JP2604905B2 - Solid-state imaging device - Google Patents

Solid-state imaging device

Info

Publication number
JP2604905B2
JP2604905B2 JP2336257A JP33625790A JP2604905B2 JP 2604905 B2 JP2604905 B2 JP 2604905B2 JP 2336257 A JP2336257 A JP 2336257A JP 33625790 A JP33625790 A JP 33625790A JP 2604905 B2 JP2604905 B2 JP 2604905B2
Authority
JP
Japan
Prior art keywords
charge
light receiving
coupled device
electrode
transfer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2336257A
Other languages
Japanese (ja)
Other versions
JPH04207368A (en
Inventor
剛 増田
清高 矢代
義夫 丹下
雄二 宮地
匡 白石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2336257A priority Critical patent/JP2604905B2/en
Priority to EP91310878A priority patent/EP0488647B1/en
Priority to DE69130285T priority patent/DE69130285T2/en
Priority to DE69133197T priority patent/DE69133197T2/en
Priority to EP98200590A priority patent/EP0854517B1/en
Priority to US07/798,964 priority patent/US5249055A/en
Publication of JPH04207368A publication Critical patent/JPH04207368A/en
Application granted granted Critical
Publication of JP2604905B2 publication Critical patent/JP2604905B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/762Charge transfer devices
    • H01L29/765Charge-coupled devices
    • H01L29/768Charge-coupled devices with field effect produced by an insulated gate
    • H01L29/76816Output structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/148Charge coupled imagers
    • H01L27/14831Area CCD imagers

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Electromagnetism (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は固体撮像装置に関し、特に、電荷結合素子
(Charge Coupled Device;以下、CCDと称す)の電荷
入力手段の構造に関するものである。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid-state imaging device, and more particularly, to a structure of a charge input device of a charge coupled device (hereinafter, referred to as a CCD).

〔従来の技術〕[Conventional technology]

一般にリニアイメージセンサでは一次元に配置された
複数の受光素子の信号電荷を一本のCCDを用いて読み出
す方式が採用されている。近年、高解像度化の要求が強
まり、それに伴って受光素子数も増大する傾向にある。
しかしながら、受光素子数が増大するとCCDの段数が増
え、全転送効率の悪化や、データレートの高速化等の問
題があり、それを解決する一つの方法として第10図に示
すような中央部で受光素子を分け、直列に配置された2
本のCCDで信号を読み出す方法が考えられている。
In general, a linear image sensor adopts a method of reading out signal charges of a plurality of light receiving elements arranged one-dimensionally using a single CCD. In recent years, the demand for higher resolution has increased, and the number of light receiving elements has tended to increase accordingly.
However, as the number of light receiving elements increases, the number of CCD stages increases, and there are problems such as deterioration of the total transfer efficiency and speeding up of the data rate. The light receiving element is divided and two
A method of reading a signal with a book CCD has been considered.

第10図において、3は半導体基板であり、その半導体
基板3上には光電変換部を構成する複数のフォトダイオ
ード(受光素子)4が1列に配列して形成されており、
このフォトダイオード4の配列と平行に2本のCCD5が形
成されている。また、それぞれのフォトダイオード4と
CCD5の電荷転送部との間には個別にトランスファゲート
6が形成され、フォトダイオード4に蓄積された信号電
荷をトランスファゲート6のオン動作でCCD5に移すよう
にしている。また、CCD5の終端には出力増幅器7が形成
され、CCD部5によって転送されてきた信号電荷を出力
増幅器7で増幅して固体撮像素子チップ1の外部に出力
するようにしている。また2はCCD5の初段部に設けられ
た電荷入力手段で、電気的に電荷をCCDに注入できるよ
うにしてある。この電荷入力手段2は、撮像モード時以
外の時に、外部からCCD5に電気的に電荷を注入し、CCD
5,出力増幅器7を電気的にチエックし、それらの校正を
行ったり、またあるいはCCD5の製造段階で、CCD5を構成
する各転送電極のテストを行うためのものである。
In FIG. 10, reference numeral 3 denotes a semiconductor substrate, on which a plurality of photodiodes (light receiving elements) 4 constituting a photoelectric conversion unit are formed in a line, and
Two CCDs 5 are formed in parallel with the arrangement of the photodiodes 4. Also, each photodiode 4 and
Transfer gates 6 are individually formed between the charge transfer sections of the CCD 5, and the signal charges accumulated in the photodiodes 4 are transferred to the CCD 5 when the transfer gates 6 are turned on. An output amplifier 7 is formed at the end of the CCD 5, and the signal charges transferred by the CCD unit 5 are amplified by the output amplifier 7 and output to the outside of the solid-state imaging device chip 1. Reference numeral 2 denotes charge input means provided at the first stage of the CCD 5 so that charges can be electrically injected into the CCD. The electric charge input means 2 electrically injects electric charge from outside into the CCD 5 except when in the imaging mode, and
5, to electrically check the output amplifier 7 and to calibrate them, or to test each transfer electrode constituting the CCD 5 at the stage of manufacturing the CCD 5.

また、第11図は、電荷入力手段2の構造を詳細に示す
図で、10は電荷入力端子、8,9は電荷入力端子10から入
力される電荷量を制御するための電荷入力制御ゲート、
11,12はCCD5の転送電極である。
FIG. 11 is a diagram showing the structure of the charge input means 2 in detail, where 10 is a charge input terminal, 8 and 9 are charge input control gates for controlling the amount of charge input from the charge input terminal 10,
11 and 12 are transfer electrodes of CCD5.

次に電荷入力モード時の動作について図を用いて説明
する。
Next, the operation in the charge input mode will be described with reference to the drawings.

第12図(a)は電荷入力モード時の第11図のC−C′
部における断面図とそのポテンシャルを、また、同図
(b)は各端子に入力される信号の波形を示している。
FIG. 12 (a) is a sectional view taken along the line CC 'in FIG. 11 in the charge input mode.
FIG. 3B shows a cross-sectional view of the portion and its potential, and FIG. 3B shows the waveform of a signal input to each terminal.

電荷入力端子10,及び転送電極11,12の信号入力端子に
はそれぞれクロックパルスI,Φ1,Φ2が入力され、電荷
入力制御ゲート8,9の信号入力端子には直流電圧VGIL,VG
IHが印加される。
Clock pulses I, Φ1, Φ2 are input to the charge input terminal 10 and the signal input terminals of the transfer electrodes 11, 12, respectively, and the DC voltages VGIL, VG are applied to the signal input terminals of the charge input control gates 8, 9, respectively.
IH is applied.

まず、時刻t1には、電荷入力端子10,転送電極12は高
レベル、転送電極11は低レベルに設定されている。
First, at time t1, the charge input terminal 10 and the transfer electrode 12 are set to a high level, and the transfer electrode 11 is set to a low level.

時刻t1からt2になると、電荷入力端子10の入力信号I
が高レベルから低レベルに変化し、電荷入力端子10から
電荷が入力制御ゲート8,9下のポテンシャル井戸に流入
し、さらに時刻t3になると、電荷入力端子10は再び高レ
ベルとなり、入力電荷(Q0)は入力制御ゲート9下のポ
テンシャル井戸に蓄積される。
From time t1 to t2, the input signal I of the charge input terminal 10
Changes from a high level to a low level, charges flow from the charge input terminal 10 into the potential wells below the input control gates 8, 9, and at time t3, the charge input terminal 10 goes high again, and the input charge ( Q 0 ) is accumulated in a potential well below the input control gate 9.

次に時刻t4になると、Φ1に“H"、Φ2に“L"が印加
され、転送電極11が高レベル、転送電極12が低レベルと
なり、計量された電荷(Q0)はCCD転送電荷下のポテン
シャル井戸内に流入する。
Next, at time t4, “H” is applied to Φ1 and “L” is applied to Φ2, the transfer electrode 11 is at a high level, the transfer electrode 12 is at a low level, and the measured charge (Q 0 ) is lower than the CCD transfer charge. Flows into the potential well.

次に撮像モード時の場合について説明する。 Next, the case of the imaging mode will be described.

第13図(a)は撮像モード時の第11図のC−C′部の
断面におけるポテンシャルを、同図(b)は各端子に入
力される信号波形を示している。
FIG. 13 (a) shows the potential in the cross section taken along the line CC 'in FIG. 11 in the imaging mode, and FIG. 13 (b) shows the signal waveform inputted to each terminal.

転送電極11,12の信号入力端子にそれぞれクロックパ
ルスΦ1,Φ2を入力し、電荷入力制御ゲート8,9の信号
入力端子には直流電圧VGIL,VGIHを印加する。
Clock pulses Φ1 and Φ2 are input to the signal input terminals of the transfer electrodes 11 and 12, respectively, and DC voltages VGIL and VGIH are applied to the signal input terminals of the charge input control gates 8 and 9, respectively.

時刻t1とt2との間にトランスファゲート(TG)6が開
き、受光素子4−1,4−2で検出された信号電荷Q1,Q2
それぞれ対応する転送電極11下のポテンシャル井戸内に
転送される。
The transfer gate (TG) 6 is opened between the times t1 and t2, and the signal charges Q 1 and Q 2 detected by the light receiving elements 4-1 and 4-2 are placed in the potential wells under the corresponding transfer electrodes 11 respectively. Will be transferred.

その後、時刻t3で転送電極11の信号Φ1を“H"レベ
ル、転送電極12の信号Φ2を“L"レベルとし、信号電荷
Q1,Q2を次段の転送電極12下のポテンシャル井戸内に転
送する。その後、この繰返しにより信号電荷をクロック
パルスに同期させて順次転送していく。
Thereafter, at time t3, the signal φ1 of the transfer electrode 11 is set to “H” level, the signal φ2 of the transfer electrode 12 is set to “L” level,
Q 1 and Q 2 are transferred into the potential well below the transfer electrode 12 in the next stage. Thereafter, by repeating this, the signal charges are sequentially transferred in synchronization with the clock pulse.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

従来のリニアイメージセンサの電荷入力部2は以上の
ように構成されていたので、電荷入力部2の受光素子4
の配列ピッチが他の部分より大きくなるという問題があ
った。
Since the charge input unit 2 of the conventional linear image sensor is configured as described above, the light receiving element 4 of the charge input unit 2
There is a problem that the arrangement pitch of is larger than other parts.

即ち、例えば、転送電極11,12の幅を8μmとして、
隣接する受光素子(例えば4−1と42)の間隔(図中、
l1)を16μmと設計した場合、電荷入力部2の受光素子
4−1同士の間隔(図中、l2)は、電荷入力端子の幅を
4μm,電荷入力制御ゲート8,9の幅をそれぞれ3μm,5μ
mとした場合、31μm必要であった。
That is, for example, assuming that the width of the transfer electrodes 11 and 12 is 8 μm,
The interval between adjacent light receiving elements (for example, 4-1 and 42) (in the figure,
When l1) is designed to be 16 μm, the distance between the light receiving elements 4-1 of the charge input section 2 (l2 in the figure) is such that the width of the charge input terminal is 4 μm and the width of the charge input control gates 8 and 9 is 3 μm each. , 5μ
In the case of m, 31 μm was required.

このように電荷入力部2のスペースが大きく、この部
分での受光素子の配列ピッチが大きくなると、電荷入力
部2で解像度が大幅に低下し、素子内で均一な解像度を
得ることはできなかった。
As described above, when the space of the charge input section 2 is large and the arrangement pitch of the light receiving elements in this section is large, the resolution is significantly reduced in the charge input section 2 and it is not possible to obtain a uniform resolution in the element. .

この発明は上記のような問題点を解消するためになさ
れたもので、CCDの初段部に電荷入力部を設けた場合
に、CCDの電荷入力部に対応する受光素子の配列ピッチ
が他の部分と同じである固体撮像装置を得ることを目的
とする。
The present invention has been made in order to solve the above-described problem.When a charge input portion is provided in a first stage portion of a CCD, the arrangement pitch of light receiving elements corresponding to the charge input portion of the CCD is different from that of another portion. It is intended to obtain a solid-state imaging device that is the same as described above.

また、さらにこの発明によれば、CCDの初段部に電荷
入力部を設けた場合に、CCDの電荷入力部に対応する受
光素子の配列ピッチを他の部分と同等にでき、しかも電
荷入力モード時に高精度のバイアス電源を用いてこれを
駆動できる固体撮像装置を得ることを目的とする。
Further, according to the present invention, when the charge input section is provided in the first stage of the CCD, the arrangement pitch of the light receiving elements corresponding to the charge input section of the CCD can be made equal to that of other parts, and in the charge input mode. It is an object of the present invention to obtain a solid-state imaging device capable of driving the same using a high-precision bias power supply.

〔課題を解決するための手段〕[Means for solving the problem]

この発明に係る固体撮像装置は、半導体基板と、該半
導体基板の一主面に所定のピッチで列状に配設された複
数の受光素子と、該列状の受光素子の側方に該受光素子
の各々にその一端が接するようそれぞれ配設された、該
受光素子で検出した信号電荷の読出しを制御するための
トランスファゲートと、前記列状の受光素子の始端から
2番目以降に位置する受光素子に対応するトランスファ
ゲートの他端にそれぞれ接し,かつ前記受光素子の配置
方向に沿って直列に相互に接するよう配設された、前記
トランスファゲートのオン動作により前記受光素子の信
号電荷を読出しこれを次段に転送するための複数の電荷
転送部を有する電荷結合素子と、該電荷結合素子の延長
上に順次相互に接するよう配設された,入力電荷量を制
御するための第1,第2の電極、及び該第1の電極に接す
るよう配設された,外部から電荷を入力するための電荷
入力源で構成され、該第2の電極が前記電荷結合素子の
初段の電荷転送部,及び前記列状の受光素子の始端に位
置する受光素子に対応するトランスファゲートの他端に
それぞれ接するよう配置され、かつ該第2の電極が前記
トランスファゲートのオン動作により前記受光素子の信
号電荷を読出しこれを前記電荷結合素子に転送するため
のものである電荷入力手段とを備えたものである。
A solid-state imaging device according to the present invention includes: a semiconductor substrate; a plurality of light receiving elements arranged in a row at a predetermined pitch on one main surface of the semiconductor substrate; and a light receiving element on a side of the row of light receiving elements. A transfer gate for controlling reading of signal charges detected by the light receiving element, which is disposed so that one end of the light receiving element is in contact with each of the elements; A signal charge of the light receiving element is read out by an on operation of the transfer gate, which is disposed so as to be in contact with the other end of the transfer gate corresponding to the element and to be in series contact with each other in the arrangement direction of the light receiving element. Device having a plurality of charge transfer portions for transferring the next charge to the next stage, and a first and a second device for controlling the amount of input charges, which are arranged on the extension of the charge-coupled device so as to be sequentially in contact with each other. And a charge input source disposed in contact with the first electrode for inputting charges from the outside, wherein the second electrode is a first-stage charge transfer unit of the charge-coupled device, and The second electrode is arranged so as to be in contact with the other end of the transfer gate corresponding to the light receiving element located at the start end of the row of light receiving elements, and the second electrode reads out the signal charge of the light receiving element by turning on the transfer gate. And a charge input means for transferring the charge to the charge-coupled device.

また、この発明に係る固体撮像装置は、半導体基板
と、該半導体基板の一主面に複数の列をなすよう配設さ
れた複数の受光素子と、該各列の受光素子の側方に該受
光素子の各々にその一端が接するようそれぞれ配設され
た、該受光素子で検出した信号電荷の読出しを制御する
ためのトランスファゲートと、前記各列の各受光素子に
対応するトランスファゲートの他端にそれぞれ接し,か
つ前記各列の受光素子の配置方向に沿って直列に相互に
接するよう配設され、前記トランスファゲートのオン動
作により前記受光素子の信号電荷を読出しこれを次段に
転送するための複数の電荷転送部を有する複数の第1の
電荷結合素子と、前記受光素子の列の最初から2番目以
降の列に対応する第1の電荷結合素子の最終段の電荷転
送部にそれぞれ接し,かつ前記第1の電荷結合素子の配
列方向に直列に相互に接するよう配設された、前記第1
の電荷結合素子の信号電荷を受け取りこれを次段に転送
するための複数の電荷転送部を有する第2の電荷結合素
子と、該第2の電荷結合素子の延長上に順次相互に接す
るよう配設された,入力電荷量を制御するための第1,第
2の電極、及び該第1の電極に接するよう配設された,
外部から電荷を入力するための電荷入力源で構成され、
該第2の電極が前記第2の電荷結合素子の初段の電荷転
送部,及び前記受光素子の列の最初の列に対応する第1
の電荷結合素子の最終段の電荷転送部にそれぞれ接する
よう配置され、かつ該第2の電極が前記第1の電荷結合
素子の信号電荷を受け取りこれを前記第2の電荷結合素
子に転送するためのものである電荷入力手段とを備えた
ものである。
Further, a solid-state imaging device according to the present invention includes a semiconductor substrate, a plurality of light receiving elements arranged in a plurality of rows on one main surface of the semiconductor substrate, and a plurality of light receiving elements beside the light receiving elements in each row. A transfer gate for controlling the reading of the signal charge detected by the light receiving element, the transfer gate being provided so that one end thereof is in contact with each of the light receiving elements, and the other end of the transfer gate corresponding to each light receiving element in each column , And in series with each other along the direction in which the light receiving elements in each column are arranged. The signal charges of the light receiving elements are read out by the ON operation of the transfer gate, and are transferred to the next stage. A plurality of first charge-coupled devices having a plurality of charge transfer portions, and a last-stage charge transfer portion of the first charge-coupled device corresponding to the second and subsequent columns of the column of the light receiving elements. , One the disposed so as to contact each other in series in the direction of arrangement of the first charge-coupled device, the first
A second charge-coupled device having a plurality of charge transfer portions for receiving and transferring the signal charge of the charge-coupled device of the second charge-coupled device to the next stage; A first and a second electrode for controlling the amount of input electric charge, and a first electrode and a second electrode disposed in contact with the first electrode;
It consists of a charge input source for inputting charge from outside,
The second electrode is a first-stage charge transfer unit of the second charge-coupled device, and a first electrode corresponding to a first column of the column of the light-receiving devices.
And the second electrode receives the signal charge of the first charge-coupled device and transfers the signal charge to the second charge-coupled device. And charge input means.

また、この発明に係る固体撮像装置は、半導体基板
と、該半導体基板の一主面に所定のピッチで列状に配設
された複数の受光素子と、該列状の受光素子の側方に該
受光素子の各々にその一端が接するようそれぞれ配設さ
れた、該受光素子で検出した信号電荷の読出しを制御す
るためのトランスファゲートと、前記列状の受光素子の
始端から2番目以降に位置する受光素子に対応するトラ
ンスファゲートの他端にそれぞれ接し,かつ前記受光素
子の配置方向に沿って直列に相互に接するよう配設され
た、前記トランスファゲートのオン動作により前記受光
素子の信号電荷を読出しこれを次段に転送するための複
数の電荷転送部を有する電荷結合素子と、該電荷結合素
子の延長上に順次相互に接するよう配設された,入力電
荷量を制御するための第1ないし第3の電極,及び該第
1の電極の前記受光素子と反対の側に接するよう配設さ
れた,外部から電荷を入力するための電荷入力源で構成
され、該第3の電極が前記電荷結合素子の初段の電荷転
送部,及び前記列状の受光素子の始端に位置する受光素
子に対応するトランスファゲートの他端にそれぞれ接す
るよう配置され、かつ該第3の電極が前記トランスファ
ゲートのオン動作により前記受光素子の信号電荷を読出
しこれを前記電荷結合素子に転送するためのものである
電荷入力手段とを備えたものである。
Further, a solid-state imaging device according to the present invention includes a semiconductor substrate, a plurality of light receiving elements arranged in a row at a predetermined pitch on one main surface of the semiconductor substrate, and a plurality of light receiving elements beside the row of light receiving elements. A transfer gate for controlling the reading of the signal charge detected by the light receiving element, the transfer gate being disposed so that one end thereof is in contact with each of the light receiving elements; A signal charge of the light receiving element is turned on by the transfer gate being in contact with the other end of the transfer gate corresponding to the light receiving element to be connected, and being arranged in contact with each other in series along the arrangement direction of the light receiving element. A charge-coupled device having a plurality of charge transfer sections for reading and transferring the read-out signal to the next stage; and a charge-coupled device for controlling the amount of input charge, which is disposed on the extension of the charge-coupled device so as to be sequentially in contact with each other. The first electrode includes a first electrode to a third electrode, and a charge input source arranged to be in contact with a side of the first electrode opposite to the light receiving element for inputting charge from outside. The third electrode is arranged to be in contact with the other end of the transfer gate corresponding to the first stage charge transfer section of the charge coupled device and the light receiving element located at the start end of the columnar light receiving element, respectively, and the third electrode is connected to the transfer gate. Charge input means for reading out the signal charge of the light receiving element by the ON operation of the element and transferring the signal charge to the charge coupled element.

また、この発明に係る固体撮像装置は、半導体基板
と、該半導体基板の一主面に複数の列をなすよう配設さ
れた複数の受光素子と、該各列の受光素子の側方に該受
光素子の各々にその一端が接するようそれぞれ配設され
た、該受光素子で検出した信号電荷の読出しを制御する
ためのトランスファゲートと、前記各列の各受光素子に
対応するトランスファゲートの他端にそれぞれ接し,か
つ前記各列の受光素子の配置方向に沿って直列に相互に
接するよう配設され、前記トランスファゲートのオン動
作により前記受光素子の信号電荷を読出しこれを次段に
転送するための複数の電荷転送部を有する複数の第1の
電荷結合素子と、前記受光素子の列の最初から2番目以
降の列に対応する第1の電荷結合素子の最終段の電荷転
送部にそれぞれ接し,かつ前記第1の電荷結合素子の配
列方向に直列に相互に接するよう配設された、前記第1
の電荷結合素子の信号電荷を受け取りこれを次段に転送
するための複数の電荷転送部を有する第2の電荷結合素
子と、該第2の電荷結合素子の延長上に順次相互に接す
るよう配設された,入力電荷量を制御するための第1な
いし第3の電極,及び該第1の電極の前記受光素子と反
対の側に接するよう配設された,外部から電荷を入力す
るための電荷入力源で構成され、該第3の電極が前記第
2の電荷結合素子の初段の電荷転送部,及び前記受光素
子の列の最初の列に対応する第1の電荷結合素子の最終
段の電荷転送部にそれぞれ接するよう配置され、かつ該
第3の電極が前記第1の電荷結合素子の信号電荷を受け
取りこれを前記第2の電荷結合素子に転送するためのも
のである電荷入力手段とを備えたものであ。
Further, a solid-state imaging device according to the present invention includes a semiconductor substrate, a plurality of light receiving elements arranged in a plurality of rows on one main surface of the semiconductor substrate, and a plurality of light receiving elements beside the light receiving elements in each row. A transfer gate for controlling the reading of the signal charge detected by the light receiving element, the transfer gate being provided so that one end thereof is in contact with each of the light receiving elements, and the other end of the transfer gate corresponding to each light receiving element in each column , And in series with each other along the direction in which the light receiving elements in each column are arranged. The signal charges of the light receiving elements are read out by the ON operation of the transfer gate, and are transferred to the next stage. A plurality of first charge-coupled devices having a plurality of charge transfer portions, and a last-stage charge transfer portion of the first charge-coupled device corresponding to the second and subsequent columns of the column of the light receiving elements. , One the disposed so as to contact each other in series in the direction of arrangement of the first charge-coupled device, the first
A second charge-coupled device having a plurality of charge transfer portions for receiving and transferring the signal charge of the charge-coupled device of the second charge-coupled device to the next stage; A first to a third electrode for controlling the amount of input electric charge, and an electric charge input from the outside which is disposed in contact with the first electrode on the side opposite to the light receiving element. A charge input source, wherein the third electrode is provided at the first stage of the second charge-coupled device, and at the last stage of the first charge-coupled device corresponding to the first column of the light receiving device. Charge input means arranged to be in contact with the charge transfer portions, respectively, and the third electrode is for receiving a signal charge of the first charge-coupled device and transferring the signal charge to the second charge-coupled device; It is provided with.

〔作用〕[Action]

この発明においては、所定ピッチで列状に配置された
受光素子の始端から2番目以降に位置する受光素子に対
応するように電荷結合素子を配置し、該電荷結合素子の
延長上に電荷入力手段を構成する電荷入力源,第1の電
極,及び第2の電極を順次接するよう配置し、かつ該第
2の電極を前記電荷結合素子の初段の電荷転送部に接す
るとともに前記列状の受光素子の始端に位置する受光素
子にトランスファゲートを介して接するよう配置したの
で、第2の電極に加える信号を直流電圧,クロックパル
スと変えることにより、該第2の電極を、電荷モードで
は入力電荷量を制御する電極として、撮像モードでは電
荷結合素子の初段の電荷転送部として動作させることが
でき、列状に配置された受光素子の始端に位置する受光
素子の信号電荷を読出しこれを転送する電極と電荷入力
源との間に存在する電極が従来より1つ減少して1つと
なり、受光素子の配列ピッチを変えることなく、電荷結
合素子の初段部に電荷入力手段を設けることができる。
In the present invention, the charge-coupled devices are arranged so as to correspond to the light-receiving devices located at the second and subsequent positions from the start end of the light-receiving devices arranged in a row at a predetermined pitch, and the charge input means extends on the extension of the charge-coupled devices. A charge input source, a first electrode, and a second electrode are arranged so as to be sequentially in contact with each other, and the second electrode is in contact with a first-stage charge transfer portion of the charge-coupled device, and the row-shaped light-receiving elements Is arranged so as to be in contact with the light receiving element located at the start end of the second electrode via the transfer gate. By changing the signal applied to the second electrode into a DC voltage and a clock pulse, the second electrode is changed to the input charge amount in the charge mode. In the imaging mode, it can operate as the first-stage charge transfer section of the charge-coupled device, and reads the signal charge of the light-receiving device located at the start end of the light-receiving device arranged in a row. The number of electrodes existing between the electrode for transferring the charge and the charge input source is reduced by one from the conventional one to one, and the charge input means is provided at the first stage of the charge coupled device without changing the arrangement pitch of the light receiving elements. Can be provided.

また、この発明においては、所定ピッチで列状に配置
された受光素子の始端から2番目以降に位置する受光素
子に対応するように電荷結合素子を配置し、該電荷結合
素子の延長上に第1ないし第3の電極を順次接するよう
に配置するとともに電荷入力源を該第1の電極の受光素
子と反対の側に接するよう配置し、かつ該第3の電極を
前記電荷結合素子の初段の電荷転送部に接するとともに
前記列状の受光素子の始端に位置する受光素子にトラン
スファゲートを介して接するよう配置したので、第3の
電極に常にクロックパルスを加えることにより、電荷入
力モードではこれを計量した電荷を転送する電極とし
て、動作モードでは電荷結合素子の初段の電荷転送部と
して動作させることができ、第1,第2の電極に高精度の
バイアス電源を用いることができるので、入力電荷量の
計測を高精度にでき、また、電荷入力源を電荷結合素子
の延長上から外方に引き出すように配置しているので、
該電荷入力源の分だけ該電荷結合素子の延長上の配置ス
ペースが節約されるため、受光素子の配列ピッチを変え
ることなく、電荷結合素子の初段部に電荷入力手段を設
けることができる。
Also, in the present invention, the charge-coupled devices are arranged so as to correspond to the light-receiving devices located at the second and subsequent positions from the start end of the light-receiving devices arranged in a row at a predetermined pitch, and The first to third electrodes are arranged so as to be sequentially in contact with each other, the charge input source is arranged so as to be in contact with the side of the first electrode opposite to the light receiving element, and the third electrode is connected to the first stage of the charge-coupled device. Since it is arranged so as to be in contact with the charge transfer section and to be in contact with the light receiving element located at the start end of the column-shaped light receiving element via the transfer gate, the clock pulse is always applied to the third electrode, so that in the charge input mode, this is applied. In the operation mode, it can be operated as the first-stage charge transfer section of the charge-coupled device as an electrode for transferring the measured charge, and a high-precision bias power supply is used for the first and second electrodes. Since bets can, be a measurement of the input charge amount with high accuracy, Further, since the arrangement to pull outwardly a charge input source from the extension of the charge-coupled device,
Since the extension space of the charge coupled device is saved by the charge input source, the charge input means can be provided at the first stage of the charge coupled device without changing the arrangement pitch of the light receiving elements.

〔実施例〕〔Example〕

以下、この発明の一実施例を図について説明する。 An embodiment of the present invention will be described below with reference to the drawings.

第1図は本発明の第1の実施例による固体撮像装置の
構成を示しており、中央部に電荷入力手段があり、その
両側に直列に2本のCCDが配置されている。図におい
て、4は光電変換部で複数の受光素子4−1,4−2,4−3,
4−4…により構成されている。5は光電変換部4で検
出した信号電荷を順次転送するCCD、6はそのオン動作
により光電変換部4で検出した信号電荷をCCD5に送るト
ランスファゲート、10はCCD5に外部から電気的に電荷を
注入するための電荷入力端子、11,12はCCD5の転送電極
でΦ1,Φ2はそれぞれ転送電極11,12の入力信号、13は
電荷入力端子10から入力された電荷を制御する第1の電
荷入力制御ゲート、14は第2の電荷入力制御ゲートと初
段の転送電極の両方の機能を兼ね備えた兼用ゲートであ
り、電荷入力モード時には第2の入力制御ゲートとして
働き、撮像モード時には転送電極11と同様に転送ゲート
として働くものである。
FIG. 1 shows a configuration of a solid-state imaging device according to a first embodiment of the present invention. A charge input means is provided at a central portion, and two CCDs are arranged in series on both sides thereof. In the figure, reference numeral 4 denotes a photoelectric conversion unit, and a plurality of light receiving elements 4-1, 4-2, 4-3,
4-4... 5 is a CCD for sequentially transferring the signal charges detected by the photoelectric conversion unit 4, 6 is a transfer gate for sending the signal charges detected by the photoelectric conversion unit 4 to the CCD 5 by its ON operation, and 10 is an electric charge to the CCD 5 from outside. Charge input terminals for injection, 11 and 12 are transfer electrodes of the CCD 5, Φ1 and Φ2 are input signals of the transfer electrodes 11 and 12, respectively, and 13 is a first charge input for controlling charges input from the charge input terminal 10. The control gate 14 is a dual-purpose gate having both functions of the second charge input control gate and the first-stage transfer electrode. The control gate 14 functions as the second input control gate in the charge input mode, and is the same as the transfer electrode 11 in the imaging mode. It works as a transfer gate.

次に動作について、電荷入力モードの撮像モードに分
けて説明する。
Next, the operation will be described separately for the imaging mode of the charge input mode.

まず、電荷入力モードの場合について説明する。上述
のように電荷入力モード時には兼用ゲート14は、第1の
電荷入力制御ゲート13とともに、第2の電荷入力制御ゲ
ートとして働き、これらは従来例で示した電荷入力制御
ゲート電極8,9と同様の動作をする。
First, the case of the charge input mode will be described. As described above, in the charge input mode, the dual-purpose gate 14 functions as the second charge input control gate together with the first charge input control gate 13, and these are the same as the charge input control gate electrodes 8, 9 shown in the conventional example. Works.

第2図(a)は第1図のA−A′部の断面構造を示す
図とそのポテンシャルを示し、同図(b)は各端子に入
力される信号波形を示している。
FIG. 2A shows a cross-sectional structure taken along the line AA 'of FIG. 1 and its potential, and FIG. 2B shows a signal waveform inputted to each terminal.

電荷入力端子10及び転送電極11,12にはクロックパル
スを入力し、第1の電荷入力制御ゲート13と兼用ゲート
14には直流電圧を印加する。そして、このゲート13,14
に印加する電圧差により、入力電荷の量を計量し、所望
の値に制御している。
A clock pulse is input to the charge input terminal 10 and the transfer electrodes 11 and 12, and the first charge input control gate 13 and the dual-purpose gate are used.
DC voltage is applied to 14. And this gate 13,14
The amount of the input charge is measured by the voltage difference applied to the, and is controlled to a desired value.

時刻t1からt2になると電荷入力端子10から電荷が入力
制御ゲート13及び兼用ゲート14下のポテンシャル井戸に
流入し、t3になると電荷入力端子10は再び高レベルとな
り、計量された入力電荷Q0は兼用ゲート14下のポテンシ
ャル井戸に蓄積される。
From time t1 becomes t2 and the charge from the charge input terminal 10 flows into the input control gate 13 and the combined gate 14 under the potential wells, charge input terminal 10 to become t3 becomes high level again, input charge Q 0 which is metered in It is accumulated in a potential well below the dual-purpose gate 14.

次に時刻がt4になると転送電極12が高レベルとなり電
荷Q0はCCD転送電極12下のポテンシャル井戸内に流入す
る。
Then charge Q 0 time transfer electrodes 12 and becomes t4 goes high flows into the CCD transfer electrode 12 the potential well beneath.

以上のように従来と同様に電荷入力を行うことができ
る。
As described above, charge input can be performed as in the conventional case.

次に撮像モードの場合について説明する。 Next, the case of the imaging mode will be described.

この場合、兼用ゲート14に転送電極11と同相のクロッ
クパルスを入力し、電荷入力制御ゲート13には直流電圧
を印加しておく。
In this case, a clock pulse having the same phase as that of the transfer electrode 11 is input to the dual-purpose gate 14, and a DC voltage is applied to the charge input control gate 13.

第3図(a)は第1図のA−A′部の断面図とそのポ
テンシャルを示す図であり、同図(b)は各端子に入力
される信号波形を示している。
FIG. 3 (a) is a sectional view taken along the line AA 'of FIG. 1 and a diagram showing its potential, and FIG. 3 (b) shows a signal waveform inputted to each terminal.

時刻t1とt2との間にトランスファゲートTG12が開き、
受光素子4−1,4−2の信号電荷Q1,Q2はそれぞれ兼用電
極14と転送電極11の下のポテンシャル井戸内に転送され
る。その後、クロックパルスを印加して転送電極11,兼
用電極14を低レベル、転送電極12を高レベルとして、兼
用電極14下の信号電荷Q1を転送電極12下に転送するとと
もに、転送電極11下の電荷Q2を次段の転送電極下のポテ
ンシャル井戸内に転送する。このような動作により、ク
ロックパルスに同期させて順次信号電荷を転送し、従来
のイメージセンサと同様の動作を行う。
Transfer gate TG12 opens between time t1 and t2,
The signal charges Q 1 and Q 2 of the light receiving elements 4-1 and 4-2 are transferred to the potential wells below the shared electrode 14 and the transfer electrode 11, respectively. Thereafter, the transfer electrodes 11 by applying a clock pulse, the combined electrode 14 low, the transfer electrode 12 as a high level, transfers the signal charge to Q 1 under the combined electrode 14 below the transfer electrodes 12, transfer electrodes 11 below transferring charge Q 2 to the potential well under the next stage transfer electrode. With such an operation, the signal charges are sequentially transferred in synchronization with the clock pulse, and the same operation as the conventional image sensor is performed.

このような本実施例では、入力電荷量を制御する第2
の電極と信号電荷を転送する初段の転送電極とを同一の
電極14により構成したので、従来の基準設計のままで電
荷入力部の受光素子の配列ピッチは以下のようになる。
In the present embodiment as described above, the second control for controlling the input charge amount is performed.
And the first-stage transfer electrode for transferring the signal charges are formed by the same electrode 14, so that the arrangement pitch of the light receiving elements of the charge input section is as follows with the conventional reference design.

即ち、従来と同様に、転送電極11,12の幅を8μmと
し、電荷入力部以外の隣接する受光素子間の間隔(図中
のl1)を16μmで構成した場合には、電荷入力端子10の
幅を4μm、電荷入力制御ゲート13,及び兼用ゲート14
の幅をそれぞれ3.5μm,5μmとすることにより、電荷入
力部2の受光素子4−1同士の間隔(図中のl2)も同様
に16μmに形成できる。
That is, as in the conventional case, when the width of the transfer electrodes 11 and 12 is 8 μm and the interval between adjacent light receiving elements other than the charge input portion (11 in the drawing) is 16 μm, the charge input terminal 10 4 μm width, charge input control gate 13 and dual purpose gate 14
Are 3.5 μm and 5 μm, respectively, so that the distance between the light receiving elements 4-1 of the charge input section 2 (l2 in the figure) can also be formed to 16 μm.

従って、本実施例では電荷入力端子及び電荷入力制御
ゲートのスケールを従来とほとんど変えることなく、電
荷入力部2のスペースを小さくでき、電荷入力部に対応
する部分の受光素子の配列ピッチを、他の部分の受光素
子の配列ピッチと同一にできる。
Therefore, in the present embodiment, the space of the charge input section 2 can be reduced without changing the scale of the charge input terminal and the charge input control gate substantially from the conventional one, and the arrangement pitch of the light receiving elements corresponding to the charge input section can be reduced. Can be the same as the arrangement pitch of the light receiving elements in the portion.

以上のように、このような本実施例によれば、電荷入
力制御電極と転送電極とを同一の電極14により構成し、
これに加える入力信号を変えることにより、電荷入力モ
ード時にはこれを第2の電荷入力制御電極、撮像モード
時にはこれを転送電極として動作させるようにしたの
で、電荷入力部2のスペースを小さくでき、電荷入力部
に対応する部分の受光素子の配列ピッチを、他の部分の
受光素子の配列ピッチと同一にできるので、パターン設
計が極めて容易となる。また、電荷入力部での解像度の
低下もないので、チップ内で均一な解像度が得られる。
As described above, according to the present embodiment, the charge input control electrode and the transfer electrode are configured by the same electrode 14,
By changing the input signal to be added thereto, this is operated as the second charge input control electrode in the charge input mode, and is operated as the transfer electrode in the imaging mode. Therefore, the space of the charge input section 2 can be reduced, and the charge can be reduced. Since the arrangement pitch of the light receiving elements in the portion corresponding to the input section can be made the same as the arrangement pitch of the light receiving elements in the other portions, the pattern design becomes extremely easy. Also, since there is no reduction in resolution at the charge input section, a uniform resolution can be obtained within the chip.

なお、上記実施例では一次元の固体撮像装置について
示したが、本発明はこれに限定されるものではなく、当
然に2次元の固体撮像装置についても適用可能である。
In the above embodiment, a one-dimensional solid-state imaging device has been described. However, the present invention is not limited to this, and is naturally applicable to a two-dimensional solid-state imaging device.

即ち、第4図は上記実施例の電荷入力部2の構成を2
次元の固体撮像装置の水平CCDに応用したものであり、
同図(a)はその全体図、同図(b)は(a)図の電荷
入力部付近を詳細に示した図である。図において、1は
固体撮像素子チップ、2は電荷入力手段、5aは垂直CC
D、5bは水平CCD、6はトランスファゲート、4は光電変
換素子であり、電荷入力部2の構成は兼用ゲート14が垂
直CCD5aの出力端と接続されている点を除けば、上記実
施例の第1図で示したものと全く同一である。
That is, FIG. 4 shows the configuration of the charge input section 2 of the above embodiment as 2
It is applied to horizontal CCD of three-dimensional solid-state imaging device,
FIG. 3A is an overall view thereof, and FIG. 3B is a view showing the vicinity of the charge input section in FIG. 3A in detail. In the figure, 1 is a solid-state image sensor chip, 2 is a charge input means, and 5a is a vertical CC.
D and 5b are horizontal CCDs, 6 is a transfer gate, 4 is a photoelectric conversion element, and the configuration of the charge input unit 2 is the same as that of the above embodiment except that the shared gate 14 is connected to the output terminal of the vertical CCD 5a. It is exactly the same as that shown in FIG.

本構成では、二次元の固体撮像素子を中央部で分け、
受光素子4で検出した信号電荷をトランスファゲート6
を介して垂直CCD5aにより転送し、垂直CCD5aから転送さ
れてきた信号電荷を2つの水平CCD5bにより同時に読み
出している。
In this configuration, the two-dimensional solid-state imaging device is divided at the center,
The signal charge detected by the light receiving element 4 is transferred to a transfer gate 6
And the signal charges transferred from the vertical CCD 5a are simultaneously read out by the two horizontal CCDs 5b.

このような構成においても、水平CCD5bの電荷入力部
2に兼用ゲート14を設け、電荷入力モード時にはこれに
直流電圧を印加して電荷入力制御ゲートとして動作さ
せ、また、撮像モード時にはこれに転送電極11と同期し
たクロックパルスを印加して転送電極として動作させる
とよく、上記実施例と同様に、電荷入力部2のスペース
を小さくでき、この部分に対応した受光素子の配列ピッ
チを、転送電極部分に対応した受光素子の配列ピッチの
同等にでき、電荷入力部を設けたことによる解像度の低
下を防止できる。
Also in such a configuration, a dual-purpose gate 14 is provided in the charge input section 2 of the horizontal CCD 5b, and a direct-current voltage is applied to the charge input mode in the charge input mode to operate as a charge input control gate. It is preferable to operate as a transfer electrode by applying a clock pulse synchronized with 11, and as in the above embodiment, the space of the charge input section 2 can be reduced, and the arrangement pitch of the light receiving elements corresponding to this section can be reduced. The arrangement pitch of the light receiving elements corresponding to the above can be made the same, and a decrease in resolution due to the provision of the charge input section can be prevented.

また、さらに、二次元の固体撮像素子の他の構成例を
第5図に示す。第5図は、第4図の二次元撮像素子をさ
らに対称に上部にも設けた構造を示している。このよう
な構成においても、電荷入力部2の構成を上記の実施例
と同様とすれば、受光素子4の配列ピッチを変えること
なく、同一のピッチで全ての受光素子4を配列でき、パ
ターン形成が極めて容易となるとともに、チップ内の解
像度の均一性を図ることができる。
FIG. 5 shows another configuration example of the two-dimensional solid-state imaging device. FIG. 5 shows a structure in which the two-dimensional image pickup device of FIG. 4 is further symmetrically provided on the upper part. Even in such a configuration, if the configuration of the charge input section 2 is the same as that of the above-described embodiment, all the light receiving elements 4 can be arranged at the same pitch without changing the arrangement pitch of the light receiving elements 4 and pattern formation. Is extremely easy, and the uniformity of the resolution within the chip can be achieved.

また、第6図は本発明の第2の実施例による固体撮像
装置の構成を示すものであり、第1図の上記実施例のも
のとは電荷入力部の構成が異なっている。
FIG. 6 shows the configuration of a solid-state imaging device according to a second embodiment of the present invention, and the configuration of the charge input section is different from that of the above-described embodiment of FIG.

図において、第1図と同一符号は同一部分を示し、7
1,72は電荷入力端子10から入力される電荷量を制御する
第1,第2の電荷入力制御ゲート、73は第3の電荷入力制
御ゲートとして働き電荷入力制御ゲート71,72で計量さ
れた電荷を転送したり、初段の転送電極として働き、画
素の信号電荷を一時蓄積し、転送を行う兼用ゲートであ
る。
In the figure, the same reference numerals as those in FIG.
Reference numerals 1 and 72 denote first and second charge input control gates for controlling the amount of charge input from the charge input terminal 10, and 73 serves as a third charge input control gate and is measured by the charge input control gates 71 and 72. It is a dual-purpose gate that transfers electric charges and acts as a first-stage transfer electrode, temporarily stores signal electric charges of pixels, and performs transfer.

まず、電荷入力モードの場合について説明する。第7
図(a)は第6図におけるB−B′断面のポテンシャル
を、同図(b)は各端子に入力される信号の波形図を示
している。
First, the case of the charge input mode will be described. Seventh
FIG. 7A shows the potential of the cross section taken along the line BB 'in FIG. 6, and FIG. 7B shows the waveform diagram of the signal input to each terminal.

電荷入力端子10,転送電極11,12,及び兼用ゲート73に
はそれぞれクロックパルスI,Φ1,Φ2,Φ2Fを入力し、電
荷入力制御ゲート71,72には直流電圧VGIL,VGIHを印加す
る。
Clock pulses I, Φ1, Φ2, Φ2F are input to the charge input terminal 10, the transfer electrodes 11, 12, and the shared gate 73, respectively, and DC voltages VGIL, VGIH are applied to the charge input control gates 71, 72, respectively.

まず、時刻t1には、電荷入力端子10,転送電極11には
高レベル,転送電極12及び兼用ゲート73の信号入力端子
には低レベルの信号が入力されている。
First, at time t1, a high-level signal is input to the charge input terminal 10 and the transfer electrode 11, and a low-level signal is input to the signal input terminals of the transfer electrode 12 and the shared gate 73.

時刻t1からt2になると、電荷入力端子10のレベルが下
がり、電荷入力端子10から電荷が入力制御ゲート71,72
下のポテンシャル井戸内に流入する。
From time t1 to t2, the level of the charge input terminal 10 decreases, and charges are transferred from the charge input terminal 10 to the input control gates 71 and 72.
It flows into the lower potential well.

さらに、時刻t3になると、電荷入力端子10は再び高レ
ベルとなり、計量された入力電荷(Q0)は入力制御ゲー
ト72下のポテンシャル井戸のみに蓄積される。
Further, at time t3, the charge input terminal 10 goes high again, and the measured input charge (Q 0 ) is stored only in the potential well below the input control gate 72.

次に時刻t4になると、兼用ゲート73が高レベルとな
り、電荷(Q0)はCCD転送電極11下のポテンシャル井戸
内に転送される。
Next, at time t4, the dual-purpose gate 73 becomes high level, and the charge (Q 0 ) is transferred into the potential well below the CCD transfer electrode 11.

次に撮像モードの場合について説明する。 Next, the case of the imaging mode will be described.

この場合、兼用ゲート73には転送電極12と同相のクロ
ックパルスを入力し、電荷入力制御ゲート71,72には直
流電圧を印加しておく。
In this case, a clock pulse having the same phase as that of the transfer electrode 12 is input to the dual-purpose gate 73, and a DC voltage is applied to the charge input control gates 71 and 72 in advance.

第8図(a)は第6図のB−B′部の断面図とそのポ
テンシャルを示す図であり、同図(b)は各端子に入力
される信号波形を示している。
FIG. 8A is a sectional view taken along the line BB 'in FIG. 6 and a diagram showing its potential, and FIG. 8B shows a signal waveform inputted to each terminal.

時刻t1とt2との間にトランスファゲートTG6が開き、
受光素子4−1,4−2の信号電荷Q1,Q2はそれぞれ兼用電
極73と転送電極12の下のポテンシャル井戸内に転送され
る。
Transfer gate TG6 opens between time t1 and t2,
The signal charges Q 1 and Q 2 of the light receiving elements 4-1 and 4-2 are transferred into the potential wells below the shared electrode 73 and the transfer electrode 12, respectively.

その後、時刻t3において、クロックパルスを印加して
転送電極12,兼用電極73を低レベル、転送電極11を高レ
ベルとして、兼用電極73下の信号電荷Q1を転送電極11下
に転送するとともに、転送電極12下の電荷Q2を次段の転
送電極11下のポテンシャル井戸内に転送する。
Thereafter, at time t3, the transfer electrodes 12 by applying a clock pulse, low level shared electrodes 73, transfer electrodes 11 as a high level, transfers the signal charge to Q 1 under the combined electrode 73 below the transfer electrodes 11, transferring the transfer electrodes 12 charges Q 2 under the next stage of the transfer electrode 11 in the potential well under.

また、時刻t4では、転送電極12,兼用電極73は高レベ
ル、転送電極11は低レベルとなり、転送電極11下の信号
電荷Q1Q2は次段の転送電極12下のポテンシャル井戸内に
転送される。
At time t4, the transfer electrode 12 and the dual-purpose electrode 73 are at a high level, the transfer electrode 11 is at a low level, and the signal charge Q 1 Q 2 under the transfer electrode 11 is transferred into a potential well under the next-stage transfer electrode 12. Is done.

このような動作により、クロックパルスに同期させて
順次信号電荷を転送し、受光素子4で検出した信号を外
部に読み出す。
With such an operation, the signal charges are sequentially transferred in synchronization with the clock pulse, and the signal detected by the light receiving element 4 is read out.

このような本実施例における電荷入力部の受光素子の
配列ピッチは以下のようになる。
The arrangement pitch of the light receiving elements of the charge input section in this embodiment is as follows.

即ち、従来と同様に、転送電極11,12の幅を8μmと
し、電荷入力部以外の受光素子のピッチを16μmとした
場合、例えば、電荷入力端子10の幅を4μmとし、電荷
入力制御ゲート71,72の幅をそれぞれ3.5μm,5μmと
し、兼用ゲート73の幅を5μmに設定すると、電荷入力
部に相当する受光素子4−1間の間隔は上記実施例と同
様に16μmとなり、電荷入力部に対応する部分の受光素
子の配列ピッチを、他の部分の受光素子の配列ピッチと
同一にできる。
That is, as in the conventional case, when the width of the transfer electrodes 11 and 12 is 8 μm and the pitch of the light receiving elements other than the charge input section is 16 μm, for example, the width of the charge input terminal 10 is 4 μm and the charge input control gate 71 , 72 are set to 3.5 μm and 5 μm, respectively, and the width of the dual-purpose gate 73 is set to 5 μm, the interval between the light receiving elements 4-1 corresponding to the charge input section becomes 16 μm as in the above embodiment, and the charge input section Can be made the same as the arrangement pitch of the light receiving elements in the other portions.

ここで、上記第1の実施例では撮像モード時にこれを
初段の転送電極として動作させ、電荷入力モード時には
これを第2の電荷入力制御ゲートとして動作させるた
め、兼用ゲート14には撮像モード時にはクロックパルス
を印加し、電荷入力モード時には直流電圧を印加する必
要があった。このため、兼用ゲート14には常時クロック
パルス源を接続しておき、直流電圧を印加する際にはク
ロックパルス源を用いて一定のバイアスを発生させてお
り、電荷入力時に兼用ゲート14の電位安定化のためのコ
ンデンサを設けることができず、バイアス源としての精
度を上げることは困難であった。
Here, in the first embodiment, in the imaging mode, this operates as the first-stage transfer electrode, and in the charge input mode, it operates as the second charge input control gate. It was necessary to apply a pulse and apply a DC voltage in the charge input mode. For this reason, a clock pulse source is always connected to the dual-purpose gate 14, and a constant bias is generated using the clock pulse source when a DC voltage is applied. Therefore, it is difficult to increase the accuracy as a bias source.

これに対し、第2の実施例では、上記第1の実施例の
電荷入力部2の構造にさらに第3の入力電荷制御ゲート
としてゲートを1つ追加し、電荷入力モード時でも駆動
モード時でも兼用ゲート73をクロックパルスのみで駆動
するよう構成しているので、第1,第2の電荷入力制御ゲ
ート71,72には常に直流バイアスのみ印加することがで
き、電位安定性を要求される電荷入力制御ゲート71,72
に電位安定化のためのコンデンサを設けることが可能と
なり、高精度のバイアス源が形成できる。
On the other hand, in the second embodiment, one gate is further added as a third input charge control gate to the structure of the charge input section 2 of the first embodiment, so that the gate can be used in both the charge input mode and the drive mode. Since the dual-purpose gate 73 is configured to be driven only by the clock pulse, only the DC bias can be applied to the first and second charge input control gates 71 and 72 at all times. Input control gate 71, 72
Can be provided with a capacitor for stabilizing the potential, and a highly accurate bias source can be formed.

また、さらに本第2の実施例では、兼用ゲート73の追
加分だけ電荷入力部2のスペースが広くなるため、第1
の実施例と同等のスペースとなるように電荷入力端子10
をCCD5の外部に引き出して形成している。従って、本実
施例は上記実施例と同様に、受光素子の配列ピッチ及び
解像度をチップ内で均一に保持しつつ、CCDに電荷入力
手段を設けることが可能となる。
Further, in the second embodiment, the space of the charge input section 2 is increased by the addition of the dual-purpose gate 73.
Charge input terminal 10 so that the space becomes equivalent to that of the embodiment of FIG.
Is drawn out of the CCD5. Therefore, in this embodiment, similarly to the above-described embodiment, it is possible to provide the CCD with charge input means while maintaining the arrangement pitch and resolution of the light receiving elements uniformly within the chip.

つまり、本実施例では上記第1の実施例の構成による
効果に加えて、さらに兼用ゲートでの信号の切り換えが
不必要となり、電荷入力制御ゲートに安定したバイアス
源を形成できるという効果がある。
That is, in this embodiment, in addition to the effect of the configuration of the first embodiment, there is no need to switch the signal in the dual-purpose gate, and there is an effect that a stable bias source can be formed in the charge input control gate.

なお、上記実施例では一次元の固体撮像素子について
示したが、本発明の構成についても上記第1の実施例で
述べたのと同様に2次元の固体撮像装置に適用可能であ
る。即ち、第9図は本発明を2次元の固体撮像素子に適
用したものを示したもので、同図(a)はその平面図、
同図(b)は(a)図の電荷入力部の詳細を構成を示し
ている。この場合にも受光素子の配列ピッチを変えるこ
となく、規定の設計基準のままで水平CCD5bの初段部に
電荷入力手段2を設けることが可能である。
Although the one-dimensional solid-state imaging device is described in the above embodiment, the configuration of the present invention is also applicable to a two-dimensional solid-state imaging device as described in the first embodiment. That is, FIG. 9 shows an embodiment in which the present invention is applied to a two-dimensional solid-state imaging device, and FIG.
FIG. 2B shows the details of the configuration of the charge input section shown in FIG. Also in this case, it is possible to provide the charge input means 2 in the first stage of the horizontal CCD 5b without changing the arrangement pitch of the light receiving elements, while keeping the specified design standard.

〔発明の効果〕〔The invention's effect〕

以上のように、この発明によれば、所定ピッチで列状
に配置された受光素子の始端から2番目以降に位置する
受光素子に対応するように電荷結合素子を配置し、該電
荷結合素子の延長上に電荷入力手段を構成する電荷入力
源,第1の電極,及び第2の電極を順次接するよう配置
し、かつ該第2の電極を前記電荷結合素子の初段の電荷
転送部に接するとともに前記列状の受光素子の始端に位
置する受光素子にトランスファゲートを介して接するよ
う配置したので、第2の電極に加える信号を直流電圧,
クロックパルスと変えることにより、該第2の電極を、
電荷モードでは入力電荷量を制御する電極として、撮像
モードでは電荷結合素子の初段の電荷転送部として動作
させることができ、列状に配置された受光素子の始端に
位置する受光素子の信号電荷を読出しこれを転送する電
極と電荷入力源との間に存在する電極が従来より1つ減
少して1つとなり、受光素子の配列ピッチを変えること
なく、電荷結合素子の初段部に電荷入力手段を設けるこ
とができ、解像度を均一に保持しつつ電荷結合素子を稼
働中に電気的検査をすることができる高性能な固体撮像
装置が得られる効果がある。
As described above, according to the present invention, the charge-coupled devices are arranged so as to correspond to the light-receiving devices located at the second and subsequent positions from the start end of the light-receiving devices arranged in a row at a predetermined pitch, and A charge input source, a first electrode, and a second electrode constituting a charge input means are arranged on the extension so as to be sequentially in contact with each other, and the second electrode is in contact with a first-stage charge transfer section of the charge-coupled device. Since it is arranged so as to be in contact with the light receiving element located at the start end of the row of light receiving elements via a transfer gate, a signal applied to the second electrode is a DC voltage,
By changing to a clock pulse, the second electrode is
In the charge mode, it can be operated as an electrode for controlling the amount of input charge, and in the imaging mode, it can be operated as a first-stage charge transfer section of the charge-coupled device. The number of electrodes existing between the electrode for reading and transferring this and the charge input source is reduced by one from the conventional one to one, and the charge input means is provided at the first stage of the charge coupled element without changing the arrangement pitch of the light receiving elements. Thus, there is an effect that a high-performance solid-state imaging device capable of performing an electrical inspection while the charge-coupled device is operating while maintaining uniform resolution is obtained.

また、この発明によれば、所定ピッチで列状に配置さ
れた受光素子の始端から2番目以降に位置する受光素子
に対応するように電荷結合素子を配置し、該電荷結合素
子の延長上に第1ないし第3の電極を順次接するように
配置するとともに電荷入力源を該第1の電極の受光素子
と反対の側に接するよう配置し、かつ該第3の電極を前
記電荷結合素子の初段の電荷転送部に接するとともに前
記列状の受光素子の始端に位置する受光素子にトランス
ファゲートを介して接するよう配置したので、第3の電
極に常にクロックパルスを加えることにより、電荷入力
モードではこれを計量した電荷を転送する電極として、
動作モードでは電荷結合素子の初段の電荷転送部として
動作させることができ、第1,第2の電極に高精度のバイ
アス電源を用いることができるので、入力電荷量の計測
を高精度にできる効果が得られる。また、電荷入力源を
電荷結合素子の延長上から外方に引き出すように配置し
ているので、該電荷入力源の分だけ該電荷結合素子の延
長上の設置スペースが節約されるため、受光素子の配列
ピッチを変えることなく、電荷結合素子の初段部に電荷
入力手段を設けることができ、解像度を均一に保持しつ
つ電荷結合素子を稼働中に電気的検査をすることができ
る高性能な固体撮像装置が得られる効果がある。
Further, according to the present invention, the charge-coupled devices are arranged so as to correspond to the light-receiving devices located at the second and subsequent positions from the start end of the light-receiving devices arranged in a row at a predetermined pitch, and The first to third electrodes are arranged so as to be sequentially in contact with each other, the charge input source is arranged so as to be in contact with the first electrode on the side opposite to the light receiving element, and the third electrode is connected to the first stage of the charge-coupled device. In this case, a clock pulse is always applied to the third electrode so as to be in contact with the charge transfer portion of the column and the light receiving element located at the beginning of the row of light receiving elements via a transfer gate. As an electrode to transfer the measured charge
In the operation mode, the charge-coupled device can be operated as the first-stage charge transfer section, and a high-precision bias power supply can be used for the first and second electrodes, so that the input charge amount can be measured with high accuracy. Is obtained. Further, since the charge input source is disposed so as to be drawn out from the extension of the charge-coupled device, the installation space on the extension of the charge-coupled device can be saved by the amount of the charge input source. A high-performance solid that can provide charge input means at the first stage of the charge-coupled device without changing the arrangement pitch of There is an effect that an imaging device can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の第1の実施例による固体撮像装置にお
ける一次元固体撮像装置の入力部を示す平面図、第2図
は電荷入力モード時の第1図のA−A′断面部のポテン
シャルと各端子に入力される信号の波形を示す図、第3
図は撮像モード時の第1図のA−A′断面部のポテンシ
ャルと各端子に入力される信号の波形を示す図、第4図
は本発明の第1の実施例による固体撮像装置における二
次元の固体撮像装置の入力部を示す図、第5図は第1の
発明による固体撮像装置の一実施例による、二次元固体
撮像素子の他の例を示す図、第6図は本発明の第2の実
施例による固体撮像装置における一次元の固体撮像装置
の入力部を示す平面図、第7図は電荷入力モード時の第
6図のB−B′断面部のポテンシャルと各端子に入力さ
れる信号の波形を示す図、第8図は撮像モード時の第6
図のB−B断面部のポテンシャルと各端子に入力される
信号の波形を示す図、第9図は本発明の第2の実施例に
よる固体撮像装置における二次元の固体撮像装置の入力
部を示す図、第10図は従来の一次元の固体撮像装置を示
す平面図、第11図は第10図の電荷入力部を詳細に示す平
面図、第12図は従来の一次元固体撮像装置の電荷入力モ
ード時の第11図のC−C′断面図のポテンシャルと各端
子に入力される信号波形図、第13図は従来の一次元固体
撮像装置の駆動モード時の第11図のC−C′断面図のポ
テンシャルと各端子に入力される信号波形図である。 図において、1は固体撮像素子のチップ、2は電荷入力
手段、3は半導体基板、4はフォトダイオード(受光素
子)、5はCCD、5aは垂直CCD、5bは水平CCD、6はトラ
ンスファゲート、7は出力増幅器、10は電荷入力端子、
11,12は転送電極、13は第1の電荷入力制御ゲート、14
は第1の実施例による兼用ゲート、71は第1の電荷入力
制御ゲート、72は第2の電荷入力制御ゲート、73は第2
の実施例による兼用ゲートである。 なお図中同一符号は同一又は相当部分を示す。
FIG. 1 is a plan view showing an input section of a one-dimensional solid-state imaging device in a solid-state imaging device according to a first embodiment of the present invention. FIG. 2 is a sectional view taken along the line AA 'of FIG. 1 in a charge input mode. FIG. 3 is a diagram showing a potential and a waveform of a signal input to each terminal, FIG.
FIG. 4 is a diagram showing the potential of the section taken along the line AA 'in FIG. 1 and the waveform of a signal input to each terminal in the imaging mode. FIG. FIG. 5 is a diagram showing an input unit of a two-dimensional solid-state imaging device, FIG. 5 is a diagram showing another example of a two-dimensional solid-state imaging device according to an embodiment of the solid-state imaging device according to the first invention, and FIG. FIG. 7 is a plan view showing an input section of a one-dimensional solid-state imaging device in the solid-state imaging device according to the second embodiment. FIG. 7 is a diagram showing a potential in a section taken along the line BB 'in FIG. FIG. 8 shows a waveform of a signal to be output, and FIG.
FIG. 9 is a diagram showing a potential of a cross section taken along line BB of FIG. 9 and a waveform of a signal input to each terminal. FIG. 9 shows an input unit of a two-dimensional solid-state imaging device in the solid-state imaging device according to the second embodiment of the present invention. FIG. 10, FIG. 10 is a plan view showing a conventional one-dimensional solid-state imaging device, FIG. 11 is a plan view showing the charge input section of FIG. 10 in detail, and FIG. FIG. 13 is a diagram showing potentials and signal waveforms input to respective terminals in the cross-sectional view taken along the line CC ′ in FIG. 11 in the charge input mode. FIG. It is a potential waveform of the C 'sectional view and a signal waveform diagram inputted to each terminal. In the figure, 1 is a solid-state image sensor chip, 2 is a charge input means, 3 is a semiconductor substrate, 4 is a photodiode (light receiving element), 5 is a CCD, 5a is a vertical CCD, 5b is a horizontal CCD, 6 is a transfer gate, 7 is an output amplifier, 10 is a charge input terminal,
11, 12 are transfer electrodes, 13 is a first charge input control gate, 14
Is a shared gate according to the first embodiment, 71 is a first charge input control gate, 72 is a second charge input control gate, and 73 is a second charge input control gate.
Is a dual-purpose gate according to the embodiment. In the drawings, the same reference numerals indicate the same or corresponding parts.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 丹下 義夫 東京都港区浜松町2丁目4番1号 宇宙 開発事業団内 (72)発明者 宮地 雄二 東京都港区浜松町2丁目4番1号 宇宙 開発事業団内 (72)発明者 白石 匡 兵庫県伊丹市瑞原4丁目1番地 三菱電 機株式会社エル・エス・アイ研究所内 (56)参考文献 特開 昭55−163952(JP,A) ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Yoshio Tange 2-4-1 Hamamatsucho, Minato-ku, Tokyo Inside the Space Development Corporation (72) Inventor Yuji Miyaji 2-4-1 Hamamatsucho, Minato-ku, Tokyo Within the Japan Space Development Agency (72) Inventor Tadashi Shiraishi 4-1-1 Mizuhara, Itami-shi, Hyogo Mitsubishi Electric Co., Ltd. LSI Research Institute (56) References JP-A-55-163952 (JP, A)

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】半導体基板と、 該半導体基板の一主面に所定のピッチで列状に配設され
た複数の受光素子と、 該列状の受光素子の側方に該受光素子の各々にその一端
が接するようそれぞれ配設された、該受光素子で検出し
た信号電荷の読出しを制御するためのトランスファゲー
トと、 前記列状の受光素子の始端から2番目以降に位置する受
光素子に対応するトランスファゲートの他端にそれぞれ
接し,かつ前記受光素子の配置方向に沿って直列に相互
に接するよう配設された、前記トランスファゲートのオ
ン動作により前記受光素子の信号電荷を読出しこれを次
段に転送するための複数の電荷転送部を有する電荷結合
素子と、 該電荷結合素子の延長上に順次相互に接するよう配設さ
れた,入力電荷量を制御するための第1,第2の電極、及
び該第1の電極に接するよう配設された,外部から電荷
を入力するための電荷入力源で構成され、該第2の電極
が前記電荷結合素子の初段の電荷転送部,及び前記列状
の受光素子の始端に位置する受光素子に対応するトラン
スファゲートの他端にそれぞれ接するよう配置され、か
つ該第2の電極が前記トランスファゲートのオン動作に
より前記受光素子の信号電荷を読出しこれを前記電荷結
合素子に転送するためのものである電荷入力手段とを備
えたことを特徴とする固体撮像装置。
1. A semiconductor substrate, a plurality of light receiving elements arranged in a row at a predetermined pitch on one principal surface of the semiconductor substrate, and a plurality of light receiving elements beside the row of light receiving elements. A transfer gate for controlling reading of signal charge detected by the light receiving element, which is disposed so that one end thereof is in contact with the light receiving element; The signal charge of the light receiving element is read out by the ON operation of the transfer gate, which is arranged so as to be in contact with the other end of the transfer gate and in series with each other along the arrangement direction of the light receiving element. A charge-coupled device having a plurality of charge transfer portions for transferring, and first and second electrodes for controlling an input charge amount, which are arranged so as to be sequentially in contact with each other on an extension of the charge-coupled device; And said A charge input source arranged to be in contact with one of the electrodes and configured to input a charge from the outside, wherein the second electrode includes a charge transfer portion at a first stage of the charge-coupled device, and the light-receiving device in a row The second electrode is arranged so as to be in contact with the other end of the transfer gate corresponding to the light-receiving element located at the start end of the light-receiving element, and the second electrode reads out the signal charge of the light-receiving element by turning on the transfer gate, and transfers it to the charge-coupled device. A solid-state imaging device, comprising:
【請求項2】半導体基板と、 該半導体基板の一主面に複数の列をなすよう配設された
複数の受光素子と、 該各列の受光素子の側方に該受光素子の各々にその一端
が接するようそれぞれ配設された、該受光素子で検出し
た信号電荷の読出しを制御するためのトランスファゲー
トと、 前記各列の各受光素子に対応するトランスファゲートの
他端にそれぞれ接し,かつ前記各列の受光素子の配置方
向に沿って直列に相互に接するよう配設され、前記トラ
ンスファゲートのオン動作により前記受光素子の信号電
荷を読出しこれを次段に転送するための複数の電荷転送
部を有する複数の第1の電荷結合素子と、 前記受光素子の列の最初から2番目以降の列に対応する
第1の電荷結合素子の最終段の電荷転送部にそれぞれ接
し,かつ前記第1の電荷結合素子の配列方向に直列に相
互に接するよう配設された、前記第1の電荷結合素子の
信号電荷を受け取りこれを次段に転送するための複数の
電荷転送部を有する第2の電荷結合素子と、 該第2の電荷結合素子の延長上に順次相互に接するよう
配設された,入力電荷量を制御するための第1,第2の電
極、及び該第1の電極に接するよう配設された,外部か
ら電荷を入力するための電荷入力源で構成され、該第2
の電極が前記第2の電荷結合素子の初段の電荷転送部,
及び前記受光素子の列の最初の列に対応する第1の電荷
結合素子の最終段の電荷転送部にそれぞれ接するよう配
置され、かつ該第2の電極が前記第1の電荷結合素子の
信号電荷を受け取りこれを前記第2の電荷結合素子に転
送するためのものである電荷入力手段とを備えたことを
特徴とする固体撮像装置。
2. A semiconductor substrate; a plurality of light receiving elements arranged in a plurality of rows on one principal surface of the semiconductor substrate; and a plurality of light receiving elements beside each of the light receiving elements in each row. A transfer gate for controlling reading of signal charges detected by the light receiving element, the transfer gate being arranged so as to be in contact with one end thereof; and a transfer gate corresponding to each light receiving element in each of the columns, and A plurality of charge transfer units arranged in series with each other along the direction in which the light receiving elements of each column are in contact with each other, and for reading out signal charges of the light receiving elements by the on operation of the transfer gate and transferring the signal charges to the next stage; A plurality of first charge-coupled devices having: a first charge-coupled device, a first charge-coupled device corresponding to the second and subsequent columns of the column of the light-receiving devices, and Charge coupling A second charge-coupled device having a plurality of charge transfer units arranged in series in the arrangement direction of the devices so as to receive the signal charge of the first charge-coupled device and transfer the signal charge to the next stage; And a first and a second electrode for controlling an input charge amount, which are sequentially disposed on the extension of the second charge-coupled device so as to be in contact with each other, and are disposed so as to be in contact with the first electrode. And a charge input source for inputting charge from outside.
The first charge-coupled device of the second charge-coupled device;
And the second electrode is arranged so as to be in contact with the last charge transfer portion of the first charge-coupled device corresponding to the first column of the light-receiving device, and the second electrode is a signal charge of the first charge-coupled device. And a charge input means for transferring the received signal to the second charge-coupled device.
【請求項3】半導体基板と、 該半導体基板の一主面に所定のピッチで列状に配設され
た複数の受光素子と、 該列状の受光素子の側方に該受光素子の各々にその一端
が接するようそれぞれ配設された、該受光素子で検出し
た信号電荷の読出しを制御するためのトランスファゲー
トと、 前記列状の受光素子の始端から2番目以降に位置する受
光素子に対応するトランスファゲートの他端にそれぞれ
接し,かつ前記受光素子の配置方向に沿って直列に相互
に接するよう配設された、前記トランスファゲートのオ
ン動作により前記受光素子の信号電荷を読出しこれを次
段に転送するための複数の電荷転送部を有する電荷結合
素子と、 該電荷結合素子の延長上に順次相互に接するよう配設さ
れた,入力電荷量を制御するための第1ないし第3の電
極,及び該第1の電極の前記受光素子と反対の側に接す
るよう配設された,外部から電荷を入力するための電荷
入力源で構成され、該第3の電極が前記電荷結合素子の
初段の電荷転送部,及び前記列状の受光素子の始端に位
置する受光素子に対応するトランスファゲートの他端に
それぞれ接するよう配置され、かつ該第3の電極が前記
トランスファゲートのオン動作により前記受光素子の信
号電荷を読出しこれを前記電荷結合素子に転送するため
のものである電荷入力手段とを備えたことを特徴とする
固体撮像装置。
3. A semiconductor substrate, a plurality of light receiving elements arranged in a row at a predetermined pitch on one main surface of the semiconductor substrate, and a plurality of light receiving elements beside the row of light receiving elements. A transfer gate for controlling reading of signal charge detected by the light receiving element, which is disposed so that one end thereof is in contact with the light receiving element; The signal charge of the light receiving element is read out by the ON operation of the transfer gate, which is arranged so as to be in contact with the other end of the transfer gate and in series with each other along the arrangement direction of the light receiving element. A charge-coupled device having a plurality of charge transfer portions for transferring, a first to a third electrode for controlling an input charge amount, which are arranged so as to be sequentially in contact with each other on an extension of the charge-coupled device; And a charge input source arranged to be in contact with the first electrode on the side opposite to the light receiving element, for inputting charges from the outside, wherein the third electrode is a first stage of the charge-coupled device. The third electrode is arranged so as to be in contact with the other end of the transfer gate corresponding to the charge transfer section and the light receiving element located at the starting end of the column of light receiving elements, and the third electrode is turned on by the transfer gate. A charge input means for reading out the signal charges of the above and transferring the signal charges to the charge coupled device.
【請求項4】半導体基板と、 該半導体基板の一主面に複数の列をなすよう配設された
複数の受光素子と、 該各列の受光素子の側方に該受光素子の各々にその一端
が接するようそれぞれ配設された、該受光素子で検出し
た信号電荷の読出しを制御するためのトランスファゲー
トと、 前記各列の各受光素子に対応するトランスファゲートの
他端にそれぞれ接し,かつ前記各列の受光素子の配置方
向に沿って直列に相互に接するよう配設され、前記トラ
ンスファゲートのオン動作により前記受光素子の信号電
荷を読出しこれを次段に転送するための複数の電荷転送
部を有する複数の第1の電荷結合素子と、 前記受光素子の列の最初から2番目以降の列に対応する
第1の電荷結合素子の最終段の電荷転送部にそれぞれ接
し,かつ前記第1の電荷結合素子の配列方向に直列に相
互に接するよう配設された、前記第1の電荷結合素子の
信号電荷を受け取りこれを次段に転送するための複数の
電荷転送部を有する第2の電荷結合素子と、 該第2の電荷結合素子の延長上に順次相互に接するよう
配設された,入力電荷量を制御するための第1ないし第
3の電極,及び該第1の電極の前記受光素子と反対の側
に接するよう配設された,外部から電荷を入力するため
の電荷入力源で構成され、該第3の電極が前記第2の電
荷結合素子の初段の電荷転送部,及び前記受光素子の列
の最初の列に対応する第1の電荷結合素子の最終段の電
荷転送部にそれぞれ接するよう配置され、かつ該第3の
電極が前記第1の電荷結合素子の信号電荷を受け取りこ
れを前記第2の電荷結合素子に転送するためのものであ
る電荷入力手段とを備えたことを特徴とする固体撮像装
置。
4. A semiconductor substrate; a plurality of light receiving elements arranged in a plurality of rows on one main surface of the semiconductor substrate; and a light receiving element on each side of the light receiving elements in each row. A transfer gate for controlling reading of signal charges detected by the light receiving element, the transfer gate being arranged so as to be in contact with one end thereof; and a transfer gate corresponding to each light receiving element in each of the columns, and A plurality of charge transfer units arranged in series with each other along the direction in which the light receiving elements of each column are in contact with each other, and for reading out signal charges of the light receiving elements by the on operation of the transfer gate and transferring the signal charges to the next stage; A plurality of first charge-coupled devices having: a first charge-coupled device, a first charge-coupled device corresponding to the second and subsequent columns of the column of the light-receiving devices, and Charge coupling A second charge-coupled device having a plurality of charge transfer units arranged in series in the arrangement direction of the devices so as to receive the signal charge of the first charge-coupled device and transfer the signal charge to the next stage; A first to a third electrode for controlling the amount of input charge, and a light-receiving element of the first electrode, the first and third electrodes being arranged so as to be sequentially in contact with each other on an extension of the second charge-coupled device; A charge input source arranged to be in contact with the opposite side for inputting charges from the outside, wherein the third electrode is a first-stage charge transfer portion of the second charge-coupled device, and the light-receiving device; And the third electrode receives the signal charge of the first charge-coupled device, and receives the signal charge of the first charge-coupled device. For transferring to the second charge-coupled device A solid-state imaging device comprising charge input means.
JP2336257A 1990-11-29 1990-11-29 Solid-state imaging device Expired - Fee Related JP2604905B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2336257A JP2604905B2 (en) 1990-11-29 1990-11-29 Solid-state imaging device
EP91310878A EP0488647B1 (en) 1990-11-29 1991-11-26 A solid-state imaging device
DE69130285T DE69130285T2 (en) 1990-11-29 1991-11-26 Solid state imaging device
DE69133197T DE69133197T2 (en) 1990-11-29 1991-11-26 Solid-state imaging device
EP98200590A EP0854517B1 (en) 1990-11-29 1991-11-26 A solid-state imaging device
US07/798,964 US5249055A (en) 1990-11-29 1991-11-27 Solid-state imaging apparatus including external charge input terminal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2336257A JP2604905B2 (en) 1990-11-29 1990-11-29 Solid-state imaging device

Publications (2)

Publication Number Publication Date
JPH04207368A JPH04207368A (en) 1992-07-29
JP2604905B2 true JP2604905B2 (en) 1997-04-30

Family

ID=18297256

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2336257A Expired - Fee Related JP2604905B2 (en) 1990-11-29 1990-11-29 Solid-state imaging device

Country Status (4)

Country Link
US (1) US5249055A (en)
EP (2) EP0854517B1 (en)
JP (1) JP2604905B2 (en)
DE (2) DE69133197T2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6366322B1 (en) * 1991-04-15 2002-04-02 Lg Semicon Co., Ltd. Horizontal charge coupled device of CCD image sensor
JPH05198786A (en) * 1992-01-22 1993-08-06 Sharp Corp Clear-mold ccd solid-state image pickup element
JPH0738077A (en) * 1993-07-23 1995-02-07 Sony Corp Preparation of solid-state imaging device and solid imaging device
JP3370249B2 (en) 1996-12-27 2003-01-27 松下電器産業株式会社 Solid-state imaging device, driving method and manufacturing method thereof
JP4139051B2 (en) * 2000-06-28 2008-08-27 富士フイルム株式会社 Linear image sensor chip and linear image sensor
JP2003285249A (en) 2002-03-27 2003-10-07 Mori Seiki Co Ltd Accuracy analyzing device for machine tool

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3890633A (en) * 1971-04-06 1975-06-17 Rca Corp Charge-coupled circuits
DE2501934C2 (en) * 1974-01-25 1982-11-11 Hughes Aircraft Co., Culver City, Calif. Method for operating a charge-coupled semiconductor component and charge-coupled semiconductor component for carrying out this method
JPS548428A (en) * 1977-06-22 1979-01-22 Hitachi Ltd Address buffer circuit
JPS58130564A (en) * 1982-01-29 1983-08-04 Toshiba Corp Comparator
JPS60119182A (en) * 1983-11-30 1985-06-26 Mitsubishi Electric Corp Solid-state image pickup element
US4647977A (en) * 1985-01-15 1987-03-03 Rca Corporation Charge-coupled-device parallel-to-serial converter
US4896340A (en) * 1985-11-01 1990-01-23 Hughes Aircraft Company Partial direct injection for signal processing system
JPS63226177A (en) * 1986-12-15 1988-09-20 Mitsubishi Electric Corp Csd type solid-state image pickup element
US5063449A (en) * 1988-11-18 1991-11-05 Kabushiki Kaisha Toshiba Solid-state image sensor employing a gate and diode for bias charge injection

Also Published As

Publication number Publication date
EP0488647B1 (en) 1998-09-30
EP0488647A2 (en) 1992-06-03
EP0854517B1 (en) 2003-02-12
EP0854517A2 (en) 1998-07-22
DE69133197T2 (en) 2003-11-27
DE69130285T2 (en) 1999-06-17
JPH04207368A (en) 1992-07-29
DE69130285D1 (en) 1998-11-05
DE69133197D1 (en) 2003-03-20
EP0854517A3 (en) 1998-08-19
US5249055A (en) 1993-09-28
EP0488647A3 (en) 1992-12-23

Similar Documents

Publication Publication Date Title
JP3072936B2 (en) Color sensor array
US6862333B2 (en) CMD and CMD-carrying CCD device
US4117514A (en) Solid state imaging device
US6570615B1 (en) Pixel readout scheme for image sensors
US11050961B2 (en) High scanning frequency CMOS-TDI image sensor
JPS6331279A (en) Image sensor array
JPS6338866B2 (en)
JP2604905B2 (en) Solid-state imaging device
US7196303B2 (en) CCD image sensor
US4862487A (en) Solid-state imaging device
US5760430A (en) Charge transfer device and solid-state imaging apparatus using the same device
US5483283A (en) Three level high speed clock driver for an image sensor
US4752829A (en) Multipacket charge transfer image sensor and method
JP2625721B2 (en) Solid-state imaging device
JPH04262575A (en) Solid state image sensor
JP2519482B2 (en) Charge transfer device
JPS6370453A (en) Charge accumulating device
JPH07135606A (en) Image sensor and its driving method
JPH01225355A (en) Charge-transfer solid-state image sensing device
KR100244267B1 (en) frame segmentation charge coupled device
JPS61105182A (en) Driving circuit of solid-state image pickup element
JPH0758317A (en) Charge coupled device
JPS60163564A (en) Solid-state image sensor
JPH01122280A (en) Line sensor
JPH05292242A (en) Charge transfer device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080129

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090129

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090129

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100129

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees