JP2000356591A - Non-destructive sacchrimeter for vegetables and fruits - Google Patents

Non-destructive sacchrimeter for vegetables and fruits

Info

Publication number
JP2000356591A
JP2000356591A JP16616699A JP16616699A JP2000356591A JP 2000356591 A JP2000356591 A JP 2000356591A JP 16616699 A JP16616699 A JP 16616699A JP 16616699 A JP16616699 A JP 16616699A JP 2000356591 A JP2000356591 A JP 2000356591A
Authority
JP
Japan
Prior art keywords
sugar content
measured
destructive
fruits
vegetables
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16616699A
Other languages
Japanese (ja)
Inventor
Hiroshi Kaji
弘 鍛冶
Makoto Yoshida
吉田  誠
Mari Sakamoto
真理 坂本
Masami Koshimizu
正美 小清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEECHIA KK
Kanagawa Prefecture
Original Assignee
NEECHIA KK
Kanagawa Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEECHIA KK, Kanagawa Prefecture filed Critical NEECHIA KK
Priority to JP16616699A priority Critical patent/JP2000356591A/en
Publication of JP2000356591A publication Critical patent/JP2000356591A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/359Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using near infrared light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3563Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing solids; Preparation of samples therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/02Food
    • G01N33/025Fruits or vegetables

Abstract

PROBLEM TO BE SOLVED: To realize a small-sized and inexpensive non-destructive saccharimeter capable of measuring the sugar content of vegetables and fruits to be measured in a non-destructive manner by utilizing light of a near infrared region transmitted through vegetables and fruits to be measured. SOLUTION: A near infrared wavelength filter 5 and a photoelectric converter element 6 forming a pair are arranged within a plane made uniform in the illuminance distribution of transmitted light from vegetables and fruits to be measured receiving the irradiation with natural or artificial light by using a beam shaping diffuser 3 and a plurality of obtained electric signals are operationally processed to calculate the sugar content of vegetables and fruits to be measured.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明が属する技術分野】本発明は、畑で生育中の青果
物または収穫された青果物の糖度を非破壊的に測定・指
示する装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a device for non-destructively measuring and indicating the sugar content of fruits or vegetables growing in a field.

【0002】[0002]

【従来の技術】一般に青果物の糖度は、被測定青果物を
切断・搾汁し、得られた溶液の光の屈折率を測定する屈
折糖度計で測定されてきた。しかしこの方法では抜き取
り検査はできても、市場に出荷する商品青果物の全数検
査には使えない。
2. Description of the Related Art Generally, the sugar content of fruits and vegetables has been measured by a refractometer which cuts and squeezes the fruits and vegetables to be measured and measures the refractive index of light of the obtained solution. However, although this method can be used for sampling inspection, it cannot be used for 100% inspection of commercial fruits and vegetables shipped to the market.

【0003】近年、近赤外分光分析による非破壊糖度測
定法の研究が盛んに行われており、青果物の近赤外スペ
クトルの吸光度の2次微分値を取ると糖度情報が現れる
(特開平1-216265、特開平1-301147)などが報告されて
いる。この技術を応用した大型で高価な装置開発が進
み、選果場の青果物選別ラインへの組込みも行われてい
る。また、携帯型の装置(特開平9-89767)も開発され
ているが、近赤外分光分析特有の複雑さのため低価格化
は困難であり、皮の薄いものしか測定できない欠点もあ
る。
In recent years, research on nondestructive sugar content measurement by near-infrared spectroscopy has been actively conducted, and sugar content information appears when the second derivative of the absorbance of the near-infrared spectrum of fruits and vegetables is taken (Japanese Patent Application Laid-Open No. Hei 1 (1999)). -216265, JP-A-1-301147) and the like. The development of large and expensive equipment using this technology is progressing, and the fruit sorting facilities are also being incorporated into fruit and vegetable sorting lines. A portable device (Japanese Patent Application Laid-Open No. 9-89767) has also been developed, but it is difficult to reduce the price due to the complexity inherent in near-infrared spectroscopy, and has the disadvantage that only thin skins can be measured.

【0004】このような問題点を解決するため、本願発
明者は、太陽光を利用し、固定フィルタ方式を採用すれ
ば畑でも使えるハンディタイプの非破壊糖度計を屈折糖
度計程度の価格で実施できるであろうとの着想(特願平
6-284578、特願平9-119896)のもと、実用化のための研
究開発を進めてきたが、先願の方法では、所要の糖度測
定精度は得られないとの結論に達した。
In order to solve such problems, the inventor of the present application has implemented a handy type non-destructive saccharimeter which can be used in the field if sunlight is used and a fixed filter system is employed, at a price similar to that of a refraction saccharimeter. The idea of being able to do it (Japanese patent application
Research has been carried out for practical application based on 6-284578 and Japanese Patent Application No. Hei 9-191989, but it has been concluded that the required sugar content measurement accuracy cannot be obtained with the method of the prior application.

【0005】[0005]

【発明が解決しようとする課題】本発明は、上記先願の
問題点に鑑みてなされたもので、固定フィルタの選定方
法および吸光度の演算処理方法を最適化して、所要精度
の糖度測定を可能にすることを目的としている。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems of the prior application, and it is possible to optimize a method of selecting a fixed filter and a method of calculating an absorbance to measure a sugar content with a required accuracy. It is intended to be.

【0006】[0006]

【課題を解決するための手段】本発明による非破壊糖度
計は被測定青果物を透過してくる自然光あるいは人工光
を集光する受け皿と、前記集光光の面内照度分布を一様
にするためにビーム整形ディフューザおよびビーム整形
筒と面内照度分布が一様になった前記ビーム整形筒端面
に平面状に配置した複数個の近赤外光波長フィルタ・光
電変換素子対と前記複数個の近赤外光波長フィルタ・光
電変換素子対で変換された複数の電気信号に基づいて糖
度を算出する演算部と前記演算部で算出された糖度を表
示する表示部とを備えた構成としている。
According to the present invention, there is provided a non-destructive sugar content meter for collecting a natural light or an artificial light transmitted through a fruit or vegetable to be measured, and a uniform illuminance distribution of the collected light in a plane. The beam shaping diffuser and the beam shaping cylinder and a plurality of near-infrared light wavelength filter / photoelectric conversion element pairs arranged in a plane on the end face of the beam shaping cylinder where the in-plane illuminance distribution is uniform and the plurality of It is configured to include a calculation unit for calculating a sugar content based on a plurality of electric signals converted by the near-infrared light wavelength filter / photoelectric conversion element pair, and a display unit for displaying the sugar content calculated by the calculation unit.

【0007】前記近赤外光波長フィルタは糖・光路長・
水などと関係のある少なくとも3個以上を用いる。この
手段は散乱減衰に埋もれた微小な吸収減衰を抽出するた
めには必要不可欠である。
[0007] The near-infrared light wavelength filter comprises a sugar, an optical path length,
Use at least three or more water and the like. This means is indispensable for extracting minute absorption attenuation buried in scattering attenuation.

【0008】前記演算部では、被測定青果物測定時と基
準吸光体測定時の演算部入力電気信号比の対数演算を行
って各波長の吸光度を求め、予め屈折糖度との相関より
算出した係数を用いて糖度を算出する。
The arithmetic unit calculates the absorbance of each wavelength by performing a logarithmic calculation of the ratio of the electric signal input to the arithmetic unit at the time of measuring the fruit and vegetable to be measured and at the time of measuring the reference light absorber, and obtains a coefficient previously calculated from the correlation with the refraction sugar content. To calculate the sugar content.

【0009】[0009]

【発明の実施の形態】本発明の実施の形態について図に
より説明する。図1において、受け皿(2)に置いた基準
吸光体(10)または被測定青果物(11)に光源(1)より光を
照射し、ビーム整形ディフューザ(3)、ビーム整形筒(4)
において基準吸光体または被測定青果物を透過してきた
光を整形し、図2の配置例に示した平面配置の近赤外光
波長フィルタ(5)に均一な光を与える。近赤外光波長フ
ィルタを通った光は光電変換素子(6)で電気信号に変換
され、演算部(8)で糖度推定式により糖度を算出し、表
示部(9)に結果を表示する。
Embodiments of the present invention will be described with reference to the drawings. In FIG. 1, a light source (1) irradiates light to a reference light absorber (10) or a measured fruit and vegetable (11) placed on a saucer (2), and a beam shaping diffuser (3) and a beam shaping cylinder (4).
In step (2), the light transmitted through the reference light-absorbing body or the fruit or vegetable to be measured is shaped, and uniform light is given to the near-infrared light wavelength filter (5) having the planar arrangement shown in the arrangement example of FIG. The light that has passed through the near-infrared light wavelength filter is converted into an electric signal by the photoelectric conversion element (6), and the arithmetic unit (8) calculates the sugar content by a sugar content estimation formula, and displays the result on the display unit (9).

【0010】使用する近赤外光波長フィルタは800〜100
0nmの範囲から少なくとも3個以上の波長を用いる。糖
度推定式は予め測定対象青果物について、本発明による
吸光度測定値と破壊的に測定した屈折糖度値から多変量
解析により求めておいた例えば式1などにより算出す
る。 S=K+K1)+K22)+・・・+KnAn(λn) ( 式1) ここで、Sは被測定青果物の糖度、Kは定数項、An
(λn)は波長λnの吸光度、Knは波長λnに対する係数
[0010] The near-infrared light wavelength filter used is 800-100.
At least three or more wavelengths from the range of 0 nm are used. The sugar content estimation formula is calculated from the absorbance measurement value according to the present invention and the refractory sugar content value destructively measured by a multivariate analysis, for example, using the formula 1 or the like, for the fruits and vegetables to be measured. S = K 0 + K 1 A 1 (λ 1) + K 2 A 2 (λ 2) + ··· + KnAn (λn) ( Equation 1) where, S is the measured fruit or vegetable sugar content, K 0 is a constant term, An
(λn) is the absorbance at wavelength λn, Kn is the coefficient for wavelength λn

【0011】[0011]

【実施例】静岡産メロンの測定例を図3に示す。50Wの
ハロゲンランプ4個でメロンの赤道面を照射し、花痕部
からの透過光を受け皿で集光した。使用する近赤外光波
長フィルタを850nm、860nm、900nm、960nmの4個にした
場合、試料数10個で相関係数0.977、標準誤差0.524の検
量線評価値が得られた。
FIG. 3 shows a measurement example of melon produced in Shizuoka. The equatorial plane of the melon was irradiated with four 50 W halogen lamps, and the transmitted light from the flower traces was collected by a dish. When four near-infrared light wavelength filters of 850 nm, 860 nm, 900 nm, and 960 nm were used, a calibration curve evaluation value with a correlation coefficient of 0.977 and a standard error of 0.524 was obtained with 10 samples.

【0012】[0012]

【発明の効果】被測定青果物の透過光をビーム整形ディ
フューザ、近赤外光波長フィルタを通しただけで光電変
換素子により電気信号に変換するという簡易な構造のた
め信号対雑音比が大きく、被測定青果物の種類によって
は自然光による測定が可能であり、畑で使用できるハン
ディタイプの非破壊糖度計を安価に提供できる効果があ
る。
The signal-to-noise ratio is large due to the simple structure in which the transmitted light of the fruits and vegetables to be measured is converted into an electric signal by a photoelectric conversion element only by passing through a beam shaping diffuser and a near-infrared light wavelength filter. Some types of fruits and vegetables can be measured by natural light, which is advantageous in that a handy type non-destructive sugar content meter that can be used in a field can be provided at a low cost.

【0013】吸光度は被測定青果物の特性であって、照
明光源の強度・波長特性ならびに近赤外光波長フィルタ
・光電変換素子対の感度差には影響されないので、自然
光、自然光+人工光、人工光と光源を自由に選択でき、
また複数個の近赤外光波長フィルタ・光電変換素子対の
感度合わせの調整をする必要がないという効果がある。
The absorbance is a characteristic of the fruits and vegetables to be measured and is not affected by the intensity / wavelength characteristics of the illumination light source and the sensitivity difference between the near-infrared light wavelength filter / photoelectric conversion element pair. Light and light source can be freely selected,
Also, there is an effect that it is not necessary to adjust the sensitivity of a plurality of near-infrared light wavelength filters / photoelectric conversion element pairs.

【0014】近赤外光波長フィルタの半値巾を広くする
ことで、微小な試料状況の変化による吸収波長の変動に
影響されることなく、安定な測定結果が得られる効果が
ある。
By widening the half-width of the near-infrared light wavelength filter, there is an effect that a stable measurement result can be obtained without being affected by a change in the absorption wavelength due to a minute change in the state of the sample.

【0015】[0015]

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例を示す構成図である。FIG. 1 is a configuration diagram showing an embodiment of the present invention.

【図2】本発明の実施例における近赤外光波長フィルタ
の配置例を示す図である。
FIG. 2 is a diagram illustrating an arrangement example of a near-infrared light wavelength filter according to an embodiment of the present invention.

【図3】本発明による糖度推定値と屈折糖度値の測定結
果例を示す図である
FIG. 3 is a diagram showing an example of measurement results of an estimated sugar content and a refracted sugar content according to the present invention.

【符号の説明】[Explanation of symbols]

1 光源 2 受け皿 3 ビーム整形ディフューザ 4 ビーム整形筒 5 近赤外光波長フィルタ 6 光電変換素子 7 演算部 8 表示部 9 測定器ケース 10 基準吸光体 11 被測定青果物 REFERENCE SIGNS LIST 1 light source 2 saucer 3 beam shaping diffuser 4 beam shaping tube 5 near-infrared light wavelength filter 6 photoelectric conversion element 7 operation unit 8 display unit 9 measuring instrument case 10 reference absorber 11 fruit and vegetable to be measured

───────────────────────────────────────────────────── フロントページの続き (72)発明者 坂本 真理 神奈川県相模原市相南1−24−11−506 (72)発明者 小清水 正美 神奈川県横浜市栄区本郷台5−5−26 Fターム(参考) 2G059 AA01 BB11 CC20 EE01 EE11 GG10 HH01 HH06 JJ02 KK03 LL03 MM05 MM12 PP04  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Mari Sakamoto 1-24-11-506 Sainami, Sagamihara City, Kanagawa Prefecture (72) Inventor Masami Koshimizu 5-5-26 Hongodai, Sakae-ku, Yokohama-shi, Kanagawa Prefecture F-term (reference) 2G059 AA01 BB11 CC20 EE01 EE11 GG10 HH01 HH06 JJ02 KK03 LL03 MM05 MM12 PP04

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 自然光あるいは人工光の照射を受けてい
る被測定青果物を透過してくる光を利用して被測定青果
物の糖度を測定する非破壊糖度計において、集光した被
測定青果物透過光の面内照度分布を一様にするためのビ
ーム整形ディフューザおよびビーム整形筒と、面内照度
分布が一様になった前記ビーム整形筒端面に平面状に配
置した複数個の近赤外光波長フィルタ・光電変換素子対
と、前記複数個の近赤外光波長フィルタ・光電変換素子
対で変換された複数個の電気信号に基づいて糖度を算出
する演算部と、前記演算部で算出された糖度を表示する
表示部とを備えたことを特徴とする非破壊糖度計。
1. A non-destructive refractometer for measuring the sugar content of a measured fruit or vegetable using light transmitted through the fruit or vegetable being irradiated with natural light or artificial light. A beam shaping diffuser and a beam shaping cylinder for uniformizing the in-plane illuminance distribution of the plurality of near-infrared light wavelengths arranged in a plane on an end face of the beam shaping cylinder having the uniform in-plane illuminance distribution A filter / photoelectric conversion element pair, a calculation unit for calculating the sugar content based on the plurality of electric signals converted by the plurality of near-infrared light wavelength filters / photoelectric conversion element pairs, and a calculation unit calculated by the calculation unit A non-destructive sugar content meter comprising a display unit for displaying the sugar content.
【請求項2】 前記複数個の近赤外光波長フィルタ・光
電変換素子対の近赤外光波長フィルタを、糖・光路長・
水などと相関のある少なくとも3つ以上の波長に選定し
たことを特徴とする請求項1記載の非破壊糖度計。
2. The method according to claim 1, wherein the near-infrared light wavelength filters of the plurality of near-infrared light wavelength filters / photoelectric conversion element pairs are formed of sugar, optical path length,
2. The non-destructive sugar content meter according to claim 1, wherein at least three wavelengths having a correlation with water or the like are selected.
【請求項3】 前記演算部を被測定青果物測定時の演算
部入力電気信号と、別に用意した基準吸光体測定時の演
算部入力電気信号とを用いて吸光度値を算出する吸光度
演算部と、算出された前期吸光度値を用いて被測定青果
物の糖度を算出する糖度演算部とで構成することを特徴
とする請求1および2記載の非破壊糖度計。
3. An absorbance calculating unit for calculating an absorbance value using the calculating unit input electric signal at the time of measuring the fruits and vegetables to be measured and the calculating unit input electric signal at the time of measuring a separately prepared reference light absorber. 3. The non-destructive sugar content meter according to claim 1, further comprising a sugar content calculation unit for calculating the sugar content of the fruit and vegetable to be measured using the calculated light absorbance value.
JP16616699A 1999-06-14 1999-06-14 Non-destructive sacchrimeter for vegetables and fruits Pending JP2000356591A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16616699A JP2000356591A (en) 1999-06-14 1999-06-14 Non-destructive sacchrimeter for vegetables and fruits

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16616699A JP2000356591A (en) 1999-06-14 1999-06-14 Non-destructive sacchrimeter for vegetables and fruits

Publications (1)

Publication Number Publication Date
JP2000356591A true JP2000356591A (en) 2000-12-26

Family

ID=15826307

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16616699A Pending JP2000356591A (en) 1999-06-14 1999-06-14 Non-destructive sacchrimeter for vegetables and fruits

Country Status (1)

Country Link
JP (1) JP2000356591A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003114191A (en) * 2001-10-04 2003-04-18 Nagasaki Prefecture Method and instrument for nondestructively measuring sugar content of vegetable and fruit
US9279720B2 (en) 2010-03-24 2016-03-08 Nec Solution Innovators, Ltd. Analysis device
US9909978B2 (en) 2016-07-05 2018-03-06 Sharp Kabushiki Kaisha Maturity determination device and maturity determination method
US10304179B2 (en) 2016-07-05 2019-05-28 Sharp Kabushiki Kaisha Maturity determination device and maturity determination method
US10420282B2 (en) 2016-08-10 2019-09-24 Sharp Kabushiki Kaisha Fruit or vegetable product harvesting apparatus and fruit or vegetable product harvesting method
CN113655038A (en) * 2021-08-24 2021-11-16 南昌航空大学 Method for nondestructive testing of sugar content of fruits by using smart phone

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003114191A (en) * 2001-10-04 2003-04-18 Nagasaki Prefecture Method and instrument for nondestructively measuring sugar content of vegetable and fruit
US9279720B2 (en) 2010-03-24 2016-03-08 Nec Solution Innovators, Ltd. Analysis device
US9909978B2 (en) 2016-07-05 2018-03-06 Sharp Kabushiki Kaisha Maturity determination device and maturity determination method
US10304179B2 (en) 2016-07-05 2019-05-28 Sharp Kabushiki Kaisha Maturity determination device and maturity determination method
US10420282B2 (en) 2016-08-10 2019-09-24 Sharp Kabushiki Kaisha Fruit or vegetable product harvesting apparatus and fruit or vegetable product harvesting method
CN113655038A (en) * 2021-08-24 2021-11-16 南昌航空大学 Method for nondestructive testing of sugar content of fruits by using smart phone
CN113655038B (en) * 2021-08-24 2023-09-22 南昌航空大学 Method for nondestructive detection of fruit sugar degree by using smart phone

Similar Documents

Publication Publication Date Title
Huck Advances of infrared spectroscopy in natural product research
CN101922969A (en) Diffuse reflection spectrum analyzer of ultraviolet, visible and near-infrared on-line detection
JP3686422B2 (en) Measurement of tissue analyte by infrared rays
RU2265827C2 (en) Methods and device of double-ray ir-transform spectroscopy for detecting tested matter in samples with low penetrability
US7920252B2 (en) Method and apparatus for spectrophotometric characterization of turbid materials
Choi et al. Portable, non-destructive tester integrating VIS/NIR reflectance spectroscopy for the detection of sugar content in Asian pears
CN101403689A (en) Nondestructive detection method for physiological index of plant leaf
CN101923047A (en) Spectrum analyzer for near-infrared-on-line detecting diffuse reflection
CN105548070B (en) A kind of apple soluble solid near infrared detection position compensation method and system
JPH04297854A (en) Correction method of photoabsorption spectrum and spectroscopic measuring apparatus of photodiffusive substance using the same
Zhang et al. Use of signal to noise ratio and area change rate of spectra to evaluate the Visible/NIR spectral system for fruit internal quality detection
Liu et al. Measurement of internal quality in chicken eggs using visible transmittance spectroscopy technology
CN202886274U (en) Micro electro mechanical system technology-based agricultural product quality near infrared spectrum analyzer
Wang et al. General model of multi-quality detection for apple from different origins by Vis/NIR transmittance spectroscopy
CN101371130B (en) Optical analyzer
JP2000356591A (en) Non-destructive sacchrimeter for vegetables and fruits
CN101949825A (en) Leaf water near infrared non-destructive testing device and method in light open environment
Ahmed et al. Separation of fluorescence and elastic scattering from algae in seawater using polarization discrimination
CN109946246A (en) A kind of detection method and device of apple soluble solid
Osborne et al. Using near-infrared (NIR) light to estimate the soluble solids and dry matter content of kiwifruit
JP3903147B2 (en) Non-destructive sugar content measuring device for fruits and vegetables
JPH1189799A (en) Concentration measuring device for specified ingredient
Liu et al. Optical system for measurement of internal pear quality using near-infrared spectroscopy
CN103398966A (en) Method for detecting TMC concentration in organic solution by using spectrometer
CN202126392U (en) Spectrum analyzer for online inspection of diffuse reflection of ultraviolet, visible light and near infrared

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040706