb are Low.
Then, the light sources 10a and 10b are both turned off (turned off), and the sugar content measuring operation of the fruit 1 is completed. Central control unit 2
At 00, the sugar content of the fruit 1 is calculated from the calculated absorbances Abs_a and Abs_b by the method described below, and the result is displayed on the display unit.

【0030】次に、中央制御部200で行われる吸光度
Abs_a、Abs_bの算出方法について説明する。単
色光101a、モニター光102a、照射光103a、
透過光104aの光量をそれぞれi101a、i102a、i
103a、i104aとする。サンプリングミラー31の反射率
をkとすると、i102a、i103aはi101aを用いて下記式
の数13で表される。
Next, a method of calculating the absorbances Abs_a and Abs_b performed by the central control unit 200 will be described. Monochromatic light 101a, monitor light 102a, irradiation light 103a,
The amounts of transmitted light 104a are i 101a , i 102a , i
103a and i 104a . Assuming that the reflectance of the sampling mirror 31 is k, i 102a and i 103a are represented by the following equation 13 using i 101a .

【0031】[0031]

【数13】 [Equation 13]

【0032】青果物1の透過率をTとするとi104aは下
記式の数14で表される。
Assuming that the transmittance of the fruit and vegetables 1 is T, i 104a is expressed by the following equation (14).

【0033】[0033]

【数14】 [Equation 14]

【0034】光検出器32,42における光量−電圧変
換係数をそれぞれ、β32(V/W)、β42(V/W)と
すると、光検出器32,42で検出される検出信号(電
圧)は下記数15,数16式で表される。
Assuming that the light quantity-voltage conversion coefficients in the photodetectors 32 and 42 are β 32 (V / W) and β 42 (V / W), respectively, the detection signals (voltages detected by the photodetectors 32 and 42 are ) Is expressed by the following equations 15 and 16.

【0035】[0035]

【数15】 [Equation 15]

【0036】[0036]

【数16】 [Equation 16]

【0037】数15,数16の式より、青果物1の透過
率Taは下記式数17で算出され、単色光101aの光量に
依存しない形で表される。
From the equations (15) and (16), the transmittance Ta of the fruits and vegetables 1 is calculated by the following equation (17), and is expressed in a form that does not depend on the light amount of the monochromatic light 101a.

【0038】[0038]

【数17】 [Equation 17]

【0039】ここで、()内の値は、糖度測定装置固有
の定数で、透過率の値が分かった材料等を用いて簡単に
定めることができる。吸光度Abs_aは式数17で算
出した透過率Taを用いて下記式数18で算出される。
The value in parentheses is a constant peculiar to the sugar content measuring device, and can be easily determined by using a material or the like whose transmittance value is known. The absorbance Abs_a is calculated by the following formula 18 using the transmittance Ta calculated by the formula 17.

【0040】[0040]

【数18】 [Equation 18]

【0041】吸光度Abs_bの算出も同様にして求める
ことができる。青果物1の糖度Cは、算出した吸光度A
bs_a、Abs_bの比を用いて下記式数19で算出す
る。
The absorbance Abs_b can be calculated in the same manner. The sugar content C of fruit and vegetables 1 is the calculated absorbance A
It is calculated by the following equation 19 using the ratio of bs_a and Abs_b.

【0042】[0042]

【数19】 [Formula 19]

【0043】[0043]

【数20】 [Equation 20]

【0044】ここで、k0,k1は実測糖度を用いて最小
2乗法で決定された係数を示す。また式数19で推定さ
れる糖度の推定精度は、2ヶの単色光101a、101
bの波長λa、λbの組み合わせに左右される。式数19
を用いて糖度推定を行うための最適な波長の組み合わせ
として、本実施例では下記3ヶの組み合わせの数式の数
21の範囲中で、いずれかの組み合わせを用いる。
Here, k0 and k1 represent coefficients determined by the least squares method using the actually measured sugar content. Further, the estimation accuracy of the sugar content estimated by the equation 19 is two monochromatic lights 101a, 101.
It depends on the combination of the wavelengths λa and λb of b. Formula number 19
In the present embodiment, any combination is used as the optimum wavelength combination for estimating sugar content by using the following equation (21).

【0045】[0045]

【数21】 [Equation 21]

【0046】また、前述した組み合わせ、、または
の波長を持つ単色光101a、101bを発する光源
としてレーザーを用いることができる。このレーザーに
半導体レーザーを用いれば、小型の糖度測定装置が実現
できる。また、発光ダイオード等の発光素子を光源10
a(10b)に用いることも可能である。また近赤外領
域の波長の光を連続的に発する白色光源を光源10a
(10b)に用いる場合、光源10a(10b)からの
光を前述した3ヶの組み合わせの波長のみを透過させる
光学フィルターを用いることで実現しても良い。
Further, a laser can be used as a light source which emits the monochromatic lights 101a and 101b having the above-mentioned combination or wavelengths. If a semiconductor laser is used for this laser, a small sugar content measuring device can be realized. In addition, a light emitting element such as a light emitting diode is used as the light source 10.
It can also be used for a (10b). A white light source that continuously emits light having a wavelength in the near infrared region is used as the light source 10a.
When it is used for (10b), it may be realized by using an optical filter that allows the light from the light source 10a (10b) to transmit only the wavelengths of the above-mentioned three combinations.

【0047】本実施例の非破壊糖度測定方法を青果物の
モデルとしてグルコース(ブドウ糖)水溶液を良透光性
の容器に入れ、種々の波長の単色光で照射し透過光量を
測定し、本実施例の装置と方法を用いて糖度Cを数1,
数2式より計算し、グルコース(ブドウ糖)水溶液の糖
度を実測して、その誤差を算出した。その算出結果、誤
差が0.5%以下となる波長領域H1,H2,H3を斜
線で、又1%以下となる領域の境界線をK1,K2,K
3,K4でもって図3に示している。
Using the nondestructive sugar content measuring method of this embodiment as a model of fruits and vegetables, an aqueous glucose (glucose) solution was placed in a highly transparent container and irradiated with monochromatic light of various wavelengths to measure the amount of transmitted light. Using the device and method of
The error was calculated by calculating from Equation 2 and measuring the sugar content of the glucose (glucose) aqueous solution. As a result of the calculation, the wavelength regions H1, H2, H3 in which the error is 0.5% or less are shaded, and the boundary lines of the regions in which the error is 1% or less are K1, K2, K.
3 and K4 are shown in FIG.

【0048】本発明の数21に示す波長範囲は、この誤
差0.5%以下の波長領域H1,H2,H3内にあること
が分り、この波長範囲から単色光を選ぶことで、糖度誤
差が0.5%以下の高い精度を得ることができることが
分かる。
It can be seen that the wavelength range shown in the equation (21) of the present invention is within the wavelength range H1, H2, H3 where the error is 0.5% or less, and by selecting monochromatic light from this wavelength range, the sugar content error can be reduced. It can be seen that a high accuracy of 0.5% or less can be obtained.

【0049】又、本実施例で算出した吸光度の比γ(数
式2中のAbs_a/Abs_b)と糖濃度の相関性を図
4に示す。ここでは、2つの単色光の波長λa、λbをそ
れぞれ1060nm、980nmとしている。この図4
から分るようにグルコース(ブドウ糖)水溶液の糖濃度
C%と吸光度の比γ(Abs_a/Abs_b)が直線上
にかなりの精度でのっていることが分り、又、これから
数1,数2の式の直線性(k0,k1)が立証された。図
4のデータでは、k0=−134.113,k1=452.489とな
り、この装置において数1,数2の式は下記の数22の
ようになる。
The correlation between the absorbance ratio γ (Abs_a / Abs_b in Equation 2) calculated in this example and the sugar concentration is shown in FIG. Here, the wavelengths λa and λb of the two monochromatic lights are 1060 nm and 980 nm, respectively. This Figure 4
As can be seen from the graph, the ratio (γ) (Abs_a / Abs_b) of the sugar concentration C% of the glucose (glucose) aqueous solution and the absorbance is found to be on the straight line with considerable accuracy. The linearity of the equation (k0, k1) was verified. In the data of FIG. 4, k0 = -134.113 and k1 = 452.489, and the equations of the equations 1 and 2 in this apparatus are as shown in the following equation 22.

【0050】[0050]

【数22】 [Equation 22]

【0051】ちなみに、図4におけるSN比ηは14.6で
推定精度0.26%であった。SN比η(λa,λb)は図4
の回帰直線の傾きβ,回帰誤差αから下式数23によっ
て計算される値である。また推定精度はSN比ηを用い
て、(1/η)0.5で算出される。
Incidentally, the SN ratio η in FIG. 4 was 14.6 and the estimation accuracy was 0.26%. The SN ratio η (λa, λb) is shown in Fig. 4.
Is a value calculated from the slope β of the regression line and the regression error α of The estimation accuracy is calculated as (1 / η) 0.5 using the SN ratio η.

【0052】[0052]

【数23】 [Equation 23]

【0053】又、2ヶの単色光で、一方の単色光の波長
λaを1060nmに固定し、他方の単色光の波長λbの
みを変化させた場合、SN比ηと単色光の波長λbとの
関係は図5に示すように特定波長930〜1040nm
において高い値を示すものであった。
When the wavelength λa of one monochromatic light is fixed to 1060 nm and only the wavelength λb of the other monochromatic light is changed with two monochromatic lights, the SN ratio η and the wavelength λb of the monochromatic light are changed. The relationship is a specific wavelength 930 to 1040 nm as shown in FIG.
It showed a high value in.

【0054】以上の様にして、糖度の式が糖度モデル実
験によって又は青果物1の測定例から、その係数k0,
k1が決定されると、その装置・方法の特性の係数k0,
k1が定まり、次に実際の青果物1を実測して吸光度A
bs_a,Abs_b又は透過度Ta,Tbを測定して、
中央制御部200が上記計算・処理を行って、表示部2
10にその糖度を表示するものである。その表示の糖度
は上記波長範囲では0.5%以下の精度を得ることがで
きる。
As described above, the formula of the sugar content is calculated by the sugar content model experiment or from the measurement example of the fruit and vegetable 1, and the coefficient k0,
When k1 is determined, the coefficient k0 of the characteristic of the device / method,
k1 is determined, and then the actual fruit 1 is measured and the absorbance A
By measuring bs_a, Abs_b or transmittance Ta, Tb,
The central control unit 200 performs the above calculation and processing, and the display unit 2
The sugar content is displayed at 10. With respect to the sugar content shown, an accuracy of 0.5% or less can be obtained in the above wavelength range.

【0055】[0055]

【発明の効果】以上本発明によれば、2種類の特定波長
の単色光を青果物に照射し、その透過光を検出してい
る。検出された透過光には青果物内部の実の糖度情報が
含まれており、みかん、メロンのように皮の厚い青果物
の糖度測定が可能となる。また、2種類の特定波長の単
色光を用いた本発明の糖度測定装置では、白色光源を用
いた従来の糖度測定装置のように透過、または反射光ス
ペクトルを検出するための複雑な分光器を必要としない
装置が実現でき、また光源に小型の半導体レーザー等を
用いることができるため、小型・軽量の糖度測定装置が
実現できる。しかも計測の糖度の精度は高く、1%、
0.5%以下のものにできるものとなった。
As described above, according to the present invention, fruits and vegetables are irradiated with two types of monochromatic light having specific wavelengths, and the transmitted light is detected. The transmitted light detected contains the sugar content information of the fruit inside the fruits and vegetables, and it is possible to measure the sugar content of fruits and vegetables with thick skin such as mandarin oranges and melons. Further, in the sugar content measuring device of the present invention that uses two types of monochromatic light of specific wavelengths, a complicated spectroscope for detecting a transmitted or reflected light spectrum is used like a conventional sugar content measuring device using a white light source. An unnecessary device can be realized, and a small semiconductor laser or the like can be used as a light source, so that a small and lightweight sugar content measuring device can be realized. Moreover, the accuracy of the sugar content of the measurement is high, 1%,
It can be made 0.5% or less.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例の非破壊糖度測定装置の説明図である。FIG. 1 is an explanatory diagram of a non-destructive sugar content measuring device of an example.

【図2】実施例のトリガ信号と単色光の交互照射の状態
を示す動作説明図である。
FIG. 2 is an operation explanatory diagram showing a state of alternate irradiation of a trigger signal and monochromatic light according to an embodiment.

【図3】糖度測定精度0.5%以下と1%以下の波長領
域を示す波長範囲マップ図である。
FIG. 3 is a wavelength range map diagram showing wavelength regions of sugar content measurement accuracy of 0.5% or less and 1% or less.

【図4】実施例の吸光度の比とグルコース(ブドウ糖)
水溶液濃度との相関図である。
FIG. 4 is a graph showing the ratio of absorbance and glucose (glucose) in Examples.
It is a correlation diagram with aqueous solution concentration.

【図5】実施例のSN比ηと波長との関係を示すSN比
スペクトル図である。
FIG. 5 is an SN ratio spectrum diagram showing the relationship between the SN ratio η and the wavelength in the example.

【図6】従来の非破壊糖度測定方法を示す説明図であ
る。
FIG. 6 is an explanatory view showing a conventional non-destructive sugar content measuring method.

【符号の説明】[Explanation of symbols]

1 青果物 10a、10b、 光源 21,31、41 集光レンズ 22 プリズム 32、42 光検出器 33 サンプリングミラー 50 同軸光ファイバー 51、52 集光レンズ 60 分光器 61 スリット 62 回折格子 63 リニアアレイセンサー 101a,101b 単色光 102a、102b モニター光 103a、103b 照射光 104a、104b 透過光 200 中央制御部 210 表示部 220 光源制御部 230 信号処理部 300 光源 301 照射光 302 反射光 TPa、TPb トリガ信号 1 fruits and vegetables 10a, 10b, light source 21, 31, 41 Condensing lens 22 Prism 32, 42 photo detector 33 Sampling mirror 50 coaxial optical fiber 51, 52 Condensing lens 60 spectroscope 61 slits 62 diffraction grating 63 Linear array sensor 101a, 101b monochromatic light 102a, 102b monitor light 103a, 103b irradiation light 104a, 104b transmitted light 200 Central control unit 210 display 220 Light source control unit 230 Signal processing unit 300 light sources 301 irradiation light 302 reflected light TPa, TPb trigger signal

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成13年10月24日(2001.10.
24)
[Submission date] October 24, 2001 (2001.10.
24)

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0010[Correction target item name] 0010

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0010】ここで、4ケの特定波長にλ1=870n
m、λ=878nm、λ=889nm、λ=90
6nmを採用することを提案している。
Here, λ1 = 870n for four specific wavelengths
m, λ 2 = 878 nm, λ 3 = 889 nm, λ 4 = 90
It is proposed to use 6 nm.

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0020[Correction target item name] 0020

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0020】[0020]

【作用】上記のように構成した本発明において、光源か
ら波長の異なる2つの単色光を発生し、照射手段により
青果物に前記2ケの単色光を照射し、透過光量検出手段
により青果物からの透過光を検出する。照射光は青果物
内部で散乱を受けて果外へ放射され透過光となる。この
2つの透過光から光透過率を計算し、同光透過率から糖
濃度を数1によって算出する。検出された透過光には青
果物内部の実の糖度情報が含まれており、みかん、メロ
ンのように皮の厚い青果物の糖度測定が可能となる。
又、単色光の青果物からの透過光を用いて吸度を求め
ることによっても、透過光の透過率と同様に数2によっ
て糖度Cを求めることもできる。このように本発明では
光源に2つの単色光源を用いることで、白色光源を用い
た従来の糖度測定装置のように透過、または反射光スペ
クトルを検出するための複雑な分光器を必要としない装
置が実現できる。
In the present invention constructed as described above, two monochromatic lights having different wavelengths are generated from the light source, the irradiating means irradiates the fruits and vegetables with the two monochromatic lights, and the transmitted light amount detecting means transmits the monochromatic light. Detect light. The irradiation light is scattered inside the fruits and vegetables and is emitted to the outside of the fruits to be transmitted light. The light transmittance is calculated from these two transmitted lights, and the sugar concentration is calculated from the same light transmittance by the formula 1. The transmitted light detected contains the sugar content information of the fruit inside the fruits and vegetables, and it is possible to measure the sugar content of fruits and vegetables with thick skin such as mandarin oranges and melons.
Also, by determining the Absorbance using transmitted light from the fruits or vegetables monochromatic light, it is also possible to determine the sugar content C by transmittance as well as the number 2 of the transmitted light. As described above, in the present invention, by using two monochromatic light sources as the light source, a device that does not require a complicated spectroscope for detecting a transmitted or reflected light spectrum as in a conventional sugar content measuring device using a white light source. Can be realized.

【手続補正3】[Procedure 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0021[Correction target item name] 0021

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0021】[0021]

【発明の実施の形態】本発明に使用する2つの単色光の
波長としては、600nm〜1100nmの範囲の波長
の光が使用されることが多く、誤差が小さい2つの波長
域としては、950〜1010nmと1020〜108
0nmの範囲のものから選ばれる領域、900〜930
nmと940〜960nmの範囲のものから選ばれる領
域、740〜750nmと760〜780nmの範囲か
ら選ばれる領域がグルコース(ブドウ糖)水溶液を用い
青果物モデル実験では0.5%以下の糖度誤差で良好
な範囲であることが分った。
BEST MODE FOR CARRYING OUT THE INVENTION As the wavelengths of two monochromatic lights used in the present invention, light having a wavelength in the range of 600 nm to 1100 nm is often used. 1010nm and 1024-108
Area selected from the range of 0 nm, 900 to 930
nm and a region selected from the range of 940 to 960 nm, a region selected from the range of 740 to 750 nm and 760 to 780 nm uses an aqueous glucose (glucose) solution .
In a fruit and vegetable model experiment, it was found that the sugar content error was 0.5% or less, which was in a good range.

【手続補正4】[Procedure amendment 4]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0034[Correction target item name] 0034

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0034】光検出器32,42における光量−電圧変
換係数をそれぞれβ 32(V/W)、β 42(V/W)
とすると、光検出器32,42で検出される検出信号
(電圧)は下記数15,数16式で表される。
The light quantity-voltage conversion coefficients in the photodetectors 32 and 42 are β 32 (V / W) and β 42 (V / W), respectively.
Then, the detection signals (voltages) detected by the photodetectors 32 and 42 are expressed by the following formulas 15 and 16.

【手続補正5】[Procedure Amendment 5]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0051[Correction target item name] 0051

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0051】ちなみに、図4におけるSN比ηは14.
6で推定精度0.26%であった。SN比η(λa,λ
b)は図4の回帰直線の傾きβ,回帰誤差をσとする
と、下式数23によって計算される値である。また推定
精度はSN比ηを用いて、(1/η)0.5で算出され
る。
Incidentally, the SN ratio η in FIG.
No. 6, the estimation accuracy was 0.26%. SN ratio η (λa, λ
b) is the slope β of the regression line in FIG. 4 and the regression error is σ
And the value calculated by the following equation (23). The estimation accuracy is calculated by (1 / η) 0.5 using the SN ratio η.

【手続補正6】[Procedure correction 6]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図4[Name of item to be corrected] Fig. 4

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図4】 [Figure 4]

【手続補正7】[Procedure Amendment 7]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図5[Name of item to be corrected] Figure 5

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図5】 [Figure 5]

フロントページの続き Fターム(参考) 2G051 AA05 AB20 BA06 BA08 BA10 BA20 CA02 CA07 CB02 EA12 FA10 2G059 AA01 BB11 EE01 GG01 GG02 GG05 GG10 HH01 HH06 JJ11 JJ12 JJ13 JJ22 KK01 KK03 MM01 MM09 PP04 Continued front page    F term (reference) 2G051 AA05 AB20 BA06 BA08 BA10                       BA20 CA02 CA07 CB02 EA12                       FA10                 2G059 AA01 BB11 EE01 GG01 GG02                       GG05 GG10 HH01 HH06 JJ11                       JJ12 JJ13 JJ22 KK01 KK03                       MM01 MM09 PP04

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 異なった波長の2つの単色光を青果物に
照射して各単色光の光透過率Ta,Tbを計測できる計
測装置を備え、複数の実測例の光透過率Ta,Tbの値と
その例の実測の糖度Cの値とから下記数式の数1の係数
k0,k1を決定し、決定された係数k0,k1と計測される2
つの単色光の光透過率T,Tのデータを用いて下記
数1の数式で糖度Cを求める青果物の非破壊糖度測定方
法。 【数1】
1. A measuring device capable of irradiating fruits and vegetables with two monochromatic light beams having different wavelengths to measure the light transmissivity Ta, Tb of each monochromatic light, and the values of the light transmissivity Ta, Tb of a plurality of actual measurement examples. And the value of the actually measured sugar content C in that example, the coefficient of the following mathematical formula 1
Determine k0 and k1 and measure with the determined coefficients k0 and k1 2
A non-destructive sugar content measuring method for fruits and vegetables, wherein the sugar content C is calculated by the following mathematical formula 1 using the data of the light transmittances T a and T b of one monochromatic light. [Equation 1]
【請求項2】 異なった波長の2つの単色光を青果物に
照射して各単色光の青果物からの透過光より吸光度Ab
s_a,Abs_bを計測できる計測装置を備え、複数の
実測例の吸光度Abs_a,Abs_bの値とその例の実
測の糖度Cの値とから下式の数2の係数k0,k1を決定
し、決定されたk0,k1と計測される2つの単色光の吸光
度Abs_a,Abs_bのデータを用いて下記数2の数
式で糖度Cを求める青果物の非破壊糖度測定方法。 【数2】
2. The fruits and vegetables are irradiated with two monochromatic lights having different wavelengths, and the absorbance Ab is obtained from the transmitted light of the monochromatic lights from the fruits and vegetables.
Equipped with a measuring device capable of measuring s_a and Abs_b, the coefficients k0 and k1 of the following equation 2 are determined and determined from the values of the absorbances Abs_a and Abs_b of a plurality of measured examples and the measured sugar content C of the example. A non-destructive sugar content measuring method for fruits and vegetables, wherein the sugar content C is calculated by the following mathematical formula 2 using the data of absorbances Abs_a and Abs_b of two monochromatic lights measured as k0 and k1. [Equation 2]
【請求項3】 2つの単色光の波長が950〜1010
nmの範囲と1020〜1080nmの範囲の中からそ
れぞれ選ばれたものである請求項1記載の青果物の非破
壊糖度測定方法。
3. The wavelengths of two monochromatic lights are 950 to 1010.
The method for measuring non-destructive sugar content of fruits and vegetables according to claim 1, wherein the method is selected from the range of nm and the range of 1020 to 1080 nm.
【請求項4】 2つの単色光の波長が900〜930n
mの範囲と940〜960nmの範囲の中からそれぞれ
選ばれたものである請求項1記載の青果物の非破壊糖度
測定方法。
4. The wavelengths of two monochromatic lights are 900 to 930n.
The method for measuring non-destructive sugar content of fruits and vegetables according to claim 1, which is selected from the range of m and the range of 940 to 960 nm.
【請求項5】 2つの単色光の波長が740〜750n
mの範囲と760〜780nmの範囲の中からそれぞれ
選ばれたものである請求項1記載の青果物の非破壊糖度
測定方法。
5. The wavelengths of two monochromatic lights are 740 to 750n.
The method for measuring non-destructive sugar content of fruits and vegetables according to claim 1, which is selected from the range of m and the range of 760 to 780 nm.
【請求項6】 異なった2つの単色光の光源と、前記光
源からの単色光を青果物に照射するための照射手段と、
前記青果物に照射される前記単色光の照射光量を検出す
るための照射光量検出手段と、前記照射手段によって青
果物に照射された2つの単色光の青果物からの透過光量
を検出する透過光量検出手段と、前記照射光量検出手段
で検出した照射光量と前記透過光量検出手段で検出した
透過光量から各単色光に対応した2つ光透過率のT
を算出し、さらにその値から下記数3の数式から青
果物の糖度Cを算出する演算手段とを設けたことを特徴
とする青果物の非破壊糖度測定装置。 【数3】
6. Two different monochromatic light sources, and an irradiation means for irradiating fruits and vegetables with the monochromatic light from said light sources.
An irradiation light amount detecting means for detecting an irradiation light amount of the monochromatic light with which the fruits and vegetables are irradiated, and a transmitted light amount detecting means for detecting an amount of transmitted light from the fruits and vegetables of the two monochromatic lights with which the fruits and vegetables are irradiated by the irradiation means. , T a of two light transmittances corresponding to each monochromatic light from the irradiation light amount detected by the irradiation light amount detecting means and the transmitted light amount detected by the transmitted light amount detecting means,
Calculating a T b, further non-destructive sugar content measuring apparatus fruit or vegetable to be from that value, characterized in that a calculating means for calculating a sugar content C of fruits or vegetables from the following equation number 3. [Equation 3]
【請求項7】 異なった2つの単色光の光源と、前記光
源からの単色光を青果物に照射するための照射手段と、
前記青果物に照射される前記単色光の照射光量を検出す
るための照射光量検出手段と、前記照射手段によって青
果物に照射された2つの単色光の青果物からの透過光量
を検出する透過光量検出手段と、前記照射光量検出手段
で検出した照射光量と前記透過光量検出手段で検出した
透過光量から各単色光に対応した2つの吸光度Abs_
a,Abs_bを算出し、さらにその値から下記数4の数
式から青果物の糖度Cを算出する演算手段とを設けたこ
とを特徴とする青果物の非破壊糖度測定装置。 【数4】
7. Two different monochromatic light sources, and an irradiation means for irradiating fruits and vegetables with the monochromatic light from said light sources.
An irradiation light amount detecting means for detecting an irradiation light amount of the monochromatic light with which the fruits and vegetables are irradiated, and a transmitted light amount detecting means for detecting an amount of transmitted light from the fruits and vegetables of the two monochromatic lights with which the fruits and vegetables are irradiated by the irradiation means. , Two absorbances Abs_ corresponding to each monochromatic light based on the irradiation light amount detected by the irradiation light amount detecting means and the transmitted light amount detected by the transmitted light amount detecting means.
A non-destructive sugar content measuring device for fruits and vegetables, comprising: a, Abs_b; and an arithmetic means for calculating the sugar content C of the fruit and fruits from the mathematical formula of the following formula 4 from the values. [Equation 4]
【請求項8】 2つの単色光の波長が950〜1010
nmの範囲と1020〜1080nmの範囲の中からそ
れぞれ選ばれたものである請求項6又は7記載の青果物
の非破壊糖度測定装置。
8. The wavelengths of two monochromatic lights are 950 to 1010.
The non-destructive sugar content measuring device for fruits and vegetables according to claim 6 or 7, which is selected from the range of nm and the range of 1020 to 1080 nm.
【請求項9】 2つの単色光の波長が900〜930n
mの範囲と940〜960nmの範囲の中からそれぞれ
選ばれたものである請求項6又は7記載の青果物の非破
壊糖度測定装置。
9. The wavelength of two monochromatic lights is 900 to 930n.
The nondestructive sugar content measuring device for fruits and vegetables according to claim 6 or 7, which is selected from the range of m and the range of 940 to 960 nm.
【請求項10】 2つの単色光の波長が740〜750
nmの範囲と760〜780nmの範囲の中からそれぞ
れ選ばれたものである請求項6又は7記載の青果物の非
破壊糖度測定装置。
10. The wavelengths of two monochromatic lights are 740 to 750.
The non-destructive sugar content measuring device for fruits and vegetables according to claim 6 or 7, which is selected from the range of nm and the range of 760 to 780 nm.
【請求項11】 光源が2つの波長の独立したものが2
つあり、2つの光源の投光が切換式で一つの光源の投光
に選択でき、照射手段と照射光量検出手段と透過光量検
出手段が各単色光で作動できる共用のものであり、その
手段のデータ出力に動作した単色光の識別がなされるよ
うにした請求項6〜10いずれか記載の青果物の非破壊
糖度測定装置。
11. A light source having two independent wavelengths is two.
The two light sources are switchable and can be selected to project one light source, and the irradiating means, the irradiating light amount detecting means and the transmitted light amount detecting means can be operated by each monochromatic light. The non-destructive sugar content measuring device for fruits and vegetables according to any one of claims 6 to 10, wherein the monochromatic light that has been operated is output for the data output.
JP2001309190A 2001-10-04 2001-10-04 Method and instrument for nondestructively measuring sugar content of vegetable and fruit Pending JP2003114191A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001309190A JP2003114191A (en) 2001-10-04 2001-10-04 Method and instrument for nondestructively measuring sugar content of vegetable and fruit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001309190A JP2003114191A (en) 2001-10-04 2001-10-04 Method and instrument for nondestructively measuring sugar content of vegetable and fruit

Publications (1)

Publication Number Publication Date
JP2003114191A true JP2003114191A (en) 2003-04-18

Family

ID=19128382

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001309190A Pending JP2003114191A (en) 2001-10-04 2001-10-04 Method and instrument for nondestructively measuring sugar content of vegetable and fruit

Country Status (1)

Country Link
JP (1) JP2003114191A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005111583A1 (en) * 2004-05-17 2005-11-24 The New Industry Research Organization Method for nondestructively examining component of vegetable or the like by near-infrared spectroscopy and its device
JP2006162454A (en) * 2004-12-08 2006-06-22 Niigata Univ Nondestructive detection method for bloody egg, and detector therefor
US7127271B1 (en) 2001-10-18 2006-10-24 Iwao Fujisaki Communication device
WO2016031267A1 (en) * 2014-08-29 2016-03-03 国立大学法人東北大学 Optical concentration measuring method
JP2016099282A (en) * 2014-11-25 2016-05-30 シャープ株式会社 Measurement device, network system, measurement method and program
CN109856081A (en) * 2019-03-13 2019-06-07 西北农林科技大学 Portable kiwi fruit sugar fast non-destructive detection method and device
CN115586146A (en) * 2022-09-15 2023-01-10 西安理工大学 Nondestructive testing method for sugar content of fruits

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11253408A (en) * 1998-03-13 1999-09-21 Hitachi Ltd Skin health sensor
JP2000111473A (en) * 1998-10-02 2000-04-21 Nippon Electro Sensari Device Kk Inspection system for vegetables and fruits
JP2000146834A (en) * 1998-11-05 2000-05-26 Hitachi Ltd Moisture measuring method and moisture measuring device and manufacture of electric apparatus
JP2000356591A (en) * 1999-06-14 2000-12-26 Neechia:Kk Non-destructive sacchrimeter for vegetables and fruits
JP2001013070A (en) * 1999-06-29 2001-01-19 Astem:Kk Fruit component non-destructive measuring device
WO2001056472A1 (en) * 2000-02-03 2001-08-09 Hamamatsu Photonics K.K. Noninvasion biological optical measuring instrument, measured portion holding device, and method for manufacturing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11253408A (en) * 1998-03-13 1999-09-21 Hitachi Ltd Skin health sensor
JP2000111473A (en) * 1998-10-02 2000-04-21 Nippon Electro Sensari Device Kk Inspection system for vegetables and fruits
JP2000146834A (en) * 1998-11-05 2000-05-26 Hitachi Ltd Moisture measuring method and moisture measuring device and manufacture of electric apparatus
JP2000356591A (en) * 1999-06-14 2000-12-26 Neechia:Kk Non-destructive sacchrimeter for vegetables and fruits
JP2001013070A (en) * 1999-06-29 2001-01-19 Astem:Kk Fruit component non-destructive measuring device
WO2001056472A1 (en) * 2000-02-03 2001-08-09 Hamamatsu Photonics K.K. Noninvasion biological optical measuring instrument, measured portion holding device, and method for manufacturing the same

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7127271B1 (en) 2001-10-18 2006-10-24 Iwao Fujisaki Communication device
WO2005111583A1 (en) * 2004-05-17 2005-11-24 The New Industry Research Organization Method for nondestructively examining component of vegetable or the like by near-infrared spectroscopy and its device
JPWO2005111583A1 (en) * 2004-05-17 2008-03-27 財団法人新産業創造研究機構 Non-destructive inspection method for components such as vegetables by near infrared spectroscopy and the same device
JP4749330B2 (en) * 2004-05-17 2011-08-17 公益財団法人新産業創造研究機構 Non-destructive inspection method for components such as vegetables by near infrared spectroscopy and the same device
JP2006162454A (en) * 2004-12-08 2006-06-22 Niigata Univ Nondestructive detection method for bloody egg, and detector therefor
JP4591064B2 (en) * 2004-12-08 2010-12-01 国立大学法人 新潟大学 Nondestructive detection method for blood eggs
CN106796173A (en) * 2014-08-29 2017-05-31 国立大学法人东北大学 Optical density determination method
TWI661187B (en) * 2014-08-29 2019-06-01 國立大學法人東北大學 Optical concentration measurement method
KR20170046724A (en) 2014-08-29 2017-05-02 고쿠리츠다이가쿠호진 도호쿠다이가쿠 Optical concentration measuring method
KR20170047309A (en) 2014-08-29 2017-05-04 고쿠리츠다이가쿠호진 도호쿠다이가쿠 Concentration measurement method
WO2016031267A1 (en) * 2014-08-29 2016-03-03 国立大学法人東北大学 Optical concentration measuring method
JPWO2016031267A1 (en) * 2014-08-29 2017-06-08 国立大学法人東北大学 Optical density measurement method
US10241034B2 (en) 2014-08-29 2019-03-26 Tohoku University Concentration measuring method
KR20210083400A (en) 2014-08-29 2021-07-06 가부시키가이샤 후지킨 Concentration measurement method
CN106796173B (en) * 2014-08-29 2020-08-25 国立大学法人东北大学 Optical concentration measuring method
US10324028B2 (en) 2014-08-29 2019-06-18 Tohoku University Optical concentration measuring method
TWI671517B (en) * 2014-08-29 2019-09-11 國立大學法人東北大學 Concentration determination method
JP2016099282A (en) * 2014-11-25 2016-05-30 シャープ株式会社 Measurement device, network system, measurement method and program
CN109856081A (en) * 2019-03-13 2019-06-07 西北农林科技大学 Portable kiwi fruit sugar fast non-destructive detection method and device
CN115586146A (en) * 2022-09-15 2023-01-10 西安理工大学 Nondestructive testing method for sugar content of fruits
CN115586146B (en) * 2022-09-15 2024-05-28 西安理工大学 Nondestructive testing method for fruit sugar degree

Similar Documents

Publication Publication Date Title
US5751418A (en) Spectrometry and optical method and apparatus for obtaining a stable spectrum with use of an informationless spectrum contained therein
JP4104075B2 (en) Object calorie measuring method and object calorie measuring device
TWI324686B (en) Noninvasive measurement of glucose through the optical properties of tissue
Giovenzana et al. Testing of a simplified LED based vis/NIR system for rapid ripeness evaluation of white grape (Vitis vinifera L.) for Franciacorta wine
US5324945A (en) Method of nondestructively measuring sugar content of fruit by using near infrared transmittance spectrum
KR20060122941A (en) Method of measuring calorie of object and device of measuring calorie of object
US20080269580A1 (en) System for Non-Invasive Measurement of Bloold Glucose Concentration
US20060167347A1 (en) Composite spectral measurement method and its spectral detection instrument
US5757002A (en) Method of and apparatus for measuring lactic acid in organism
JP6213759B2 (en) Analysis equipment
JP3903147B2 (en) Non-destructive sugar content measuring device for fruits and vegetables
JP4714822B2 (en) Non-destructive measuring device for light scatterers
JP2003114191A (en) Method and instrument for nondestructively measuring sugar content of vegetable and fruit
JP4747371B2 (en) Food calorie measuring method and food calorie measuring device
JPH1189799A (en) Concentration measuring device for specified ingredient
JP2004313554A (en) Non-invasive measurement device for blood sugar level
CN110865046A (en) Method for rapidly detecting content of trans-fatty acid isomer of edible oil
KR102477678B1 (en) NDIR glucose detection in liquids
JP3462573B2 (en) Method and apparatus for measuring component concentration etc. of liquid sample
KR200404482Y1 (en) Portable Data Aquisition Apparatus for Internal Qualtity of Fruits
KR100883153B1 (en) Instrument for noninvasively measuring blood sugar level
JPH11248622A (en) Urinalysis device
JPH0763674A (en) Measuring method of sugar content of vegetables or fruits
JP3266422B2 (en) Fruit and vegetable quality judgment device
Smeesters et al. Optical spectroscopy enhancing acrylamide sensing in French fries production increasing food safety

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051124

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060317