JPH07229840A - Method and apparatus for optical measurement - Google Patents

Method and apparatus for optical measurement

Info

Publication number
JPH07229840A
JPH07229840A JP4194494A JP4194494A JPH07229840A JP H07229840 A JPH07229840 A JP H07229840A JP 4194494 A JP4194494 A JP 4194494A JP 4194494 A JP4194494 A JP 4194494A JP H07229840 A JPH07229840 A JP H07229840A
Authority
JP
Japan
Prior art keywords
light
measured
size
conveyor
measuring device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4194494A
Other languages
Japanese (ja)
Other versions
JP3056037B2 (en
Inventor
Yutaka Nakanishi
豊 中西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SAIKA GIJUTSU KENKYUSHO
Original Assignee
SAIKA GIJUTSU KENKYUSHO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SAIKA GIJUTSU KENKYUSHO filed Critical SAIKA GIJUTSU KENKYUSHO
Priority to JP4194494A priority Critical patent/JP3056037B2/en
Publication of JPH07229840A publication Critical patent/JPH07229840A/en
Application granted granted Critical
Publication of JP3056037B2 publication Critical patent/JP3056037B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To measure an object transferred on a conveyor optically regardless of the size thereof. CONSTITUTION:A size measuring instrument 10 and the body of measuring apparatus 20 are disposed along the carrying path of a conveyor 1. The body of measuring apparatus 20 comprises a projecting part 21 and a light receiving part 22 disposed oppositely on the opposite sides of the conveyor 1. The light receiving part 22 comprises a spectroscopic diffraction grating 33, and a charge storage line sensor 34 for measuring the quantity of light in the spectroscopy. A signal from the size measuring instrument 10 is fed through a signal processor/controller 40 to the line sensor 34 and the storage time is regulated according to the size of an object A to be measured.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、赤外線や可視光線など
を、被測定物に照射し、その透過光を受光測定して、被
測定物の内部性状の検査などを行う光学的測定方法及び
その装置に係り、特に、コンベアーによって連続的に送
られてくる、青果物などの被測定物の内部性状を、光学
的に非破壊で検査測定するのに適するものに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical measuring method for irradiating an object to be measured with infrared rays or visible light and receiving and measuring the transmitted light to inspect the internal properties of the object to be measured. The present invention relates to the apparatus, and more particularly, to a device suitable for optically and nondestructively inspecting and measuring the internal properties of an object to be measured such as fruits and vegetables continuously fed by a conveyor.

【0002】[0002]

【従来の技術】青果物の糖度を、非破壊で測定する方式
は既に本発明者によって提案(特願平5−26198)
されている。この方式の測定原理は、近赤外線が青果物
を透過すると、青果物の内部性状(糖度値)によって影
響を受けることを利用し、糖度によって特に大きな影響
を受ける特定波長の分光を測定して、青果物の糖度値を
割り出すものである。この為、具体的手段としては、青
果物に近赤外線を照射し、その透過光を回折格子で分光
させた上で、ラインセンサ上に焦点を結ばせ、特定波長
の分光の光量測定値から、演算によって糖度値を算出す
るという手段を採っている。
2. Description of the Related Art A method for nondestructively measuring the sugar content of fruits and vegetables has already been proposed by the present inventor (Japanese Patent Application No. 26198/1993).
Has been done. The measurement principle of this method is that when near-infrared rays pass through fruits and vegetables, it is affected by the internal properties (sugar content value) of the fruits and vegetables. It is a measure of sugar content. Therefore, as a concrete means, the fruits and vegetables are irradiated with near-infrared rays, the transmitted light is dispersed by a diffraction grating, and then the line sensor is focused, and the calculation is performed from the measured light amount of the spectrum of a specific wavelength. The method of calculating the sugar content value is adopted.

【0003】[0003]

【発明が解決しようとする課題】ところが、前記従来の
測定方式では、被測定物が静止していることが条件であ
る。被測定物が移動している場合、例えば、コンベアー
で搬送中のものを連続的に測定しようとする場合などに
は利用できない。なぜなら、照射した光線は被測定物内
を通る間に大幅に減衰し、例えば、ミカンの場合には、
透過光量が約4万分の1以下に、リンゴの場合には約2
0万分の1以下になる。このような微量の光線を、測定
点を通過する一瞬の時間内で計測し、かつ分析すること
が、従来方式ではできなかったのである。
However, in the above conventional measuring method, the condition is that the object to be measured is stationary. It cannot be used when the object to be measured is moving, for example, when continuously measuring an object being conveyed by a conveyor. Because the irradiated light is greatly attenuated while passing through the object to be measured, for example, in the case of mandarin orange,
The amount of transmitted light is less than about 1 / 40,000 and about 2 for apples.
It will be less than 1/0000. It was impossible with the conventional method to measure and analyze such a small amount of light within a moment of passing through the measurement point.

【0004】本発明はこのような点に鑑み、搬送中の被
測定物に対しての測定を可能にし、また、被測定物の大
きさに合わせて調節測定することにより、被測定物の大
小にかかわらず、精度の高い測定を行える光学的測定方
法、及びその装置を提供せんとするものである。
In view of the above points, the present invention enables measurement of an object to be measured during transportation, and adjusts and measures according to the size of the object to be measured. In spite of the above, the present invention provides an optical measurement method and an apparatus therefor capable of performing highly accurate measurement.

【0005】[0005]

【課題を解決するための手段】本発明の光学的測定方法
の技術的手段は、被測定物に測定用光線を照射し、その
透過光を分光した上で、光量を測定する光学的測定方法
において、搬送中の被測定物を測定対象とし、分光の光
量測定は電荷蓄積方式で行い、被測定物のサイズに合わ
せて蓄積時間を増減調節して測定することにある。
The technical means of the optical measuring method of the present invention is an optical measuring method of irradiating an object to be measured with a measuring light beam, dispersing the transmitted light, and measuring the light quantity. In (2), the object to be measured is a target to be measured, the light quantity of the spectroscopic light is measured by a charge accumulation method, and the accumulation time is adjusted to increase or decrease according to the size of the object to be measured.

【0006】本発明の光学的測定装置の技術的手段は、
被測定物を搬送するコンベアーと、コンベアーの近傍に
設けられた被測定物サイズ計測器と、コンベアーの両側
に対向状に設けられた投光部と受光部とからなる測定装
置本体と、コンベアーの速度計、サイズ計測器及び測定
装置本体にそれぞれ信号連結された信号処理・制御装置
とを具備し、前記測定装置本体の投光部は測定に必要な
波長の光線を出せる光源を有し、また受光部は、被測定
物を透過した光を分光する回折格子と、分光された各波
長の光量を測定する、電荷蓄積方式のラインセンサとを
有することにある。
The technical means of the optical measuring device of the present invention are:
A conveyor that conveys an object to be measured, an object size measuring instrument provided in the vicinity of the conveyor, a measuring device main body that includes a light projecting unit and a light receiving unit that are provided on opposite sides of the conveyor, and a conveyor. A speedometer, a size measuring device, and a signal processing / control device that is signal-coupled to the measuring device main body, respectively.The light projecting unit of the measuring device main body has a light source capable of emitting a light beam having a wavelength necessary for measurement. The light-receiving unit has a diffraction grating that disperses the light that has passed through the object to be measured, and a line sensor of a charge storage system that measures the amount of light of each wavelength that has been dispersed.

【0007】[0007]

【作用】本発明の光学的測定方法では、測定対象はコン
ベアーなどで搬送中の被測定物である。この被測定物に
測定用光線を照射する。測定光線の光源には、測定に必
要な波長の光を含む光線を出せるものを選ぶ。照射され
た光線は、被測定物に当たり、一部が反射し、他は被測
定物内に入射する。入射した光線は、被測定物内を通過
する間に、被測定物の内部性状による影響を受ける。こ
の際、内部性状の種類と、これにより影響を受ける波長
とは対応しており、一の内部性状に対して大きく影響を
受ける波長は定まっている。従って、透過光を回折格子
で分光し、必要とする波長の光量をラインセンサで計測
することにより、被測定物の内部性状を知ることができ
る。
In the optical measuring method of the present invention, the object to be measured is the object to be measured which is being conveyed by a conveyor or the like. This measuring object is irradiated with a measuring light beam. For the light source of the measurement light beam, select a light source that can emit a light beam having a wavelength required for measurement. The irradiated light beam hits the object to be measured, a part of which is reflected, and the other part is incident on the object to be measured. The incident light beam is affected by the internal properties of the measured object while passing through the measured object. At this time, the types of internal properties correspond to the wavelengths affected by the internal properties, and the wavelengths significantly affected by one internal property are determined. Therefore, the internal properties of the object to be measured can be known by dispersing the transmitted light with the diffraction grating and measuring the amount of light of the required wavelength with the line sensor.

【0008】ラインセンサは電荷蓄積方式のものを用い
ているので、光電変換により発生した電荷を一時的に蓄
積した上で読み出すことができる。従って、蓄積した分
だけ出力信号が大きくなるので、微弱な光量からでも充
分な読み出し出力を得ることができる。また、蓄積時間
は調節できるので、先に被測定物のサイズを測定し、こ
のサイズに合わせて蓄積時間を増減調節する。被測定物
のサイズが大きいと、透過光量の減衰率が大きくなる
が、反面、測定点の通過時間が長くなり、この分、蓄積
時間を多くとれるので、透過光量の減少をカバーでき、
被測定物のサイズの大小にかかわらず、充分な測定が可
能となる。
Since the line sensor uses a charge storage type, it is possible to read out after temporarily storing the charges generated by photoelectric conversion. Therefore, since the output signal is increased by the accumulated amount, a sufficient read output can be obtained even with a weak light amount. Further, since the accumulation time can be adjusted, the size of the object to be measured is first measured, and the accumulation time is increased or decreased according to this size. When the size of the object to be measured is large, the attenuation rate of the amount of transmitted light is large, but on the other hand, the transit time at the measurement point is long, and since the accumulation time can be taken longer, the decrease in the amount of transmitted light can be covered.
Sufficient measurement is possible regardless of the size of the object to be measured.

【0009】[0009]

【実施例】本発明の光学的測定装置の一実施例を図面に
ついて説明する。1はベルトコンベアーで、青果物など
の被測定物Aはこのベルト上に乗った状態で、送られて
くる。2は駆動側のプーリー、3はベルト駆動用のモー
ターである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the optical measuring device of the present invention will be described with reference to the drawings. Reference numeral 1 is a belt conveyor, and an object A to be measured such as fruits and vegetables is sent on the belt. Reference numeral 2 is a drive side pulley, and 3 is a belt driving motor.

【0010】10はサイズ計測器であって、コンベアー
搬送路の両側に対向設置された、光源11と、受光セン
サー12とからなり、被測定物Aの通過による光線遮断
時間から被測定物Aの大きさを計測する。なお、受光セ
ンサー12にはフォトダイオードなどの光電変換素子を
用いる。また、光線には可視光の他、レーザー光なども
利用可能である。
Reference numeral 10 denotes a size measuring instrument, which comprises a light source 11 and a light receiving sensor 12 which are installed opposite to each other on both sides of the conveyor conveying path. Measure the size. A photoelectric conversion element such as a photodiode is used for the light receiving sensor 12. In addition to visible light, laser light or the like can be used as the light beam.

【0011】20は測定装置本体で、測定光線を発する
投光部21と、透過光を分光処理する受光部22とから
なり、コンベアー搬送路の両側に対向状に設置されてい
る。投光部21は光源ランプ23、反射鏡24、シャッ
ター25などからなる。ランプ23には測定に必要な波
長の光を出せるものを選定して用いる。糖度測定などで
近赤外線を利用する場合には、ハロゲンランプが適す
る。反射鏡24としては、楕円曲面の凹面反射鏡を用い
れば、光線を測定点で効率的に収束させうるので好まし
く、また、放物曲面の反射鏡を用いれば、平行光線にで
きるので好ましい。なお、ランプ23及び反射鏡24は
遮光性の光源ケース26内に収容されている。
Reference numeral 20 denotes a measuring device main body, which comprises a light projecting portion 21 for emitting a measuring light beam and a light receiving portion 22 for spectrally processing the transmitted light, which are installed opposite to each other on both sides of the conveyor conveying path. The light projecting unit 21 includes a light source lamp 23, a reflecting mirror 24, a shutter 25, and the like. As the lamp 23, a lamp that can emit light having a wavelength required for measurement is selected and used. A halogen lamp is suitable when using near infrared rays for sugar content measurement. As the reflecting mirror 24, it is preferable to use a concave reflecting mirror having an elliptic curved surface because the light rays can be efficiently converged at the measurement point, and it is preferable to use a reflecting mirror having a parabolic curved surface because it can make parallel light rays. The lamp 23 and the reflecting mirror 24 are housed in a light-shielding light source case 26.

【0012】光源ケース26の投光口には、シャッター
25が設けられていて、ソレノイド27によって開閉操
作され、測定休止時などに不必要に光線が照射されるの
を防止する。シャッター25の開放時には、ランプ23
から出た光は、直接、あるいは反射鏡24で反射した後
に、光源ケース26の投光口を通って照射され、コンベ
アー1で送られてくる被測定物Aに当たる。光の一部
は、被測定物A内を透過して、受光部22に達するが、
被測定物A内を通る間に、被測定物Aの内部性状による
影響を受ける。例えば、青果物の糖度測定の場合には、
照射された近赤外線(波長、700〜1100nm)の
内の特定の波長の分光が糖度による影響を受ける。な
お、実際の測定時には、糖度による影響を受ける波長の
他、その補正の為の波長の分光も測定する必要があり、
730、740、761、783、833、840、8
60、880、906nm付近の波長の分光を測定す
る。
A shutter 25 is provided at the light projecting port of the light source case 26, and is opened / closed by a solenoid 27 to prevent unnecessary irradiation of light rays when the measurement is stopped. When the shutter 25 is opened, the lamp 23
The light emitted from the device is directly or after being reflected by the reflecting mirror 24, irradiated through the light projecting port of the light source case 26, and hits the DUT A sent by the conveyor 1. A part of the light passes through the DUT A and reaches the light receiving section 22,
While passing through the object to be measured A, it is affected by the internal properties of the object to be measured A. For example, when measuring the sugar content of fruits and vegetables,
The spectrum of a specific wavelength in the irradiated near infrared rays (wavelength, 700 to 1100 nm) is affected by the sugar content. In addition, at the time of actual measurement, in addition to the wavelength affected by the sugar content, it is necessary to measure the spectrum of the wavelength for correction,
730, 740, 761, 783, 833, 840, 8
The spectrum of wavelengths near 60, 880 and 906 nm is measured.

【0013】受光部22は、レンズ30、NDフィルタ
ー31、スリット32、回折格子33、ラインセンサ3
4などからなる。レンズ30は集光用であって、到来し
た透過光をスリット32の位置に収束させる為のもので
ある。NDフィルター(ニュートラルフィルター)31
はリファレンス用であって、ソレノイド35によって、
光路に対して開放自在に設けられている。ミカンやトマ
トなどでは透過光量が約4万分の1以下になり、またリ
ンゴや梨などでは約20万分の1以下になるので、ND
フィルター31は被測定物Aの種類に合わせて適宜選定
使用するか、あるいは、NDフィルターは変えずにリフ
ァレンス時の蓄積時間を適宜変えるようにする。このN
Dフィルター31はあくまで光源の状態や、測定環境を
知る為のリファレンス用であり、実際の測定時には使用
せず、開放状態で測定する。
The light receiving section 22 includes a lens 30, an ND filter 31, a slit 32, a diffraction grating 33, and a line sensor 3.
It consists of 4 etc. The lens 30 is for condensing, and is for converging the transmitted light that has arrived at the position of the slit 32. ND filter (neutral filter) 31
Is for reference, and by the solenoid 35,
It is open to the optical path. For mandarin oranges and tomatoes, the amount of transmitted light is about 1 / 40,000 or less, and for apples and pears, about 1 / 200,000 or less.
The filter 31 is appropriately selected and used according to the type of the object to be measured A, or the accumulation time at the time of reference is appropriately changed without changing the ND filter. This N
The D filter 31 is for reference only to know the state of the light source and the measurement environment, and is not used during actual measurement, but is measured in the open state.

【0014】回折格子33としては、フラットフィール
ド凹面型のものが、各波長の分光を全て、平面のライン
センサ34上に焦点を結ばせることができるので、好ま
しい。ラインセンサ34はマルチチャンネル分光光量検
出器で、ライン上に焦点を結んだ各分光の光量を一括し
て読み取ることができる。なお、透過光の光量は極めて
小さいので、電荷蓄積方式のラインセンサを用いる。
As the diffraction grating 33, a flat field concave surface type is preferable because it can focus all of the spectrum of each wavelength on the plane line sensor 34. The line sensor 34 is a multi-channel spectroscopic light amount detector, which can collectively read the light amount of each spectroscopic light focused on the line. Since the amount of transmitted light is extremely small, a charge storage type line sensor is used.

【0015】ラインセンサ34では、直線方向に多数の
画素が並んでいて、各画素ごとにフォトダイオードが設
けられている。そして、電荷蓄積方式では、各フォトダ
イオードにコンデンサ及びスイッチが付いていて、フォ
トダイオードで発生した電荷、即ち、光信号から電気信
号に光電変換されて発生した電荷は一時的にコンデンサ
に蓄積され、その後、順次スイッチを開いて、蓄積電荷
量を読み出していく。この為、光量が少なくても、この
蓄積によって大きな出力信号が得られ、かつ、時間をず
らして順次読んでいくので、1本の出力ラインでの読み
出しが可能である。実施例では、このラインセンサに、
浜松ホトニクス(株)製の「MOSリニアイメージセン
サ」を用いている。
In the line sensor 34, a large number of pixels are arranged in a straight line direction, and a photodiode is provided for each pixel. In the charge storage method, each photodiode has a capacitor and a switch, and the charge generated in the photodiode, that is, the charge generated by photoelectrically converting an optical signal into an electric signal, is temporarily stored in the capacitor. After that, the switches are sequentially opened to read the accumulated charge amount. Therefore, even if the amount of light is small, a large output signal can be obtained by this accumulation, and reading is performed sequentially with a time shift, so that reading with one output line is possible. In the embodiment, this line sensor
A "MOS linear image sensor" manufactured by Hamamatsu Photonics KK is used.

【0016】また、電荷蓄積方式のラインセンサ34で
は、蓄積時間の増減調節が可能である。従って、被測定
物Aのサイズが大きい場合には、測定点の通過時間が長
くなるので、蓄積時間を増加させることができ、これに
より、サイズが大きくなったことによる透過光量の減少
をカバーでき、サイズの如何にかかわらず、充分な測定
ができるようになる。なお、実施例では、表1のよう
に、被測定物(ミカン)のサイズを4種に分け、各サイ
ズごとに蓄積時間を50〜150m・secの範囲で調
節することにより、ミカンのサイズにかかわらず、充分
な糖度測定ができた。
Further, in the line sensor 34 of the charge storage type, it is possible to increase / decrease the storage time. Therefore, when the size of the object to be measured A is large, the transit time at the measurement point becomes long, so that the accumulation time can be increased, which can cover the decrease in the amount of transmitted light due to the increase in size. Sufficient measurement will be possible regardless of size. In addition, in Example, as shown in Table 1, the size of the object to be measured (mandarin orange) is divided into four types, and the accumulation time is adjusted in the range of 50 to 150 m · sec for each size to obtain the size of mandarin orange. Nevertheless, sufficient sugar content could be measured.

【0017】[0017]

【表1】 [Table 1]

【0018】また、ラインセンサ34の光電変換素子
は、光を受けて温度が上昇すると、感度が狂うのでペル
チェ素子36などを用いて冷却するのがよい。これによ
り、感度が安定し、かつ、暗電流が下がり、蓄積時間を
長くとれるので、微弱光の測定に一層好都合となる。ま
た、受光部22は遮光ケース37内に収容し、外光によ
る影響を遮断するのがよい。
Further, the photoelectric conversion element of the line sensor 34 loses sensitivity when it receives light and its temperature rises, so it is preferable to cool it by using a Peltier element 36 or the like. This stabilizes the sensitivity, reduces the dark current, and extends the storage time, which is more convenient for the measurement of weak light. Further, it is preferable that the light receiving unit 22 is housed in the light shielding case 37 to block the influence of external light.

【0019】38は暗室で、前記のサイズ計測器10や
測定装置本体20などは全てこの暗室内に収容されてい
る。この暗室38の内壁には光反射防止処置を施すのが
よい。また、コンベアー1もこの暗室内を通るので、そ
の出入口には短冊状の遮光カーテンなどを設けて、外光
が内部に侵入しないようにする。
Reference numeral 38 is a dark room, and the size measuring instrument 10 and the measuring device main body 20 are all housed in this dark room. The inner wall of the dark room 38 is preferably provided with a light reflection preventing treatment. Further, since the conveyor 1 also passes through this dark room, a strip-shaped light-shielding curtain or the like is provided at its entrance / exit to prevent outside light from entering the inside.

【0020】40はコンピュータ製の信号処理・制御装
置で、コンベアー1に付設された速度計、受光センサー
12、ソレノイド27,35、ラインセンサー34など
と信号連結されている。従って、サイズ計測器10での
光線遮断時間と、コンベアー1の速度との各信号を受け
て、装置40のコンピュータが被測定物Aのサイズを算
出し、かつ、このサイズに基ずいて、ラインセンサ34
に信号を送って蓄積時間を増減調節する。また、ライン
センサ34による分光光量測定値は装置40のコンピュ
ータに送られ、糖度値などが算出される。
Reference numeral 40 denotes a signal processing / control device made of a computer, which is signal-connected to a speedometer attached to the conveyor 1, a light receiving sensor 12, solenoids 27 and 35, a line sensor 34 and the like. Therefore, the computer of the device 40 calculates the size of the object A to be measured in response to the respective signals of the light beam interruption time in the size measuring device 10 and the speed of the conveyor 1, and the line is calculated based on this size. Sensor 34
To increase or decrease the storage time. Further, the measured value of the spectroscopic light amount by the line sensor 34 is sent to the computer of the device 40, and the sugar content value and the like are calculated.

【0021】なお、本発明は前記の実施例に限定される
ものではなく、特許請求の範囲の記載の範囲内で自由に
変形実施可能である。特に、測定光線の選定、回折格子
やラインセンサの種類、サイズ計測器の構成などは自由
である。
The present invention is not limited to the above-mentioned embodiments, but can be freely modified within the scope of the claims. In particular, the selection of the measurement light beam, the type of diffraction grating or line sensor, the configuration of the size measuring device, etc. are free.

【0022】[0022]

【発明の効果】本発明の光学的測定方法では、分光の光
量測定に電荷蓄積方式を採用し、被測定物のサイズに合
わせて蓄積時間を調節するので、コンベアーなどで搬送
中の被測定物を対象とする測定が可能であり、かつ、被
測定物のサイズの大小にかかわらず充分な測定ができ
る。
In the optical measuring method of the present invention, the charge accumulation method is used for measuring the amount of light in the spectrum, and the accumulation time is adjusted according to the size of the object to be measured. It is possible to perform the measurement targeting at, and sufficient measurement can be performed regardless of the size of the object to be measured.

【0023】本発明の光学的測定装置では、コンベアー
で送られてくる被測定物を、先ずサイズ計測器で大きさ
を測定し、このサイズ測定値に基ずいて、ラインセンサ
の電荷蓄積時間を調節するので、被測定物の大きさにか
かわりなく常に精度の高い測定を行うことができる。ま
た、構造が比較的簡単で、廉価に提供でき、実用上有益
である。
In the optical measuring device of the present invention, the size of the object to be measured sent by the conveyor is first measured by the size measuring device, and the charge accumulation time of the line sensor is calculated based on the size measurement value. Since the adjustment is performed, highly accurate measurement can be always performed regardless of the size of the object to be measured. In addition, the structure is relatively simple and can be provided at a low price, which is practically useful.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の光学的測定装置の概要図。FIG. 1 is a schematic diagram of an optical measuring device of the present invention.

【符号の説明】[Explanation of symbols]

1 ベルトコンベアー 10 サイズ計測器 11 光源 12 受光センサ 20 測定装置本体 21 投光部 22 受光部 23 光源ランプ 24 反射鏡 25 シャッター 30 集光レンズ 31 NDフィルター 32 スリット 33 回折格子 34 ラインセンサ 40 信号処理・制御装置 1 Belt Conveyor 10 Size Measuring Instrument 11 Light Source 12 Light Receiving Sensor 20 Measuring Device Main Body 21 Light Emitting Section 22 Light Receiving Section 23 Light Source Lamp 24 Reflecting Mirror 25 Shutter 30 Condensing Lens 31 ND Filter 32 Slit 33 Diffraction Grating 34 Line Sensor 40 Signal Processing / Control device

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 被測定物に測定用光線を照射し、その透
過光を分光した上で、光量を測定する光学的測定方法に
おいて、搬送中の被測定物を測定対象とし、分光の光量
測定は電荷蓄積方式で行い、被測定物のサイズに合わせ
て蓄積時間を増減調節して測定することを特徴とする光
学的測定方法。
1. An optical measuring method in which an object to be measured is irradiated with a measuring light beam, and the transmitted light is dispersed, and then the amount of light is measured. Is an electric charge storage method, and the storage time is adjusted according to the size of the object to be measured, and then measured.
【請求項2】 被測定物を搬送するコンベアーと、コン
ベアーの近傍に設けられた被測定物サイズ計測器と、コ
ンベアーの両側に対向状に設けられた投光部と受光部と
からなる測定装置本体と、コンベアーの速度計、サイズ
計測器及び測定装置本体にそれぞれ信号連結された信号
処理・制御装置とを具備し、前記測定装置本体の投光部
は測定に必要な波長の光線を出せる光源を有し、また受
光部は、被測定物を透過した光を分光する回折格子と、
分光された各波長の光量を測定する、電荷蓄積方式のラ
インセンサとを有する光学的測定装置。
2. A measuring device comprising a conveyer for conveying an object to be measured, an object size measuring device provided in the vicinity of the conveyor, and a light projecting portion and a light receiving portion provided on opposite sides of the conveyor so as to face each other. A light source capable of emitting a light beam having a wavelength necessary for measurement, which includes a main body, a conveyor speedometer, a size measuring device, and a signal processing / control device that is signal-coupled to the measuring device main body. Also, the light receiving unit has a diffraction grating that disperses the light transmitted through the object to be measured,
An optical measuring device having a line sensor of a charge storage system, which measures the amount of light of each wavelength separated.
JP4194494A 1994-02-15 1994-02-15 Optical measurement method and device Expired - Lifetime JP3056037B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4194494A JP3056037B2 (en) 1994-02-15 1994-02-15 Optical measurement method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4194494A JP3056037B2 (en) 1994-02-15 1994-02-15 Optical measurement method and device

Publications (2)

Publication Number Publication Date
JPH07229840A true JPH07229840A (en) 1995-08-29
JP3056037B2 JP3056037B2 (en) 2000-06-26

Family

ID=12622328

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4194494A Expired - Lifetime JP3056037B2 (en) 1994-02-15 1994-02-15 Optical measurement method and device

Country Status (1)

Country Link
JP (1) JP3056037B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1048123A (en) * 1996-08-06 1998-02-20 Kubota Corp Spectral analyzer
WO2000079247A1 (en) * 1999-06-21 2000-12-28 Kabushikikaisha Kajitsuhihakaihinshitsukenkyujo Side multiple-lamp on-line inside quality inspecting device
WO2001022062A1 (en) * 1999-09-24 2001-03-29 Kabushikikaisha Kajitsuhihakaihinshitsu Kenkyujo Two side multiple lamp online inner part inspection apparatus
JP2001153791A (en) * 1999-11-30 2001-06-08 Olympus Optical Co Ltd Photo detecting apparatus
WO2001079814A1 (en) * 2000-04-13 2001-10-25 Mitsui Mining & Smelting Co.,Ltd. Device for evaluating internal quality of vegetable or fruit, method for warm-up operation of the device, and method for measuring internal quality
JP2002048709A (en) * 2000-07-31 2002-02-15 Mitsui Mining & Smelting Co Ltd Internal quality measuring method for vegetable and fruit internal quality evaluating device
JP2002168772A (en) * 2000-12-05 2002-06-14 Kubota Corp Spectroscope
JP2005164488A (en) * 2003-12-04 2005-06-23 Yanmar Co Ltd Tester and inspection device
JP2008014873A (en) * 2006-07-07 2008-01-24 Yanmar Co Ltd Device for determining internal quality
JP2009294144A (en) * 2008-06-06 2009-12-17 Yanmar Co Ltd Vegetables and fruits quality determination apparatus
JP2010197151A (en) * 2009-02-24 2010-09-09 Saika Gijutsu Kenkyusho Quality measuring instrument
JP2015014527A (en) * 2013-07-05 2015-01-22 住友電気工業株式会社 Abnormality detection device and abnormality detection method
JP2015206778A (en) * 2014-04-11 2015-11-19 株式会社島津製作所 Resin discrimination device
WO2016035444A1 (en) * 2014-09-05 2016-03-10 住友電気工業株式会社 Microscope
WO2016174963A1 (en) * 2015-04-30 2016-11-03 住友電気工業株式会社 Microscope device
CN116448708A (en) * 2023-06-16 2023-07-18 潍坊食品科学与加工技术研究院 Online nondestructive testing equipment for round fruits and vegetables

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1048123A (en) * 1996-08-06 1998-02-20 Kubota Corp Spectral analyzer
KR100539492B1 (en) * 1999-06-21 2005-12-30 가부시키가이샤 카지츠히하카이 힌시츠켄큐조 Side multiple-lamp on-line inside quality inspecting device
WO2000079247A1 (en) * 1999-06-21 2000-12-28 Kabushikikaisha Kajitsuhihakaihinshitsukenkyujo Side multiple-lamp on-line inside quality inspecting device
AU769714B2 (en) * 1999-06-21 2004-01-29 Kabushiki Kaisha Kajitsu Hihakai Hinshitsu Kenkyujo Side multiple-lamp on-line inside quality inspecting device
WO2001022062A1 (en) * 1999-09-24 2001-03-29 Kabushikikaisha Kajitsuhihakaihinshitsu Kenkyujo Two side multiple lamp online inner part inspection apparatus
US7068368B1 (en) 1999-09-24 2006-06-27 Kabushikikaisha Kajitsuhihakaihinshitsukenkyujo Two-side multiple lamp online inner part inspection apparatus
JP2001153791A (en) * 1999-11-30 2001-06-08 Olympus Optical Co Ltd Photo detecting apparatus
WO2001079814A1 (en) * 2000-04-13 2001-10-25 Mitsui Mining & Smelting Co.,Ltd. Device for evaluating internal quality of vegetable or fruit, method for warm-up operation of the device, and method for measuring internal quality
JP2002048709A (en) * 2000-07-31 2002-02-15 Mitsui Mining & Smelting Co Ltd Internal quality measuring method for vegetable and fruit internal quality evaluating device
JP2002168772A (en) * 2000-12-05 2002-06-14 Kubota Corp Spectroscope
JP2005164488A (en) * 2003-12-04 2005-06-23 Yanmar Co Ltd Tester and inspection device
JP2008014873A (en) * 2006-07-07 2008-01-24 Yanmar Co Ltd Device for determining internal quality
JP4589897B2 (en) * 2006-07-07 2010-12-01 ヤンマー株式会社 Internal quality judgment device
JP2009294144A (en) * 2008-06-06 2009-12-17 Yanmar Co Ltd Vegetables and fruits quality determination apparatus
JP2010197151A (en) * 2009-02-24 2010-09-09 Saika Gijutsu Kenkyusho Quality measuring instrument
JP2015014527A (en) * 2013-07-05 2015-01-22 住友電気工業株式会社 Abnormality detection device and abnormality detection method
JP2015206778A (en) * 2014-04-11 2015-11-19 株式会社島津製作所 Resin discrimination device
WO2016035444A1 (en) * 2014-09-05 2016-03-10 住友電気工業株式会社 Microscope
WO2016174963A1 (en) * 2015-04-30 2016-11-03 住友電気工業株式会社 Microscope device
CN107533216A (en) * 2015-04-30 2018-01-02 住友电气工业株式会社 Microscopie unit
CN116448708A (en) * 2023-06-16 2023-07-18 潍坊食品科学与加工技术研究院 Online nondestructive testing equipment for round fruits and vegetables

Also Published As

Publication number Publication date
JP3056037B2 (en) 2000-06-26

Similar Documents

Publication Publication Date Title
EP2188604B1 (en) Spectrometer for measuring moving sample material and the method
US6424416B1 (en) Integrated optics probe for spectral analysis
JP3056037B2 (en) Optical measurement method and device
US4254337A (en) Infrared interference type film thickness measuring method and instrument therefor
CA1123222A (en) Infrared analyzer
JP4018842B2 (en) Target internal quality measuring device
RU2396546C2 (en) Spectrophotometre
US7316322B2 (en) Quality evaluation apparatus for fruits and vegetables
AU777591B2 (en) Integrated optics block for spectroscopy
JP2005134164A (en) Spectrophotometer
JP2007232733A (en) Object internal quality measuring device
JP3903147B2 (en) Non-destructive sugar content measuring device for fruits and vegetables
JP3923011B2 (en) Fruit and vegetable quality evaluation equipment
JP2002098636A (en) Spectroscopic analyzer
US7692790B2 (en) Grating spectrometer system and method for the acquisition of measured values
JP2007232743A (en) Object internal quality measuring device
JP3576105B2 (en) Internal quality measurement device
JP3012450B2 (en) Spectrometer
KR100406838B1 (en) Fast Scanning Double Beam Spectrophotometer for Multichannel Spectroscopy
JP2007232742A (en) Object internal quality measuring device and measuring method
JP3847285B2 (en) Spectroscopic analyzer
JPH06313754A (en) Constituent quantitative analysis device and taste evaluation device
JPH09281035A (en) Spectrometry method and spectrometry apparatus using it
WO2023225112A1 (en) Variable path length absorption spectrometer having automated continuous slope measurement
JPH06273330A (en) Turbidimeter

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090414

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090414

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100414

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100414

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110414

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140414

Year of fee payment: 14

EXPY Cancellation because of completion of term