JP2014240786A - Component concentration analyzer using light-emitting diode, and measuring apparatus using light-emitting diode - Google Patents

Component concentration analyzer using light-emitting diode, and measuring apparatus using light-emitting diode Download PDF

Info

Publication number
JP2014240786A
JP2014240786A JP2013123267A JP2013123267A JP2014240786A JP 2014240786 A JP2014240786 A JP 2014240786A JP 2013123267 A JP2013123267 A JP 2013123267A JP 2013123267 A JP2013123267 A JP 2013123267A JP 2014240786 A JP2014240786 A JP 2014240786A
Authority
JP
Japan
Prior art keywords
light
unit
emitting diode
light emitting
component concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013123267A
Other languages
Japanese (ja)
Other versions
JP6230017B2 (en
Inventor
淳司 神成
Junji Kaminari
淳司 神成
貴代 小川
Takayo Ogawa
貴代 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2013123267A priority Critical patent/JP6230017B2/en
Publication of JP2014240786A publication Critical patent/JP2014240786A/en
Application granted granted Critical
Publication of JP6230017B2 publication Critical patent/JP6230017B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a component concentration analyzer using a light-emitting diode that can obtain accurate analytical data without being influenced by changes in emission intensity and in peak wavelength.SOLUTION: The component concentration analyzer using a light-emitting diode includes: a storage unit 17 that stores, for each measurement by light emission of a plurality of light-emitting diodes 11, an intensity of first scattered light detected by a first detection unit 16a, an intensity of second scattered light detected by a second detection unit 16b, and a working temperature of the light-emitting diodes 11 detected by an LED temperature detection unit 13; and a component concentration calculation unit 36 that when relative reflectance is calculated from the intensity of the first scattered light and the intensity of the second scattered light, corrects a peak wavelength from a prestored peak wavelength of the light-emitting diodes 11, working temperature data of the light-emitting diodes 11 measured by the LED temperature detection unit 13, and relational data between the working temperature data and the peak wavelength, and that calculates component concentration using an absorption wavelength based on the corrected peak wavelength.

Description

本発明は、例えば果実の糖度や酸度の濃度を分析できる発光ダイオードを用いた成分濃度分析装置に関する。   The present invention relates to a component concentration analyzer using a light emitting diode capable of analyzing the sugar concentration and acidity concentration of fruits, for example.

果実を対象とした成分濃度分析装置としては、例えば特許文献1から特許文献4に示す装置が提案されている。
特許文献1は、透過力の比較的強い短波長領域の分光された近赤外線を果実に照射し、透過光量から吸光度を得て、その吸光度に対して果実の大きさによる補正を行った値から甘味に関連した指標を求める果実成分非破壊測定器を提案している(例えば段落番号(0015))。
特許文献1では、レーザダイオード(LD)は、使用環境の温度の変化により、ある電圧に対して流れる電流、又は、ある一定の出力に対して流れる電流が変化することがある、ということを問題提起し、動作電流が過剰に流れ込むとLDの素子が破壊されるおそれがあるので、異常な温度下では、LDを発振させないようにすることを提案している。また、被測定果実の測定部の温度の違いによって、誤差が生じるので、LDの周囲温度を検出することで、検量線の精度を高めることができるとしている(段落番号(0040))。
For example, devices disclosed in Patent Document 1 to Patent Document 4 have been proposed as component concentration analyzers for fruits.
Patent Document 1 irradiates fruits with near-infrared rays that are dispersed in a short wavelength region having a relatively strong transmission power, obtains absorbance from the amount of transmitted light, and calculates a value obtained by correcting the absorbance according to the size of the fruit. A fruit component nondestructive measuring device for obtaining an index related to sweetness has been proposed (for example, paragraph number (0015)).
In Patent Document 1, a problem with a laser diode (LD) is that the current flowing for a certain voltage or the current flowing for a certain output may change due to a change in the temperature of the usage environment. It has been proposed that the element of the LD may be destroyed if the operating current flows excessively, so that it is proposed not to oscillate the LD under an abnormal temperature. In addition, an error occurs due to the difference in temperature of the measurement part of the fruit to be measured, so that the accuracy of the calibration curve can be improved by detecting the ambient temperature of the LD (paragraph number (0040)).

特許文献2は、近赤外領域の波長の光を用いた青果物の糖度測定方法・装置において、桃、リンゴなど皮の薄い青果物のみならず皮の厚いみかん、メロン等の青果物の糖濃度が非破壊で測定でき、しかも従来の糖度測定装置のように回折格子等から構成される複雑な分光器を必要としない青果物非破壊の糖度測定方法及び装置を提案している(段落番号(0017))。
特許文献2では、異なった波長の2つの単色光を青果物に照射して各単色光の光透過率Ta,Tbを計測できる計測装置を備え、複数の実測例の光透過率Ta,Tbの値とその例の実測の糖度Cの値とから係数k0,k1を決定する数式を提案し、決定された係数k0,k1と計測される2つの単色光の光透過率Ta,Tbのデータを用いて糖度を求めている。
Patent Document 2 discloses a method and apparatus for measuring the sugar content of fruits and vegetables using light having wavelengths in the near-infrared region. In addition to thin fruits and vegetables such as peaches and apples, sugar concentrations in fruits and vegetables such as mandarin oranges and melons are not high. Proposed non-destructive sugar content measurement method and apparatus for fruits and vegetables that can be measured by destruction and do not require a complex spectroscope composed of a diffraction grating or the like as in the conventional sugar content measurement apparatus (paragraph number (0017)). .
Patent Document 2 includes a measuring device capable of measuring the light transmittances Ta and Tb of each monochromatic light by irradiating the fruits and vegetables with two monochromatic lights having different wavelengths, and values of the light transmittances Ta and Tb of a plurality of actual measurement examples. And a formula for determining the coefficients k0 and k1 from the measured sugar content C value of the example, and using the determined coefficients k0 and k1 and data of the light transmittances Ta and Tb of two monochromatic lights to be measured. To determine the sugar content.

特許文献3は、青果物の測定部位に複数の異なる波長からなる光を照射する照射手段を設け、この照射手段の光が青果物の測定部位を透過した透過光を異なる距離をおいた2箇所で受光してその透過光量を検出する透過光量検出手段を設け、透過光量検出手段で検出した2箇所での波長の透過光量の比である相対透過度を各波長毎に算出し、各波長の相対透過度を用いて青果物の糖度を算定する演算手段を設けた青果物の非破壊糖度測定装置を提案している(段落番号(0026))。
特許文献3では、照射手段で異なる複数の単色光を青果物に照射し、青果物内部で散乱・吸収を受けて果外に放射される透過光を単色光の照射位置から異なる距離をおいた2箇所で検出している。そして検出した2つの透過光からその比である相対透過度を計算し、この相対透過度を用いて青果物の糖度を算出する。検出された透過光には青果物内部の実の糖度情報が含まれており、ミカンやメロンのように皮の厚い青果物の糖度測定が可能となるとしている(段落番号(0027))。
In Patent Document 3, an irradiation unit that irradiates light having a plurality of different wavelengths to a measurement site of fruits and vegetables is received, and light transmitted through the measurement site of fruits and vegetables is received at two locations at different distances. Then, a transmitted light amount detecting means for detecting the transmitted light amount is provided, and a relative transmittance, which is a ratio of transmitted light amounts of wavelengths at two locations detected by the transmitted light amount detecting means, is calculated for each wavelength, and the relative transmission of each wavelength is calculated. A non-destructive sugar content measuring apparatus for fruits and vegetables has been proposed (paragraph number (0026)) provided with a calculation means for calculating the sugar content of fruits and vegetables using the degree (paragraph number (0026)).
In Patent Document 3, two or more different monochromatic lights are irradiated to the fruits and vegetables by the irradiation means, and the transmitted light that is scattered and absorbed inside the fruits and radiated to the outside is placed at two different distances from the irradiation position of the monochromatic light. It is detected by. And the relative transmittance which is the ratio is calculated from the two transmitted light detected, and the sugar content of the fruits and vegetables is calculated using this relative transmittance. The detected transmitted light includes the sugar content information of the fruits inside the fruits and vegetables, and the sugar content of thick fruits and vegetables such as mandarin oranges and melons can be measured (paragraph number (0027)).

特許文献4は、散乱係数の分布が空間的に不均一な光散乱体を被検体としても、良好な測定精度を得ることができる光散乱体の非破壊測定装置を提案している(段落番号(0004))。
特許文献4では、光照射部から、被検体の1箇所の照射領域に照射された光の透過光を、少なくとも2つの受光部で受光して、透過光検出部で各受光部の光強度を検出する。そして、各受光部の光強度から、同心円径の異なる2つの受光部の光強度の比である相対透過率を波長ごとに算出して、それらに基づいて被検体内部の性状特性値を算定している(段落番号(0005))。
Patent Document 4 proposes a non-destructive measurement device for a light scatterer that can obtain good measurement accuracy even when a light scatterer with a spatially non-uniform distribution of scattering coefficients is used as an object (paragraph number). (0004)).
In Patent Document 4, transmitted light of light emitted from a light irradiation unit to one irradiation region of a subject is received by at least two light receiving units, and the light intensity of each light receiving unit is measured by a transmitted light detection unit. To detect. Then, the relative transmittance, which is the ratio of the light intensities of two light receiving parts with different concentric diameters, is calculated for each wavelength from the light intensity of each light receiving part, and the property characteristic value inside the subject is calculated based on them. (Paragraph number (0005)).

果実以外を対象とした成分濃度分析装置としては、例えば特許文献5から特許文献8に示す装置が提案されている。
特許文献5は、人体の血糖値を非侵襲的に誤差なく測定できる小型で携帯容易な血糖値の非侵襲測定装置を提案している(段落番号(0011))。
特許文献5では、光源から波長の異なる複数の単色光を発生し、照射手段により人体の測定部位(例えば指等)にその単色光を照射する。照射された単色光は人体内部で散乱して吸収し、人体外に放射されて透過光となる。この透過光を透過光量検出手段で単色光の照射位置からそれぞれ異なる一定の直線距離で検出する。検出した2つの透過光からその比である相対透過度を波長毎に算出し、同相対透過度から人体の血糖値を算定する。検出された透過光には人体内部の血糖値情報が含まれており、非侵襲による人体の血糖値測定が可能となる(段落番号(0013))。
As component concentration analyzers other than fruits, for example, devices shown in Patent Literature 5 to Patent Literature 8 have been proposed.
Patent Document 5 proposes a small and easy-to-carry blood glucose level non-invasive measurement device that can measure blood glucose level of a human body non-invasively without error (paragraph number (0011)).
In Patent Document 5, a plurality of monochromatic lights having different wavelengths are generated from a light source, and the monochromatic light is irradiated onto a measurement site (for example, a finger) of a human body by an irradiation unit. The irradiated monochromatic light is scattered and absorbed inside the human body, and is emitted outside the human body to become transmitted light. This transmitted light is detected by the transmitted light amount detection means at a fixed linear distance that is different from the irradiation position of the monochromatic light. The relative transmittance, which is the ratio of the detected two transmitted lights, is calculated for each wavelength, and the blood glucose level of the human body is calculated from the relative transmittance. The detected transmitted light includes blood glucose level information inside the human body, and the blood glucose level of the human body can be measured non-invasively (paragraph number (0013)).

特許文献6は、測定部材の水分率を高精度で簡単に測定することができる小型の測定装置を提案している(段落番号(0005))。
特許文献6では、波長が異なる2種の単色光を測定部材の表面に照射し、この測定部材表面からの反射光を光量測定部に導いて反射光量を測定し、各波長における反射吸光度(Aλ)を求め、ある波長の反射吸光度と波長1350nm以下の反射吸光度との2波長間の反射吸光度差(ΔAλ)あるいは2波長間の反射吸光度比(Aλ’)を演算し、更に、予め記憶しておいた反射吸光度差あるいは反射吸光度比と水分率との関係から、測定部材の水分率を算出する(段落番号(0009))。
Patent Document 6 proposes a small measuring apparatus that can easily measure the moisture content of a measuring member with high accuracy (paragraph number (0005)).
In Patent Document 6, two types of monochromatic light having different wavelengths are irradiated on the surface of the measurement member, the reflected light from the surface of the measurement member is guided to the light amount measurement unit, the amount of reflected light is measured, and the reflected absorbance (Aλ) at each wavelength is measured. ) To calculate the difference in reflection absorbance between two wavelengths (ΔAλ) or the ratio of reflection absorbance between two wavelengths (Aλ ′) between the reflection absorbance at a certain wavelength and the reflection absorbance at a wavelength of 1350 nm or less. The moisture content of the measurement member is calculated from the relationship between the reflected absorbance difference or reflected absorbance ratio and the moisture content (paragraph number (0009)).

特許文献7は、生体の測定部位の相違や測定条件の相違にかかわらず、物質の内部情報を良好に再現できる、光散乱を用いた物質の内部情報測定装置を提案している(発明が解決しようとする課題の欄)。
特許文献7では、物質の表面の受光点から見てほぼ同方向に配置され、受光点からの実質的な光拡散光路長が相違する複数の照射点において光を順次照射し、受光点において角照射光を受光し、角照射に対応した受光データの相違に基づいて所定の演算を行い、物質の内部情報を測定する(課題を解決するための手段の欄)。
Patent Document 7 proposes a substance internal information measuring device using light scattering, which can reproduce internal information of a substance satisfactorily regardless of differences in measurement sites and measurement conditions of a living body (the invention is solved). Column of assignment to be attempted).
In Patent Document 7, light is sequentially irradiated at a plurality of irradiation points that are arranged in substantially the same direction as viewed from the light receiving point on the surface of the substance and have substantially different light diffusion optical path lengths from the light receiving point. The irradiation light is received, a predetermined calculation is performed based on the difference in the received light data corresponding to the angle irradiation, and the internal information of the substance is measured (column of means for solving the problem).

特許文献8は、光散乱体である生体を被検体とし、その性状測定値から被検体の組成を測定する生体組成の非侵襲測定装置として好適となる光散乱体の非破壊測定装置を提案している(段落番号(0001))。
特許文献8では、光照射部から、被検体の1箇所の照射領域に照射された光の、透過光を少なくとも2つの受光部で受光して、光検出部で各受光部の光強度を検出し、演算処理部により、各受光部の光強度から、同心円径の異なる2つの受光部の光強度の比である相対反射率を波長ごとに算出して、それらに基づいて被検体内部の性状特性値を算定する(段落番号(0006))。
Patent Document 8 proposes a non-destructive measurement device for a light scatterer that is suitable as a non-invasive measurement device for a biological composition that uses a living body that is a light scatterer as a subject and measures the composition of the subject from its property measurement values. (Paragraph number (0001)).
In Patent Document 8, at least two light-receiving units receive transmitted light of light irradiated to one irradiation region of a subject from a light irradiation unit, and the light detection unit detects the light intensity of each light-receiving unit. Then, the relative reflectance that is the ratio of the light intensities of two light receiving parts having different concentric circle diameters is calculated for each wavelength from the light intensity of each light receiving part by the arithmetic processing part, and the properties inside the subject are calculated based on them. The characteristic value is calculated (paragraph number (0006)).

一方、発光ダイオード(LED)では、製造工程の不均一性によって波長のばらつきがあることやLEDモジュールの温度変化によって波長が変化することが知られている。
特許文献9は、LEDの所望のピーク波長を精密に作成し、保持することができるLEDを用いた光発生装置を提案している(段落番号(0009))。
また、特許文献9は、LEDモジュールの温度変化に応じて、LED波長が変化する場合、これを補正して、一定の波長を保持する光発生装置を提案している(段落番号(0010))。
特許文献9では、演算処理部が、温度感知部によって検知した温度を参照して、現在、発光中のLEDの補正電流値を算出し、この補正電流値を現在の発光中のLEDの駆動電流値と合算して、補正駆動電流値を決定する。この補正電流値は、検出された温度とメモリに入力されたLEDの駆動電流値を用いて、実験値又は計算式によって計算される(段落番号(0037))。
On the other hand, in light emitting diodes (LEDs), it is known that the wavelength varies due to non-uniformity in the manufacturing process, and the wavelength changes due to a temperature change of the LED module.
Patent Document 9 proposes a light generating device using an LED that can precisely create and maintain a desired peak wavelength of the LED (paragraph number (0009)).
Further, Patent Document 9 proposes a light generation device that corrects the LED wavelength when the LED module changes in accordance with the temperature change of the LED module and maintains a constant wavelength (paragraph number (0010)). .
In Patent Document 9, the arithmetic processing unit refers to the temperature detected by the temperature sensing unit, calculates a correction current value of the LED currently emitting light, and uses this correction current value as the drive current of the LED currently emitting light. The corrected drive current value is determined by adding the value. This correction current value is calculated by an experimental value or a calculation formula using the detected temperature and the LED drive current value input to the memory (paragraph number (0037)).

特許文献10は、同じ仕様のLEDであっても個体間の温度特性の差が存在するため、同じ温度特性を示すとは限らないことを課題とし、検体から発せられる蛍光強度の測定値を光源の発光強度の温度特性による影響を除去したものに補正できる装置を提案している(段落番号(0007)(0008))。
特許文献10では、温度変化による光源の発光強度の変化を調べるために、測定用の励起光を発する測定光源とは別に参照用の励起光を発する参照光源を使用し、これらの光源からの励起光を照射したときの蛍光の強度を測定するために基準物質を使用する(段落番号(0009))。
Patent Document 10 has a problem that even if the LEDs have the same specifications, there is a difference in temperature characteristics between individuals, and thus the same temperature characteristics are not necessarily exhibited, and a measured value of fluorescence intensity emitted from a specimen is used as a light source. Has proposed an apparatus that can correct the emission intensity of the light emission intensity by removing the influence of the temperature characteristic (paragraph numbers (0007) and (0008)).
In Patent Document 10, a reference light source that emits reference excitation light is used in addition to a measurement light source that emits excitation light for measurement in order to examine a change in emission intensity of the light source due to a temperature change, and excitation from these light sources is performed. A reference substance is used to measure the intensity of fluorescence when irradiated with light (paragraph number (0009)).

特許文献11は、LED素子の周囲温度による影響を考慮して、LED素子の光量の経年変化による影響を補正する係数を取得する光量制御装置を提案している(段落番号(0010))。
特許文献11では、LED素子に電流を与える通電手段と、LED素子の光量を検出する光量検出手段と、LED素子の周囲温度を検出する温度検出手段と、LED素子の光量が目標光量値となるように予め設定された第1の電流量と、第1の電流量が設定された際の当該LED素子の周囲温度とは異なる温度において当該LED素子の光量が目標光量値となるように第1の電流量を補正する温度補正係数とが記憶された記憶手段とを備え、光量検出手段により検出されたLED素子の光量が目標光量値となった場合に、通電手段によりLED素子に与えられていた第2の電流量と、当該第2の電流量がLED素子に与えられていた際の当該LED素子の周囲温度における温度補正係数とから、第1の電流量が設定された際のLED素子の周囲温度における、LED素子についての経年変化による光量への影響を補正するための経年補正係数を算出する(段落番号(0011))。
Patent Document 11 proposes a light quantity control device that acquires a coefficient for correcting the influence of the light quantity of the LED element over time in consideration of the influence of the ambient temperature of the LED element (paragraph number (0010)).
In Patent Document 11, an energization unit that applies current to an LED element, a light amount detection unit that detects a light amount of the LED element, a temperature detection unit that detects an ambient temperature of the LED element, and a light amount of the LED element becomes a target light amount value. The first current amount set in advance as described above and the first light amount so that the light amount of the LED element becomes the target light amount value at a temperature different from the ambient temperature of the LED element when the first current amount is set. Storage means for storing a temperature correction coefficient for correcting the current amount of the LED element, and when the light quantity of the LED element detected by the light quantity detection means reaches the target light quantity value, it is given to the LED element by the energization means. The LED element when the first current amount is set from the second current amount and the temperature correction coefficient at the ambient temperature of the LED element when the second current amount is applied to the LED element. No lap At a temperature, it calculates the aging correction factor for correcting the influence of the light intensity due to aging of the LED elements (paragraph numbers (0011)).

特開2002−116141号公報JP 2002-116141 A 特開2003−114191号公報JP 2003-114191 A 特開2004−317381号公報JP 2004-317381 A 特開2007−271575号公報JP 2007-271575 A 特開2004−313554号公報JP 2004-31554 A 特開2000−146834号公報JP 2000-146834 A 特開平02−163634号公報Japanese Patent Laid-Open No. 02-163634 特開2009−085712号公報JP 2009-085712 A 特開2012−059706号公報JP 2012-059706 A 特開2012−013450号公報JP 2012-013450 A 特開2012−238721号公報JP 2012-238721 A

成分濃度分析装置として、複数の波長を用いることは、特許文献1から特許文献8にも開示されているように従来から知られており、更には、光源としてLEDを用いることについても、特許文献1に開示されている。
しかし、特許文献9から特許文献11でも開示されている通り、光源としてLEDを用いる場合には、LEDの使用温度によって、発光強度及びピーク波長が変化する。また、特許文献10でも開示されている通り、同じ仕様のLEDであっても個体間の温度特性の差が存在する。
従って、LEDを用いて、果実を対象とした成分濃度や人体の血糖値など物質成分の分析を行うには、発光強度及びピーク波長の変化を考慮することが重要である。
また、LEDの個体間の温度特性の差を考慮する必要もある。
しかし、特許文献1から特許文献8では、光源としてLEDを用いる場合の課題に対して十分な解決手段を開示していない。
ところで、特許文献9で提案する電流値を補正する方法は、連続的に発光させるLEDには有効でも、極めて短い時間の照射によって散乱光を得る成分濃度分析装置では適用することができない。
また、特許文献10で提案する、測定光源とは別に参照用の励起光を発する参照光源を使用し、これらの光源からの励起光を照射したときの蛍光の強度を測定するために基準物質を使用する方法、についても、極めて短い時間の照射によって散乱光を得る成分濃度分析装置では適用が難しく、また装置が複雑化する。
また、特許文献11で提案する方法も、極めて短い時間の照射によって散乱光を得る成分濃度分析装置では適用することができない。
The use of a plurality of wavelengths as a component concentration analyzer is conventionally known as disclosed in Patent Document 1 to Patent Document 8, and further, the use of an LED as a light source is also disclosed in Patent Document. 1 is disclosed.
However, as disclosed in Patent Document 9 to Patent Document 11, when an LED is used as the light source, the emission intensity and the peak wavelength change depending on the operating temperature of the LED. Further, as disclosed in Patent Document 10, there is a difference in temperature characteristics between individuals even if the LEDs have the same specifications.
Therefore, it is important to consider changes in emission intensity and peak wavelength in order to analyze substance components such as component concentrations for fruits and blood sugar levels of the human body using LEDs.
It is also necessary to consider the difference in temperature characteristics between the individual LEDs.
However, Patent Document 1 to Patent Document 8 do not disclose sufficient means for solving the problem in the case of using an LED as a light source.
By the way, the method of correcting the current value proposed in Patent Document 9 is effective for an LED that emits light continuously, but cannot be applied to a component concentration analyzer that obtains scattered light by irradiation for a very short time.
In addition to the measurement light source proposed in Patent Document 10, a reference light source that emits reference excitation light is used, and a reference substance is used to measure the intensity of fluorescence when the excitation light from these light sources is irradiated. The method to be used is difficult to apply in a component concentration analyzer that obtains scattered light by irradiation for a very short time, and the apparatus becomes complicated.
Also, the method proposed in Patent Document 11 cannot be applied to a component concentration analyzer that obtains scattered light by irradiation for an extremely short time.

そこで本発明は、発光強度及びピーク波長の変化を受けずに、正確な分析データを得ることができる発光ダイオードを用いた成分濃度分析装置を提供することを目的とする。   Therefore, an object of the present invention is to provide a component concentration analysis apparatus using a light emitting diode that can obtain accurate analysis data without undergoing changes in emission intensity and peak wavelength.

請求項1記載の本発明の発光ダイオードを用いた成分濃度分析装置は、波長の異なる複数の発光ダイオードと、複数の前記発光ダイオードを順に発光させる光源制御部と、入射部及び受光部を測定対象物の表面に密着させるプローブと、前記発光ダイオードからの入射光を前記入射部に導く入射光路と、前記受光部で受光した散乱光を検出部に導く検出光路と、前記発光ダイオードの使用温度を測定するLED温度検出部とを備え、前記受光部として、前記入射部からの距離を異ならせた第1の前記受光部及び第2の前記受光部を有し、前記検出光路として、第1の前記受光部で受光した第1の前記散乱光を第1の前記検出部に導く第1の前記検出光路、及び第2の前記受光部で受光した第2の前記散乱光を第2の前記検出部に導く第2の前記検出光路を有する発光ダイオードを用いた成分濃度分析装置であって、複数の前記発光ダイオードの発光ごとに測定した、第1の前記検出部で検知した第1の前記散乱光の強度、第2の前記検出部で検知した第2の前記散乱光の強度、及び前記LED温度検出部で検出された前記発光ダイオードの前記使用温度を記憶する記憶部と、第1の前記散乱光の前記強度と第2の前記散乱光の前記強度とから相対反射率を算出するに当たり、前記発光ダイオードについてのあらかじめ記憶されたピーク波長と、前記LED温度検出部で測定された前記発光ダイオードの使用温度データと、前記使用温度データと前記ピーク波長との関係データとから、前記ピーク波長を補正し、補正された前記ピーク波長を基にした吸収波長を用いて成分濃度を演算する成分濃度演算部とを有することを特徴とする。
請求項2記載の本発明は、請求項1に記載の発光ダイオードを用いた成分濃度分析装置において、前記測定対象物の表面温度を測定する対象物温度検出部を備え、前記記憶部では、前記対象物温度検出部で検出された前記表面温度を記憶し、前記表面温度によって、前記成分濃度演算部で演算された前記成分濃度の温度補正を行うことを特徴とする。
請求項3記載の本発明は、請求項1又は請求項2に記載の発光ダイオードを用いた成分濃度分析装置において、前記測定対象物の変更に伴い前記発光ダイオードの発光時間を変更する発光時間変更部を有し、前記光源制御部では、前記発光時間変更手段で変更された前記発光時間で前記発光ダイオードを発光させることを特徴とする。
請求項4記載の本発明は、請求項1から請求項3のいずれかに記載の発光ダイオードを用いた成分濃度分析装置において、測定対象とする前記測定対象成分に応じて、前記成分濃度演算部で演算対象とする前記発光ダイオードの組み合わせを変更することを特徴とする。
請求項5記載の本発明は、請求項1から請求項4のいずれかに記載の発光ダイオードを用いた成分濃度分析装置において、測定器と分析器とからなり、前記測定器には、前記発光ダイオード、前記光源制御部、前記プローブ、前記入射光路、前記検出光路、及び前記LED温度検出部を備え、前記分析器には、前記成分濃度演算部を備え、前記測定器で測定した、第1の前記散乱光の前記強度、第2の前記散乱光の前記強度、及び前記使用温度データを送信部から前記分析器の受信部に送信することを特徴とする。
請求項6記載の本発明は、請求項1から請求項5のいずれかに記載の発光ダイオードを用いた成分濃度分析装置において、それぞれの前記発光ダイオードについて、前記発光ダイオードの個体差に基づくピーク波長の違いをあらかじめ計測し、前記相対反射率の算出では、あらかじめ計測した前記ピーク波長を用いることを特徴とする。
請求項7記載の本発明の発光ダイオードを用いた測定器は、波長の異なる複数の発光ダイオードと、複数の前記発光ダイオードを順に発光させる光源制御部と、入射部及び受光部を測定対象物の表面に密着させるプローブと、前記発光ダイオードからの入射光を前記入射部に導く入射光路と、前記受光部で受光した散乱光を検出部に導く検出光路と、前記発光ダイオードの使用温度を測定するLED温度検出部とを備え、前記受光部として、前記入射部からの距離を異ならせた第1の前記受光部及び第2の前記受光部を有し、前記検出光路として、第1の前記受光部で受光した第1の前記散乱光を第1の前記検出部に導く第1の前記検出光路、及び第2の前記受光部で受光した第2の前記散乱光を第2の前記検出部に導く第2の前記検出光路を有する発光ダイオードを用いた測定器であって、複数の前記発光ダイオードの発光ごとに測定した、第1の前記検出部で検知した第1の前記散乱光の強度、第2の前記検出部で検知した第2の前記散乱光の強度、及び前記LED温度検出部で検出された前記発光ダイオードの前記使用温度データを、前記測定器を識別する識別データ及び測定時刻データとともに送信する送信部を有することを特徴とする。
The component concentration analyzer using the light-emitting diode according to the first aspect of the present invention includes a plurality of light-emitting diodes having different wavelengths, a light source control unit that sequentially emits the plurality of light-emitting diodes, an incident unit, and a light-receiving unit. A probe that is in close contact with the surface of an object, an incident optical path that guides incident light from the light emitting diode to the incident part, a detection optical path that guides scattered light received by the light receiving part to the detection part, and an operating temperature of the light emitting diode. An LED temperature detection unit to measure, and the light receiving unit includes a first light receiving unit and a second light receiving unit that have different distances from the incident unit, and the detection light path includes a first light receiving unit, The first detection light path for guiding the first scattered light received by the light receiving unit to the first detection unit, and the second detection of the second scattered light received by the second light receiving unit. 2nd leading to the department A component concentration analyzer using a light emitting diode having a detection light path, the intensity of the first scattered light detected by the first detection unit measured for each light emission of the plurality of light emitting diodes, a second A storage unit for storing the intensity of the second scattered light detected by the detection unit and the operating temperature of the light emitting diode detected by the LED temperature detection unit; and the intensity and the first of the first scattered light. In calculating the relative reflectance from the intensity of the scattered light of 2, the peak wavelength stored in advance for the light emitting diode, the operating temperature data of the light emitting diode measured by the LED temperature detection unit, The peak wavelength is corrected from the operating temperature data and the relationship data of the peak wavelength, and the component concentration is calculated using the absorption wavelength based on the corrected peak wavelength. And having a that component concentration calculation unit.
According to a second aspect of the present invention, there is provided the component concentration analyzer using the light emitting diode according to the first aspect, further comprising an object temperature detection unit that measures a surface temperature of the measurement object. The surface temperature detected by the object temperature detector is stored, and the temperature correction of the component concentration calculated by the component concentration calculator is performed based on the surface temperature.
According to a third aspect of the present invention, in the component concentration analyzer using the light emitting diode according to the first or second aspect, a light emission time change for changing a light emission time of the light emitting diode with a change of the measurement object And the light source control unit causes the light emitting diode to emit light for the light emission time changed by the light emission time changing means.
According to a fourth aspect of the present invention, in the component concentration analyzer using the light-emitting diode according to any one of the first to third aspects, the component concentration calculation unit according to the measurement target component to be measured. And changing the combination of the light emitting diodes to be calculated.
A fifth aspect of the present invention is a component concentration analyzer using the light emitting diode according to any one of the first to fourth aspects, comprising a measuring instrument and an analyzer, wherein the measuring instrument includes the light emission. A diode, the light source control unit, the probe, the incident optical path, the detection optical path, and the LED temperature detection unit, the analyzer includes the component concentration calculation unit, and is measured by the measuring instrument, The intensity of the first scattered light, the intensity of the second scattered light, and the use temperature data are transmitted from the transmission unit to the reception unit of the analyzer.
According to a sixth aspect of the present invention, in the component concentration analyzer using the light emitting diode according to any one of the first to fifth aspects, for each of the light emitting diodes, a peak wavelength based on an individual difference of the light emitting diodes The difference is measured in advance, and the peak wavelength measured in advance is used in the calculation of the relative reflectance.
The measuring instrument using the light emitting diode of the present invention according to claim 7 includes a plurality of light emitting diodes having different wavelengths, a light source control unit that sequentially emits the plurality of light emitting diodes, and an incident unit and a light receiving unit of the object to be measured. A probe to be brought into close contact with the surface, an incident optical path for guiding incident light from the light emitting diode to the incident part, a detection optical path for guiding scattered light received by the light receiving part to the detection part, and a use temperature of the light emitting diode are measured. An LED temperature detection unit, and the light receiving unit includes a first light receiving unit and a second light receiving unit with different distances from the incident unit, and the first light receiving unit is used as the detection light path. The first detection light path that guides the first scattered light received by the first part to the first detection part, and the second scattered light received by the second light reception part to the second detection part Second detection optical path to be guided A measuring device using a light emitting diode having the first scattered light intensity detected by the first detection unit and measured by the second detection unit, measured for each light emission of the plurality of light emitting diodes A transmitter that transmits the intensity of the second scattered light and the use temperature data of the light-emitting diode detected by the LED temperature detector together with identification data and measurement time data for identifying the measuring device. It is characterized by.

本発明の発光ダイオードを用いた成分濃度分析装置によれば、相対反射率を用いることで、発光ダイオードの使用温度や経年変化による発光強度の変化の影響をなくし、補正吸収係数を用いることで使用温度によるピーク波長の変化の影響をなくし、更には温度補正により測定対象物の温度による影響をなくすことができるので、発光ダイオードを用いて正確な成分濃度を測定できる。   According to the component concentration analyzer using the light emitting diode of the present invention, the relative reflectance is used to eliminate the influence of the change in the emission intensity due to the use temperature of the light emitting diode and the secular change, and the correction absorption coefficient is used. Since the influence of the change of the peak wavelength due to the temperature can be eliminated, and furthermore, the influence of the temperature of the measurement object can be eliminated by the temperature correction, the accurate component concentration can be measured using the light emitting diode.

本発明の一実施例による発光ダイオードを用いた成分濃度分析装置の構成図1 is a configuration diagram of a component concentration analyzer using a light emitting diode according to an embodiment of the present invention.

本発明の第1の実施の形態による発光ダイオードを用いた成分濃度分析装置は、複数の発光ダイオードの発光ごとに測定した、第1の検出部で検知した第1の散乱光の強度、第2の検出部で検知した第2の散乱光の強度、及びLED温度検出部で検出された発光ダイオードの使用温度を記憶する記憶部と、第1の散乱光の強度と第2の散乱光の強度とから相対反射率を算出するに当たり、前記発光ダイオードについてのあらかじめ記憶されたピーク波長と、前記LED温度検出部で測定された前記発光ダイオードの使用温度データと、前記使用温度データと前記ピーク波長との関係データとから、前記ピーク波長を補正し、補正された前記ピーク波長を基にした吸収波長を用いて成分濃度を演算する成分濃度演算部とを有するものである。本実施の形態によれば、相対反射率を用いることで、発光ダイオードの使用温度や経年変化による発光強度の変化の影響をなくし、補正吸収係数を用いることで使用温度によるピーク波長の変化の影響をなくすことができる。   The component concentration analyzer using the light emitting diode according to the first embodiment of the present invention measures the intensity of the first scattered light detected by the first detection unit, measured for each light emission of the plurality of light emitting diodes, and second. A storage unit for storing the intensity of the second scattered light detected by the detection unit and the use temperature of the light emitting diode detected by the LED temperature detection unit, and the intensity of the first scattered light and the intensity of the second scattered light. In calculating the relative reflectance from the above, the peak wavelength stored in advance for the light emitting diode, the use temperature data of the light emitting diode measured by the LED temperature detection unit, the use temperature data, and the peak wavelength, And a component concentration calculation unit that calculates the component concentration using the absorption wavelength based on the corrected peak wavelength. According to the present embodiment, the relative reflectance is used to eliminate the influence of the change in emission intensity due to the use temperature of the light emitting diode and the secular change, and the influence of the change in peak wavelength due to the use temperature by using the corrected absorption coefficient. Can be eliminated.

本発明の第2の実施の形態は、第1の実施の形態による発光ダイオードを用いた成分濃度分析装置において、測定対象物の表面温度を測定する対象物温度検出部を備え、記憶部では、対象物温度検出部で検出された表面温度を記憶し、表面温度によって、成分濃度演算部で演算された成分濃度の温度補正を行うものである。本実施の形態によれば、温度補正により測定対象物の温度による影響をなくすことができるので、発光ダイオードを用いて正確な成分濃度を測定できる。   The second embodiment of the present invention includes an object temperature detection unit that measures the surface temperature of the measurement object in the component concentration analyzer using the light emitting diode according to the first embodiment. The surface temperature detected by the object temperature detection unit is stored, and the temperature correction of the component concentration calculated by the component concentration calculation unit is performed based on the surface temperature. According to the present embodiment, the temperature correction can eliminate the influence of the temperature of the measurement object, so that the accurate component concentration can be measured using the light emitting diode.

本発明の第3の実施の形態は、第1又は第2の実施の形態による発光ダイオードを用いた成分濃度分析装置において、測定対象物の変更に伴い発光ダイオードの発光時間を変更する発光時間変更部を有し、光源制御部では、発光時間変更手段で変更された発光時間で発光ダイオードを発光させるものである。本実施の形態によれば、測定対象物に適した入射光の強度とすることができ、正確な成分濃度を測定できる。   In the third embodiment of the present invention, in the component concentration analyzer using the light emitting diode according to the first or second embodiment, the light emission time change for changing the light emission time of the light emitting diode with the change of the measurement object The light source control unit causes the light emitting diode to emit light with the light emission time changed by the light emission time changing means. According to this embodiment, the intensity of incident light suitable for a measurement object can be obtained, and an accurate component concentration can be measured.

本発明の第4の実施の形態は、第1から第3のいずれかの実施の形態による発光ダイオードを用いた成分濃度分析装置において、測定対象とする測定対象成分に応じて、成分濃度演算部で演算対象とする発光ダイオードの組み合わせを変更するものである。本実施の形態によれば、測定対象とする測定対象成分に応じて最適な波長の組み合わせを用いることで、正確な成分濃度を測定できる。   According to a fourth embodiment of the present invention, in a component concentration analysis apparatus using the light emitting diode according to any one of the first to third embodiments, a component concentration calculation unit according to a measurement target component to be measured. The combination of light emitting diodes to be calculated is changed. According to the present embodiment, an accurate component concentration can be measured by using an optimum combination of wavelengths according to a measurement target component to be measured.

本発明の第5の実施の形態は、第1から第4のいずれかの実施の形態による発光ダイオードを用いた成分濃度分析装置において、測定器と分析器とからなり、測定器には、発光ダイオード、光源制御部、プローブ、入射光路、検出光路、及びLED温度検出部を備え、分析器には、成分濃度演算部を備え、測定器で測定した、第1の散乱光の強度、第2の散乱光の強度、及び使用温度データを送信部から分析器の受信部に送信するものである。本実施の形態によれば、測定器を例えば圃場に常設して用いることができ、また分析器では、測定器から送信されてくるデータを用いて、機器の異常や設置状態の維持状態などについても分析することができる。   The fifth embodiment of the present invention includes a measuring instrument and an analyzer in the component concentration analyzer using the light emitting diode according to any one of the first to fourth embodiments. A diode, a light source control unit, a probe, an incident optical path, a detection optical path, and an LED temperature detection unit; the analyzer includes a component concentration calculation unit; the intensity of the first scattered light measured by the measurement unit; The scattered light intensity and the operating temperature data are transmitted from the transmission unit to the reception unit of the analyzer. According to the present embodiment, the measuring instrument can be used by being permanently installed in, for example, an agricultural field, and the analyzer uses the data transmitted from the measuring instrument to determine whether the device is abnormal or the installation state is maintained. Can also be analyzed.

本発明の第6の実施の形態は、第1から第5のいずれかの実施の形態による発光ダイオードを用いた成分濃度分析装置において、それぞれの発光ダイオードについて、発光ダイオードの個体差に基づくピーク波長の違いをあらかじめ計測し、相対反射率の算出では、あらかじめ計測したピーク波長を用いるものである。本実施の形態によれば、発光ダイオードの個体差による影響をなくすことができ、正確な成分濃度を測定できる。   In the sixth embodiment of the present invention, in the component concentration analyzer using the light emitting diode according to any one of the first to fifth embodiments, for each light emitting diode, the peak wavelength based on the individual difference of the light emitting diode. In this case, the peak wavelength measured in advance is used in the calculation of the relative reflectance. According to the present embodiment, it is possible to eliminate the influence due to the individual difference of the light emitting diodes, and it is possible to measure the accurate component concentration.

本発明の第7の実施の形態による発光ダイオードを用いた測定器は、複数の発光ダイオードの発光ごとに測定した、第1の検出部で検知した第1の散乱光の強度、第2の検出部で検知した第2の散乱光の強度、及びLED温度検出部で検出された発光ダイオードの使用温度データを、測定器を識別する識別データ及び測定時刻データとともに送信する送信部を有するものである。本実施の形態によれば、発光ダイオードの使用温度による影響をなくすことができ、測定器から送信されてくるデータを用いて、機器の異常や設置状態の維持状態などについても分析することができる。   The measuring instrument using the light emitting diode according to the seventh embodiment of the present invention measures the intensity of the first scattered light detected by the first detector and the second detection measured for each light emission of the plurality of light emitting diodes. A transmitter that transmits the intensity of the second scattered light detected by the unit and the use temperature data of the light emitting diode detected by the LED temperature detector together with identification data for identifying the measuring instrument and measurement time data. . According to the present embodiment, it is possible to eliminate the influence of the operating temperature of the light emitting diode, and it is possible to analyze the abnormality of the device and the maintenance state of the installation state using the data transmitted from the measuring instrument. .

以下本発明の実施例について図面とともに詳細に説明する。
図1は本発明の一実施例による発光ダイオードを用いた成分濃度分析装置の構成図である。
本実施例による発光ダイオードを用いた成分濃度分析装置は、測定器10と分析器30とからなる。
測定器10は、波長の異なる複数の発光ダイオード11と、複数の発光ダイオード11を順に発光させる光源制御部12と、入射部21及び受光部22、23を測定対象物の表面に密着させるプローブ20と、測定対象物の表面温度を測定する対象物温度検出部24と、発光ダイオード11の使用温度を測定するLED温度検出部13と、時刻を計測するためのクロック部14と、発光ダイオード11の発光時間を変更する発光時間変更部15とを備えている。発光時間変更部15は、例えば、測定対象物を変更する時に発光時間を変更し、測定対象物に適した入射光の強度とする。測定対象物が果実の場合には、表皮の厚い果実にあっては、表皮の薄い果実、例えばトマトよりも発光時間を長くする。
Embodiments of the present invention will be described below in detail with reference to the drawings.
FIG. 1 is a configuration diagram of a component concentration analyzer using a light emitting diode according to an embodiment of the present invention.
The component concentration analyzer using the light emitting diode according to this embodiment includes a measuring device 10 and an analyzer 30.
The measuring instrument 10 includes a plurality of light emitting diodes 11 having different wavelengths, a light source control unit 12 that sequentially emits the plurality of light emitting diodes 11, and a probe 20 that closely contacts the incident unit 21 and the light receiving units 22 and 23 to the surface of the measurement object. An object temperature detector 24 for measuring the surface temperature of the object to be measured, an LED temperature detector 13 for measuring the operating temperature of the light emitting diode 11, a clock unit 14 for measuring the time, and the light emitting diode 11 And a light emission time changing unit 15 for changing the light emission time. For example, the light emission time changing unit 15 changes the light emission time when changing the measurement object, and sets the incident light intensity suitable for the measurement object. When the object to be measured is a fruit, the light emission time is made longer for a fruit having a thick epidermis than for a fruit having a thin epidermis, such as a tomato.

複数の発光ダイオード11は、例えばトマトの糖度を計測する場合には、860nm、900nm、935nm、950nm、及び1015nmの5波長を用いることが好ましい。
複数の発光ダイオード11からの発光(入射光)は、集光部25aを経由し、入射光路25によって入射部21に導かれる。複数の発光ダイオード11は、常に同じ発光順とし、5つの発光ダイオード11を用いる場合には、全5波長の発光を1波長ずつ、等間隔で発光させて測定対象物に入射する。
第1の受光部22と第2の受光部23とは、入射部21からの距離を異ならせている。第1の受光部22と第2の受光部23とは、入射部21からの方向は同一であることが好ましい。
受光部22、23で受光した散乱光は検出光路26、27によって検出部16に導かれる。第1の検出光路26は、第1の受光部22で受光した第1の散乱光を第1の検出部16aに導く。第2の検出光路27は、第2の受光部23で受光した第2の散乱光を第2の検出部16bに導く。第1の検出光路26には第1のフィルタ26aが、第2の検出光路27には第2のフィルタ27aが設けられている。
For example, when the sugar content of tomato is measured, the plurality of light emitting diodes 11 preferably use five wavelengths of 860 nm, 900 nm, 935 nm, 950 nm, and 1015 nm.
Light emission (incident light) from the plurality of light emitting diodes 11 is guided to the incident portion 21 by the incident light path 25 through the light collecting portion 25a. The plurality of light emitting diodes 11 are always in the same light emitting order, and when five light emitting diodes 11 are used, light of all five wavelengths is emitted one wavelength at an equal interval and is incident on the measurement object.
The first light receiving unit 22 and the second light receiving unit 23 have different distances from the incident unit 21. It is preferable that the first light receiving unit 22 and the second light receiving unit 23 have the same direction from the incident unit 21.
The scattered light received by the light receiving units 22 and 23 is guided to the detection unit 16 by the detection light paths 26 and 27. The first detection light path 26 guides the first scattered light received by the first light receiving unit 22 to the first detection unit 16a. The second detection light path 27 guides the second scattered light received by the second light receiving unit 23 to the second detection unit 16b. A first filter 26 a is provided in the first detection optical path 26, and a second filter 27 a is provided in the second detection optical path 27.

記憶部17には、複数の発光ダイオード11の発光による測定ごとに、第1の検出部16aで検知した第1の散乱光の強度、第2の検出部16bで検知した第2の散乱光の強度、対象物温度検出部24で検出された表面温度、LED温度検出部13で検出された発光ダイオード11の使用温度に関するデータが記憶される。
また、記憶部17には、クロック部14によって発光ダイオード11の測定時刻データが記憶され、発光時間変更部15によって発光ダイオード11の発光時間のデータが記憶される。
複数の発光ダイオード11の発光ごとに測定して記憶部17に記憶された、第1の検出部16aで検知した第1の散乱光の強度、第2の検出部16bで検知した第2の散乱光の強度、対象物温度検出部24で検出された表面温度、LED温度検出部13で検出された発光ダイオード11の使用温度、クロック部14からの測定時刻、及び発光時間変更部15からの発光時間のデータは、測定器10を識別する識別データとともに送信部18から送信される。
なお、測定器10は、装置内に電源部19を備えていることが好ましい。光源制御部12、クロック部14、及び送信部18には電源部19から電力が供給される。
The storage unit 17 stores the intensity of the first scattered light detected by the first detection unit 16a and the second scattered light detected by the second detection unit 16b for each measurement by light emission of the plurality of light emitting diodes 11. Data on the intensity, the surface temperature detected by the object temperature detection unit 24, and the use temperature of the light emitting diode 11 detected by the LED temperature detection unit 13 are stored.
In the storage unit 17, the measurement time data of the light emitting diode 11 is stored by the clock unit 14, and the light emission time data of the light emitting diode 11 is stored by the light emission time changing unit 15.
The intensity of the first scattered light detected by the first detector 16a and the second scattering detected by the second detector 16b, measured for each light emission of the plurality of light emitting diodes 11, and stored in the storage unit 17. Light intensity, surface temperature detected by the object temperature detection unit 24, use temperature of the light emitting diode 11 detected by the LED temperature detection unit 13, measurement time from the clock unit 14, and light emission from the light emission time changing unit 15 The time data is transmitted from the transmission unit 18 together with identification data for identifying the measuring instrument 10.
Note that the measuring instrument 10 preferably includes a power supply unit 19 in the apparatus. Power is supplied from the power supply unit 19 to the light source control unit 12, the clock unit 14, and the transmission unit 18.

送信部18から送信されるデータは、分析器30の受信部31で受信される。
分析器30には、LEDピーク波長記憶部51、吸収係数記憶部52、使用温度補正データ記憶部53、及び表面温度補正データ記憶部54を有している。
LEDピーク波長記憶部51には、LEDピーク波長計測手段55で計測された発光ダイオード11の個体毎のピーク波長データが記憶されている。測定器10に組み込まれる発光ダイオード11は、LEDピーク波長計測手段55によって、測定器10の製作時に、発光ダイオード11の個体毎にそれぞれのピーク波長が計測される。LEDピーク波長計測手段55は、ピーク波長自体を計測する場合の他、基準となるピーク波長からの偏差量であってもよい。
吸収係数記憶部52には、測定対象物における測定対象成分について、波長の組み合わせに応じて決定された吸収係数データが記憶されている。測定対象物における測定対象成分については、あらかじめ波長の違いによる吸光度特性を計測し、演算に用いる波長の組み合わせに応じた吸収係数が吸収係数決定手段56によって決定される。
使用温度補正データ記憶部53には、使用温度とピーク波長との関係データが記憶されている。使用温度が高くなるとピーク波長は長くなる方向にシフトする。
表面温度補正データ記憶部54には、表面温度と成分濃度との関係データが記憶されている。糖度の場合には、表面温度が高くなると成分濃度は高くなる方向にシフトする。
Data transmitted from the transmission unit 18 is received by the reception unit 31 of the analyzer 30.
The analyzer 30 includes an LED peak wavelength storage unit 51, an absorption coefficient storage unit 52, a use temperature correction data storage unit 53, and a surface temperature correction data storage unit 54.
The LED peak wavelength storage unit 51 stores peak wavelength data for each individual LED 11 measured by the LED peak wavelength measuring means 55. The light emitting diode 11 incorporated in the measuring instrument 10 is measured by the LED peak wavelength measuring means 55 for each peak wavelength of each light emitting diode 11 when the measuring instrument 10 is manufactured. The LED peak wavelength measuring means 55 may be a deviation amount from a reference peak wavelength in addition to the case of measuring the peak wavelength itself.
The absorption coefficient storage unit 52 stores absorption coefficient data determined according to the combination of wavelengths for the measurement target component in the measurement target. For the measurement target component in the measurement target, the absorbance characteristic due to the difference in wavelength is measured in advance, and the absorption coefficient according to the combination of wavelengths used for calculation is determined by the absorption coefficient determination means 56.
The use temperature correction data storage unit 53 stores relation data between the use temperature and the peak wavelength. As the operating temperature increases, the peak wavelength shifts in a longer direction.
The surface temperature correction data storage unit 54 stores relationship data between the surface temperature and the component concentration. In the case of sugar content, the component concentration shifts in the direction of increasing as the surface temperature increases.

受信部31で受信されるデータは、受信データ記憶部32に記憶される。
LEDピーク波長読出部41では、受信データ記憶部32に記憶された、測定器10を識別する識別データを基に、この測定器10に組み込まれたそれぞれの発光ダイオード11についてのピーク波長を、LEDピーク波長記憶部51から読み出す。
使用温度読出部42では、LED温度検出部13で検出された発光ダイオード11の使用温度データを受信データ記憶部32から読み出す。
LEDピーク波長補正部33では、LEDピーク波長読出部41で読み出した発光ダイオード11についてのピーク波長と、使用温度読出部42で読み出した発光ダイオード11の使用温度データと、使用温度補正データ記憶部53に記憶された使用温度とピーク波長との関係データとから、LEDピーク波長を補正する。
Data received by the receiving unit 31 is stored in the received data storage unit 32.
In the LED peak wavelength reading unit 41, based on identification data for identifying the measuring device 10 stored in the received data storage unit 32, the peak wavelength for each light emitting diode 11 incorporated in the measuring device 10 is converted into the LED. Read from the peak wavelength storage unit 51.
The use temperature reading unit 42 reads use temperature data of the light emitting diode 11 detected by the LED temperature detection unit 13 from the reception data storage unit 32.
In the LED peak wavelength correction unit 33, the peak wavelength of the light emitting diode 11 read by the LED peak wavelength reading unit 41, the use temperature data of the light emitting diode 11 read by the use temperature reading unit 42, and the use temperature correction data storage unit 53. The LED peak wavelength is corrected based on the relationship data between the use temperature and the peak wavelength stored in.

演算対象成分決定部34では、演算対象とする成分が決定される。例えば、果実における演算対象成分を糖度とするか、酸度とするかが決定される。
演算対象成分決定部34で演算対象とする成分が決定されると、LED選択部35では、演算に用いる発光ダイオード11が選択される。
LED選択部35では、例えば、果実における演算対象を糖度とした場合には、第1の発光ダイオード11a、第2の発光ダイオード11b、及び第3の発光ダイオード11cを選択し、果実における演算対象を酸度とした場合には、第1の発光ダイオード11a、第4の発光ダイオード11d、及び第5の発光ダイオード11eを選択する。
LED選択部35において、演算に用いる発光ダイオード11が選択される場合には、LEDピーク波長補正部33では、選択された発光ダイオード11についてピーク波長を補正すればよい。
The calculation target component determination unit 34 determines a component to be calculated. For example, it is determined whether the calculation target component in the fruit has sugar content or acidity.
When the calculation target component determination unit 34 determines the component to be calculated, the LED selection unit 35 selects the light emitting diode 11 used for the calculation.
In the LED selection unit 35, for example, when the calculation target in the fruit is sugar, the first light emitting diode 11a, the second light emitting diode 11b, and the third light emitting diode 11c are selected, and the calculation target in the fruit is selected. In the case of acidity, the first light emitting diode 11a, the fourth light emitting diode 11d, and the fifth light emitting diode 11e are selected.
When the LED selection unit 35 selects the light emitting diode 11 used for the calculation, the LED peak wavelength correction unit 33 may correct the peak wavelength of the selected light emitting diode 11.

吸収係数読出部43では、LEDピーク波長補正部33で補正されたピーク波長を基にした吸収係数を吸収係数記憶部52から読み出す。
散乱光強度読出部44では、第1の検出部16aで検知した第1の散乱光の強度、及び第2の検出部16bで検知した第2の散乱光の強度を受信データ記憶部32から読み出す。
成分濃度演算部36では、散乱光強度読出部44で読み出した第1の散乱光の強度と第2の散乱光の強度とから相対反射率を求め、この相対反射率と吸収係数読出部43で読み出した吸収係数とから成分濃度を演算する。
The absorption coefficient reading unit 43 reads the absorption coefficient based on the peak wavelength corrected by the LED peak wavelength correction unit 33 from the absorption coefficient storage unit 52.
In the scattered light intensity reading unit 44, the intensity of the first scattered light detected by the first detection unit 16a and the intensity of the second scattered light detected by the second detection unit 16b are read from the reception data storage unit 32. .
The component concentration calculation unit 36 obtains the relative reflectance from the intensity of the first scattered light and the intensity of the second scattered light read by the scattered light intensity reading unit 44, and the relative reflectance and the absorption coefficient reading unit 43 The component concentration is calculated from the read absorption coefficient.

成分濃度演算部36では、例えば3つの波長を用いた場合には以下の演算が行われる。
第1の発光ダイオード11aによる、第1の散乱光の強度をI1.λ1、第2の散乱光の強度をI2.λ1とし、第2の発光ダイオード11bによる、第1の散乱光の強度をI1.λ2、第2の散乱光の強度をI2.λ2とし、第3の発光ダイオード11cによる、第1の散乱光の強度をI1.λ3、第2の散乱光の強度をI2.λ3とする。
3つの波長の相対反射率を、Rλ1、Rλ2、Rλ3、とすると、
λ1=I2.λ1/I1.λ1、Rλ2=I2.λ2/I1.λ2、Rλ3=I2.λ3/I1.λ3となる。
濃度をC、吸収係数をk、kとすると、濃度Cは次式で演算される。
C=k+k*In(Rλ1/Rλ3)/(Rλ2/Rλ3
In the component concentration calculation unit 36, for example, when three wavelengths are used, the following calculation is performed.
The intensity of the first scattered light by the first light emitting diode 11a is represented by I1 . λ1 is the intensity of the second scattered light I2 . and .lambda.1, according to the second light emitting diode 11b, and the intensity of the first scattered light I 1. λ2 is the intensity of the second scattered light I2 . It is assumed that λ2 and the intensity of the first scattered light by the third light emitting diode 11c is I1 . λ3 , the intensity of the second scattered light is I2 . Let λ3 .
If the relative reflectances of the three wavelengths are R λ1 , R λ2 , R λ3 ,
R λ1 = I2 . λ1 / I1 . λ1 , R λ2 = I2 . λ2 / I1 . λ2 , R λ3 = I2 . λ3 / I 1. λ3 .
If the concentration is C and the absorption coefficients are k 0 and k 1 , the concentration C is calculated by the following equation.
C = k 0 + k 1 * In (R λ 1 / R λ 3 ) / (R λ 2 / R λ 3 )

表面温度読出部45では、対象物温度検出部24で検出された表面温度を受信データ記憶部32から読み出す。
温度補正演算部37では、成分濃度演算部36で演算された成分濃度を基に、表面温度読出部45で読み出した表面温度と、表面温度補正データ記憶部54に記憶された表面温度と成分濃度との関係データから、温度補正がされた成分濃度が演算される。
温度補正演算部37で演算された成分濃度は、受信データ記憶部32に記憶された、第1の散乱光の強度、第2の散乱光の強度、表面温度、使用温度、測定時刻、及び発光時間、及び識別データとともにデータ蓄積部38に記憶される。
なお、データ蓄積部38には、識別データ、測定時刻、及び成分濃度が記憶されていればよいが、その他のデータが記憶されることで、機器の異常や設置状態の維持状態などについても分析することができる。
The surface temperature reading unit 45 reads the surface temperature detected by the object temperature detection unit 24 from the reception data storage unit 32.
In the temperature correction calculation unit 37, based on the component concentration calculated by the component concentration calculation unit 36, the surface temperature read by the surface temperature reading unit 45 and the surface temperature and component concentration stored in the surface temperature correction data storage unit 54. From the relation data, the component concentration after temperature correction is calculated.
The component concentration calculated by the temperature correction calculation unit 37 is stored in the reception data storage unit 32. The first scattered light intensity, the second scattered light intensity, the surface temperature, the use temperature, the measurement time, and the light emission. The time and identification data are stored in the data storage unit 38.
The data storage unit 38 only needs to store identification data, measurement time, and component concentration, but other data can be stored to analyze device abnormalities and installation state maintenance. can do.

データ蓄積部38に記憶されたこれらのデータは、送信部39から送信することで、携帯端末60にて、状況把握を行うことができる。
送信部39から送信されるデータは、携帯端末60の受信部61で受信し、受信したデータは記憶部62に記憶するとともに表示部63にて表示することができる。
By transmitting these data stored in the data storage unit 38 from the transmission unit 39, the mobile terminal 60 can grasp the situation.
Data transmitted from the transmission unit 39 is received by the reception unit 61 of the portable terminal 60, and the received data can be stored in the storage unit 62 and displayed on the display unit 63.

なお、本実施例による発光ダイオードを用いた成分濃度分析装置は、測定器10、分析器30、及び携帯端末60で構成した場合を示したが、測定器10と分析器30と携帯端末60とが一体で構成され、又は分析器30と携帯端末60とが一体で構成されていてもよい。また、測定器10に表示機能を持たせることが好ましい。   In addition, although the component density | concentration analyzer using the light emitting diode by a present Example showed the case where it comprised with the measuring device 10, the analyzer 30, and the portable terminal 60, the measuring device 10, the analyzer 30, the portable terminal 60, May be configured integrally, or the analyzer 30 and the portable terminal 60 may be configured integrally. Moreover, it is preferable to give the measuring instrument 10 a display function.

本発明の発光ダイオードを用いた成分濃度分析装置は、果実の糖度や酸度の分析や、人体の血糖値の分析などに用いることができる。   The component concentration analyzer using the light emitting diode of the present invention can be used for analysis of sugar and acidity of fruits, analysis of blood sugar level of human body, and the like.

10 測定器
11 発光ダイオード
12 光源制御部
13 LED温度検出部
14 クロック部
15 発光時間変更部
16 検出部
17 記憶部
18 送信部
20 プローブ
21 入射部
22 第1の受光部
23 第2の受光部
24 対象物温度検出部
25 入射光路
26 第1の検出光路
27 第2の検出光路
30 分析器
60 携帯端末
DESCRIPTION OF SYMBOLS 10 Measuring instrument 11 Light emitting diode 12 Light source control part 13 LED temperature detection part 14 Clock part 15 Light emission time change part 16 Detection part 17 Memory | storage part 18 Transmission part 20 Probe 21 Incident part 22 1st light-receiving part 23 2nd light-receiving part 24 Object temperature detection unit 25 incident optical path 26 first detection optical path 27 second detection optical path 30 analyzer 60 portable terminal

Claims (7)

波長の異なる複数の発光ダイオードと、
複数の前記発光ダイオードを順に発光させる光源制御部と、
入射部及び受光部を測定対象物の表面に密着させるプローブと、
前記発光ダイオードからの入射光を前記入射部に導く入射光路と、
前記受光部で受光した散乱光を検出部に導く検出光路と、
前記発光ダイオードの使用温度を測定するLED温度検出部と
を備え、
前記受光部として、前記入射部からの距離を異ならせた第1の前記受光部及び第2の前記受光部を有し、
前記検出光路として、第1の前記受光部で受光した第1の前記散乱光を第1の前記検出部に導く第1の前記検出光路、及び第2の前記受光部で受光した第2の前記散乱光を第2の前記検出部に導く第2の前記検出光路を有する
発光ダイオードを用いた成分濃度分析装置であって、
複数の前記発光ダイオードの発光ごとに測定した、第1の前記検出部で検知した第1の前記散乱光の強度、第2の前記検出部で検知した第2の前記散乱光の強度、及び前記LED温度検出部で検出された前記発光ダイオードの前記使用温度を記憶する記憶部と、
第1の前記散乱光の前記強度と第2の前記散乱光の前記強度とから相対反射率を算出するに当たり、前記発光ダイオードについてのあらかじめ記憶されたピーク波長と、前記LED温度検出部で測定された前記発光ダイオードの使用温度データと、前記使用温度データと前記ピーク波長との関係データとから、前記ピーク波長を補正し、補正された前記ピーク波長を基にした吸収波長を用いて成分濃度を演算する成分濃度演算部と
を有することを特徴とする発光ダイオードを用いた成分濃度分析装置。
A plurality of light emitting diodes having different wavelengths;
A light source controller that sequentially emits the light emitting diodes;
A probe for closely attaching the incident part and the light receiving part to the surface of the measurement object;
An incident optical path for guiding incident light from the light emitting diode to the incident portion;
A detection optical path for guiding scattered light received by the light receiving unit to the detection unit;
An LED temperature detection unit for measuring a use temperature of the light emitting diode;
As the light receiving unit, the first light receiving unit and the second light receiving unit that have different distances from the incident unit,
As the detection light path, the first detection light path that guides the first scattered light received by the first light receiving unit to the first detection unit, and the second light received by the second light receiving unit. A component concentration analyzer using a light emitting diode having the second detection light path for guiding scattered light to the second detection unit,
The intensity of the first scattered light detected by the first detection unit, the intensity of the second scattered light detected by the second detection unit, measured for each light emission of the plurality of light emitting diodes, and the A storage unit for storing the use temperature of the light emitting diode detected by the LED temperature detection unit;
In calculating the relative reflectance from the intensity of the first scattered light and the intensity of the second scattered light, the peak wavelength stored in advance for the light-emitting diode and the LED temperature detection unit are measured. Further, from the use temperature data of the light emitting diode and the relation data between the use temperature data and the peak wavelength, the peak wavelength is corrected, and the component concentration is determined using the absorption wavelength based on the corrected peak wavelength. A component concentration analyzing apparatus using a light emitting diode, comprising: a component concentration calculating unit for calculating.
前記測定対象物の表面温度を測定する対象物温度検出部を備え、
前記記憶部では、前記対象物温度検出部で検出された前記表面温度を記憶し、
前記表面温度によって、前記成分濃度演算部で演算された前記成分濃度の温度補正を行うことを特徴とする請求項1に記載の発光ダイオードを用いた成分濃度分析装置。
An object temperature detector for measuring the surface temperature of the object to be measured;
The storage unit stores the surface temperature detected by the object temperature detection unit,
2. The component concentration analysis apparatus using a light emitting diode according to claim 1, wherein temperature correction of the component concentration calculated by the component concentration calculation unit is performed based on the surface temperature.
前記測定対象物の変更に伴い前記発光ダイオードの発光時間を変更する発光時間変更部を有し、前記光源制御部では、前記発光時間変更手段で変更された前記発光時間で前記発光ダイオードを発光させることを特徴とする請求項1又は請求項2に記載の発光ダイオードを用いた成分濃度分析装置。   A light emission time changing unit that changes the light emission time of the light emitting diode in accordance with the change of the measurement object, and the light source control unit causes the light emitting diode to emit light at the light emission time changed by the light emission time changing means. A component concentration analyzer using the light emitting diode according to claim 1 or 2. 測定対象とする前記測定対象成分に応じて、前記成分濃度演算部で演算対象とする前記発光ダイオードの組み合わせを変更することを特徴とする請求項1から請求項3のいずれかに記載の発光ダイオードを用いた成分濃度分析装置。   The light emitting diode according to any one of claims 1 to 3, wherein a combination of the light emitting diodes to be calculated by the component concentration calculation unit is changed according to the measurement target component to be measured. Concentration analyzer using 測定器と分析器とからなり、
前記測定器には、前記発光ダイオード、前記光源制御部、前記プローブ、前記入射光路、前記検出光路、及び前記LED温度検出部を備え、
前記分析器には、前記成分濃度演算部を備え、
前記測定器で測定した、第1の前記散乱光の前記強度、第2の前記散乱光の前記強度、及び前記使用温度データを送信部から前記分析器の受信部に送信することを特徴とする請求項1から請求項4のいずれかに記載の発光ダイオードを用いた成分濃度分析装置。
It consists of a measuring instrument and an analyzer,
The measuring device includes the light emitting diode, the light source control unit, the probe, the incident optical path, the detection optical path, and the LED temperature detection unit,
The analyzer includes the component concentration calculator.
Transmitting the intensity of the first scattered light, the intensity of the second scattered light, and the use temperature data measured by the measuring device from a transmitting unit to a receiving unit of the analyzer. A component concentration analyzer using the light-emitting diode according to claim 1.
それぞれの前記発光ダイオードについて、前記発光ダイオードの個体差に基づくピーク波長の違いをあらかじめ計測し、前記相対反射率の算出では、あらかじめ計測した前記ピーク波長を用いることを特徴とする請求項1から請求項5のいずれかに記載の発光ダイオードを用いた成分濃度分析装置。   The difference in peak wavelength based on individual differences of the light emitting diodes is measured in advance for each of the light emitting diodes, and the peak wavelength measured in advance is used in the calculation of the relative reflectance. Item 6. A component concentration analyzer using the light-emitting diode according to any one of Items 5 to 6. 波長の異なる複数の発光ダイオードと、
複数の前記発光ダイオードを順に発光させる光源制御部と、
入射部及び受光部を測定対象物の表面に密着させるプローブと、
前記発光ダイオードからの入射光を前記入射部に導く入射光路と、
前記受光部で受光した散乱光を検出部に導く検出光路と、
前記発光ダイオードの使用温度を測定するLED温度検出部と
を備え、
前記受光部として、前記入射部からの距離を異ならせた第1の前記受光部及び第2の前記受光部を有し、
前記検出光路として、第1の前記受光部で受光した第1の前記散乱光を第1の前記検出部に導く第1の前記検出光路、及び第2の前記受光部で受光した第2の前記散乱光を第2の前記検出部に導く第2の前記検出光路を有する
発光ダイオードを用いた測定器であって、
複数の前記発光ダイオードの発光ごとに測定した、第1の前記検出部で検知した第1の前記散乱光の強度、第2の前記検出部で検知した第2の前記散乱光の強度、及び前記LED温度検出部で検出された前記発光ダイオードの前記使用温度データを、前記測定器を識別する識別データ及び測定時刻データとともに送信する送信部を有することを特徴とする発光ダイオードを用いた測定器。
A plurality of light emitting diodes having different wavelengths;
A light source controller that sequentially emits the light emitting diodes;
A probe for closely attaching the incident part and the light receiving part to the surface of the measurement object;
An incident optical path for guiding incident light from the light emitting diode to the incident portion;
A detection optical path for guiding scattered light received by the light receiving unit to the detection unit;
An LED temperature detection unit for measuring a use temperature of the light emitting diode;
As the light receiving unit, the first light receiving unit and the second light receiving unit that have different distances from the incident unit,
As the detection light path, the first detection light path that guides the first scattered light received by the first light receiving unit to the first detection unit, and the second light received by the second light receiving unit. A measuring instrument using a light emitting diode having the second detection light path for guiding scattered light to the second detection unit,
The intensity of the first scattered light detected by the first detection unit, the intensity of the second scattered light detected by the second detection unit, measured for each light emission of the plurality of light emitting diodes, and the A measuring device using a light emitting diode, comprising: a transmitting unit that transmits the use temperature data of the light emitting diode detected by an LED temperature detecting unit together with identification data for identifying the measuring device and measurement time data.
JP2013123267A 2013-06-12 2013-06-12 Component concentration analyzer using light emitting diode Expired - Fee Related JP6230017B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013123267A JP6230017B2 (en) 2013-06-12 2013-06-12 Component concentration analyzer using light emitting diode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013123267A JP6230017B2 (en) 2013-06-12 2013-06-12 Component concentration analyzer using light emitting diode

Publications (2)

Publication Number Publication Date
JP2014240786A true JP2014240786A (en) 2014-12-25
JP6230017B2 JP6230017B2 (en) 2017-11-15

Family

ID=52140113

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013123267A Expired - Fee Related JP6230017B2 (en) 2013-06-12 2013-06-12 Component concentration analyzer using light emitting diode

Country Status (1)

Country Link
JP (1) JP6230017B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018096705A (en) * 2016-12-08 2018-06-21 セイコーインスツル株式会社 Device and method for controlling light emitting element
WO2020241182A1 (en) * 2019-05-28 2020-12-03 アズビル株式会社 Measurement device, measurement system, and measurement method
CN113218893A (en) * 2020-02-05 2021-08-06 阿自倍尔株式会社 Measurement device and measurement method
CN113218882A (en) * 2020-02-05 2021-08-06 阿自倍尔株式会社 Measurement device, measurement method, and generation method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01287445A (en) * 1988-05-13 1989-11-20 Minolta Camera Co Ltd Optical densitometer
JPH1048129A (en) * 1996-08-06 1998-02-20 Kubota Corp Quality evaluation apparatus
JP2002116141A (en) * 2000-08-01 2002-04-19 Society For Techno-Innovation Of Agriculture Forestry & Fisheries Handy non-destructive measuring apparatus for component of fruit
JP2004219322A (en) * 2003-01-16 2004-08-05 Astem:Kk Non-destructive spectrophotometric instrument
JP2004317381A (en) * 2003-04-17 2004-11-11 Nagasaki Prefecture Apparatus for nondestructively measuring sugar content of fruits and vegetables
JP2007271575A (en) * 2006-03-31 2007-10-18 Nagasaki Prefecture Nondestructive measuring device of light scattering body
US20080252877A1 (en) * 2004-09-14 2008-10-16 Staalkat International B.V. Inspection of Eggs in the Presence of Blood
JP2012149938A (en) * 2011-01-18 2012-08-09 Konica Minolta Advanced Layers Inc Spectroscopic measurement device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01287445A (en) * 1988-05-13 1989-11-20 Minolta Camera Co Ltd Optical densitometer
JPH1048129A (en) * 1996-08-06 1998-02-20 Kubota Corp Quality evaluation apparatus
JP2002116141A (en) * 2000-08-01 2002-04-19 Society For Techno-Innovation Of Agriculture Forestry & Fisheries Handy non-destructive measuring apparatus for component of fruit
JP2004219322A (en) * 2003-01-16 2004-08-05 Astem:Kk Non-destructive spectrophotometric instrument
JP2004317381A (en) * 2003-04-17 2004-11-11 Nagasaki Prefecture Apparatus for nondestructively measuring sugar content of fruits and vegetables
US20080252877A1 (en) * 2004-09-14 2008-10-16 Staalkat International B.V. Inspection of Eggs in the Presence of Blood
JP2007271575A (en) * 2006-03-31 2007-10-18 Nagasaki Prefecture Nondestructive measuring device of light scattering body
JP2012149938A (en) * 2011-01-18 2012-08-09 Konica Minolta Advanced Layers Inc Spectroscopic measurement device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018096705A (en) * 2016-12-08 2018-06-21 セイコーインスツル株式会社 Device and method for controlling light emitting element
WO2020241182A1 (en) * 2019-05-28 2020-12-03 アズビル株式会社 Measurement device, measurement system, and measurement method
CN113218893A (en) * 2020-02-05 2021-08-06 阿自倍尔株式会社 Measurement device and measurement method
CN113218882A (en) * 2020-02-05 2021-08-06 阿自倍尔株式会社 Measurement device, measurement method, and generation method
JP2021124386A (en) * 2020-02-05 2021-08-30 アズビル株式会社 Measuring device, and measuring method
JP2021124385A (en) * 2020-02-05 2021-08-30 アズビル株式会社 Measuring device, measuring method, and generation method
JP7438774B2 (en) 2020-02-05 2024-02-27 アズビル株式会社 measuring device
JP7440287B2 (en) 2020-02-05 2024-02-28 アズビル株式会社 measuring device

Also Published As

Publication number Publication date
JP6230017B2 (en) 2017-11-15

Similar Documents

Publication Publication Date Title
KR102498119B1 (en) Compact spectrometer system for non-invasive measurement of absorption and transmission spectra in biological tissue samples
JP2517858B2 (en) Nondestructive measurement method of fruit sugar content by near infrared transmission spectrum
US6980285B1 (en) Method in quality control of a spectrophotometer
US20100041969A1 (en) Measuring device and method for optically determining the concentration of blood sugar and/or lactate in biological systems
JP6075372B2 (en) Material property measuring device
EP2844980A1 (en) Method and apparatus for selecting wavelengths for optimal measurement of a property of a molecular analyte
JP2015519556A5 (en)
JP6230017B2 (en) Component concentration analyzer using light emitting diode
CN104870977A (en) An apparatus for detecting a component in a sample
JP6213759B2 (en) Analysis equipment
JP4714822B2 (en) Non-destructive measuring device for light scatterers
JPH11183377A (en) Optical content meter
JP5186635B2 (en) Plant water stress measurement method
KR20090036996A (en) Non-prick based glucose sensor combining transmittance and reflectance using single wavelength with diverse light sources
CN102858233B (en) The determination of fat water ratio
Cocola et al. Laser spectroscopy for totally non-intrusive detection of oxygen in modified atmosphere food packages
JP3903147B2 (en) Non-destructive sugar content measuring device for fruits and vegetables
KR102477678B1 (en) NDIR glucose detection in liquids
US9470572B2 (en) Method and apparatus for measuring liquid level of cell culture solution
JP2004219322A (en) Non-destructive spectrophotometric instrument
JPH11248622A (en) Urinalysis device
JP2014140423A (en) Skin condition measuring apparatus
Chia et al. Design and development of a shortwave near infrared spectroscopy using NIR LEDs and regression model
US9784672B2 (en) Foodstuff analysis device
US9006685B2 (en) Device and method for determining the concentration of fluorophores in a sample

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20160610

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160613

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20160613

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160610

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160613

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170912

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171010

R150 Certificate of patent or registration of utility model

Ref document number: 6230017

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees