JP2604624B2 - Hollow spherical thermoplastic resin foam particles and method for producing expanded molded articles using the same - Google Patents

Hollow spherical thermoplastic resin foam particles and method for producing expanded molded articles using the same

Info

Publication number
JP2604624B2
JP2604624B2 JP63174941A JP17494188A JP2604624B2 JP 2604624 B2 JP2604624 B2 JP 2604624B2 JP 63174941 A JP63174941 A JP 63174941A JP 17494188 A JP17494188 A JP 17494188A JP 2604624 B2 JP2604624 B2 JP 2604624B2
Authority
JP
Japan
Prior art keywords
particles
foam
foam particles
particle
thermoplastic resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63174941A
Other languages
Japanese (ja)
Other versions
JPH0228225A (en
Inventor
晋哉 扇
正行 田中
高徳 鈴木
Original Assignee
三菱化学ビーエーエスエフ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱化学ビーエーエスエフ株式会社 filed Critical 三菱化学ビーエーエスエフ株式会社
Priority to JP63174941A priority Critical patent/JP2604624B2/en
Publication of JPH0228225A publication Critical patent/JPH0228225A/en
Application granted granted Critical
Publication of JP2604624B2 publication Critical patent/JP2604624B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Description

【発明の詳細な説明】 (a)発明の目的 (産業上の利用分野) 本発明は実質的に中空球状構造を有し、粒子外皮の膜
厚が比較的に厚い熱可塑性樹脂発泡体粒子、及び同発泡
体粒子を用いる型内発泡成形体の製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Object of the Invention (Industrial Application Field) The present invention relates to a thermoplastic resin foam particle having a substantially hollow spherical structure and a relatively thick particle outer shell, And a method for producing an in-mold foam molded article using the foam particles.

本発明の発泡体粒子は、粒子の外皮膜厚が比較的に厚
くて強度が大で、粒子自体で緩衝材、埋立材、断熱材等
として有利に使用できるばかりでなく、これを用いて型
内発泡成形して得られる成形体は包装材、バンパー芯
材、緩衝材、断熱材、玩具内装材等として有利に使用で
きる。
The foam particles of the present invention have a relatively large outer coating thickness and high strength, and can not only be advantageously used as a cushioning material, a landfill material, a heat insulating material, etc., but also can be used as a mold. The molded product obtained by the inner foam molding can be advantageously used as a packaging material, a bumper core material, a cushioning material, a heat insulating material, a toy interior material and the like.

(従来の技術) 従来、包装緩衝材、断熱材等として、予備発泡させた
ポリスチレン粒子を型内でスチーム加熱等により発泡さ
せて粒子どうしを融着させて得られた密度18〜30g/lの
型内発泡成形体が知られていた。
(Prior art) Conventionally, as a packaging cushioning material, a heat insulating material, etc., a pre-expanded polystyrene particle is foamed in a mold by steam heating or the like, and a density of 18 to 30 g / l obtained by fusing the particles together is obtained. In-mold foam molded articles were known.

かかる型内発泡成形体の製造に用いられる粒径が0.2
〜20mmのポリスチレン予備発泡粒子は、気泡(セル)の
数が60〜300個/mm2のような多数の気泡を有する多泡構
造のものであり、気泡の粒径も、発泡倍率によって20〜
1000μ(好ましくは50〜300μ)であり、かつ粒子の外
皮を形成する気泡膜厚が平均値で0.5〜3μ程度の比較
的に薄い外皮を有するものであった。また、かかる予備
発泡粒子を用いて型内ビーズ発泡成形して得られる型内
ビーズ発泡成形体は、気泡の粒径が20〜1000μ、気泡数
が60〜300個/mm2程度であり、小さい気泡を多数に有す
る構造のものであった。
The particle size used for producing such an in-mold foam molded article is 0.2
The pre-expanded polystyrene particles of up to 20 mm have a multi-bubble structure having a large number of cells such as 60 to 300 cells / mm 2 in number of cells (cells).
It had a relatively thin outer skin having a thickness of 1000 μm (preferably 50 to 300 μm) and an average film thickness of about 0.5 to 3 μm for forming the outer skin of the particles. In addition, the in-mold bead foam molded article obtained by in-mold bead foam molding using such pre-expanded particles has a small bubble particle size of 20 to 1000 μm, a bubble count of about 60 to 300 / mm 2 , and is small. The structure had a large number of air bubbles.

また、熱可塑性樹脂の発泡体粒子としては、ポリプロ
ピレン系のもの(たとえば特公昭59−43491号公報)、
ポリエチレン系のもの(たとえば特公昭51−22951号、
特公昭60−10047号各公報、ポリメチルメタクリレート
共重合体系のもの(たとえば特開昭57−182333号公報)
も知られていたが、これらの発泡体粒子又は予備発泡粒
子の気泡構造、及びそれらの粒子を用いた型内発泡成形
体の気泡構造も、上記のポリスチレン系のものの場合と
ほぼ同様であった。
As the thermoplastic resin foam particles, polypropylene-based particles (for example, JP-B-59-43491),
Polyethylene (for example, Japanese Patent Publication No. 51-22951,
Japanese Patent Publication Nos. 60-10047 and polymethyl methacrylate copolymers (for example, JP-A-57-182333)
Although the cell structure of these foam particles or pre-expanded particles, and the cell structure of the in-mold foam molded article using those particles, were also substantially similar to those of the above-mentioned polystyrene-based material. .

そして従来、この種の熱可塑性樹脂発泡体粒子(予備
発泡粒子を含む)において気泡数が少ないと発泡粒子が
収縮したり、発泡粒子の強度が弱いとされていた。ま
た、その気泡数が少ないと、型内発泡成形して得られる
成形体も収縮を起し、実用性がないとされていた。しか
も、熱可塑性樹脂の発泡体粒子として中空球状構造を有
するものは、従来知られていなかった。
Conventionally, it has been considered that if the number of cells in such thermoplastic resin foam particles (including pre-expanded particles) is small, the expanded particles shrink or the strength of the expanded particles is weak. Also, it has been said that if the number of cells is small, a molded article obtained by in-mold foam molding also shrinks, and is not practical. Moreover, thermoplastic resin foam particles having a hollow spherical structure have not been known.

なお、一般的にみて、中空球状の粒子としては、たと
えばガラスの中空球状粒子(マイクロバルーン)や火山
灰(シラス)の中空球状粒子が知られていた。また、熱
硬化性樹脂については、流延、射出ノズル法等で製造さ
れたメラミン樹脂や尿素樹脂の中空球状粒子が知られて
いた(特公昭62−20212号公報)。しかし、これら公知
の中空球状粒子は樹脂やセメント製品などの充填材等と
して利用できるが、型内ビーズ発泡成形に利用できるよ
うなものではなかった。
Generally, as hollow spherical particles, for example, hollow spherical particles of glass (microballoons) and hollow spherical particles of volcanic ash (silas) have been known. As for thermosetting resin, hollow spherical particles of melamine resin and urea resin produced by casting, injection nozzle method, etc. have been known (Japanese Patent Publication No. 62-20212). However, these known hollow spherical particles can be used as fillers for resins and cement products, but cannot be used for in-mold bead foam molding.

(発明が解決しようとする問題点) 本発明は、中空球状であって比較的に厚い外皮膜を有
し、粒子のままで緩衝材、埋立材、断熱材、充填材等と
して優れているばかりでなく、型内発泡成形用の粒子と
して用いても優れた型内発泡成形体を与えることができ
る熱可塑性樹脂発泡体粒子を提供し、さらにその発泡体
粒子を用いて型内発泡成形体を製造する方法を提供しよ
うとするものである。
(Problems to be Solved by the Invention) The present invention has a hollow spherical shape and a relatively thick outer coating, and is excellent as a buffer, a landfill, a heat insulating material, a filler and the like as particles. Rather, it provides thermoplastic resin foam particles that can provide excellent in-mold foam molded articles even when used as particles for in-mold foam molding, and further provides in-mold foam molded articles using the foam particles. It is intended to provide a method of manufacturing.

(b)発明の構成 (問題点を解決するための手段) 本発明の中空球状熱可塑性樹脂発泡体粒子は、粒子全
容積の50%を超える容積を占める一つの巨大気泡を有す
る実質的に中空球状粒子であり、粒径が0.5〜20mmでか
つ粒子外皮の平均膜厚が3μ以上であることを特徴とす
る粒子である。
(B) Configuration of the Invention (Means for Solving the Problems) The hollow spherical thermoplastic resin foam particles of the present invention are substantially hollow having one giant cell occupying more than 50% of the total volume of the particles. It is a spherical particle having a particle diameter of 0.5 to 20 mm and an average film thickness of the particle coat of 3 μ or more.

また、本発明の熱可塑性樹脂型内発泡成形体の製造法
は、二次発泡能力を有する前記の中空球状熱可塑性樹脂
発泡体粒子を型内に充填し加熱膨張させて発泡体粒子ど
うしを融着させる方法である。
Further, the method for producing a foamed molded article in a thermoplastic resin mold of the present invention comprises filling the above-mentioned hollow spherical thermoplastic resin foamed particles having a secondary foaming ability into a mold and heating and expanding the same to fuse the foamed particles together. It is a method of wearing.

本発明の中空球状熱可塑性樹脂発泡体粒子の外皮膜の
平均膜厚が3μ以上、好ましくは5〜100μである。本
発明におけるこの外皮の平均膜厚とは、発泡体粒子の最
も外側の外皮の平均膜厚をさすが、その外皮が押しつぶ
された小気泡2″が重なり合って形成された構造のもの
であったり、或いは巨大気泡の内側に前記の外皮に密着
して小気泡2″が形成された構造のものである場合に
は、それらの小気泡2″をも含めた膜厚の平均値をさす
ものである。その外皮膜厚が薄すぎると粒子自体及びそ
れより得られる型内発泡成形体の圧縮強さ等の強度や圧
縮回復率が低下してくる。
The average thickness of the outer coating of the hollow spherical thermoplastic resin foam particles of the present invention is 3 μ or more, preferably 5 to 100 μ. In the present invention, the average thickness of the outer skin refers to the average thickness of the outermost outer skin of the foam particles, and has a structure in which the small bubbles 2 ″ in which the outer skin is crushed overlap each other, Alternatively, in the case of a structure in which small bubbles 2 "are formed in close contact with the outer skin inside a giant bubble, the average value of the film thickness including those small bubbles 2" is used. If the outer coating thickness is too thin, the strength such as the compressive strength and the compression recovery rate of the particles themselves and the in-mold foam molded article obtained therefrom are reduced.

本発明の発泡体粒子は、種(シード)として重合体粒
子を存在させた水性媒体中で2種又はそれ以上の不飽和
単量体を重合させるいわゆる懸濁シード重合において、
その重合途中又は重合後の重合体粒子に発泡剤を吸収せ
しめて熱可塑性樹脂の発泡性粒子を製造し、さらにその
発泡性粒子を加熱して発泡させる方法において、その重
合条件を調整することにより製造することができる。
The foam particles of the present invention are used in so-called suspension seed polymerization in which two or more unsaturated monomers are polymerized in an aqueous medium in which polymer particles are present as seeds.
By producing a thermoplastic resin foamable particles by absorbing a foaming agent into the polymer particles during or after the polymerization, and by further heating the foamable particles to expand the foamable particles, by adjusting the polymerization conditions Can be manufactured.

すなわち、粒径が0.1〜2mmの熱可塑性重合体粒子を水
中に種として懸濁せしめた水性懸濁系に、その重合体粒
子を構成する不飽和単量体と、同単量体とは異なる他の
不飽和単量体との2種以上の単量体混合物を滴下しなが
ら懸濁重合を実施し、その重合体粒子及び生成しつつあ
る重合体粒子に前記の単量体混合物を吸収させながら重
合を行なわせ、その懸濁重合の途中又は重合後に、生成
熱可塑性重合体粒子を膨潤も溶解もせしめないか又は僅
かに膨潤せしめるにすぎない発泡剤を添加して、生成熱
可塑性重合体粒子に同発泡剤を吸収させて発泡性樹脂粒
子を製造し、得られた発泡性樹脂粒子を分離してから同
粒子を加熱して見掛密度が10〜200g/l程度になるように
発泡させて熱可塑性樹脂発泡体粒子を製造する方法にお
いて、その重合条件、特に滴下する単量体混合物の組合
わせや単量体混合比率等を適宜に調整することにより、
本発明の中空球状熱可塑性樹脂発泡体粒子を製造するこ
とができる。
That is, in the aqueous suspension system in which the thermoplastic polymer particles having a particle size of 0.1 to 2 mm were suspended as seeds in water, the unsaturated monomer constituting the polymer particles is different from the same monomer. Suspension polymerization is performed while dropping two or more types of monomer mixtures with other unsaturated monomers, and the polymer mixture and the polymer particles being generated absorb the monomer mixture. In the course of or after the suspension polymerization, a foaming agent which does not swell or dissolve or slightly swells the resulting thermoplastic polymer particles is added, and the resulting thermoplastic polymer is added. The same foaming agent is absorbed into the particles to produce expandable resin particles, and the obtained expandable resin particles are separated and then heated to expand the particles so that the apparent density becomes about 10 to 200 g / l. In the method of producing thermoplastic resin foam particles by By adjusting the combination and a monomer mixing ratio, etc. dripping the monomer mixture suitably,
The hollow spherical thermoplastic resin foam particles of the present invention can be produced.

その懸濁シード重合において種(シード)として用い
られる熱可塑性重合体粒子としては、たとえばポリスチ
レン、ポリメチルメタクリレート、ABS、SAN、スチレン
・α−メチルスチレン・アクリロニトリル共重合体、ス
チレン・メタクリル酸メチル共重合体、ポリエチレン、
ポリプロピレン等の重合体粒子があげられる。かかる種
としての熱可塑性重合体粒子は、発泡剤を含有しない非
発泡性重合体粒子であってもよいし、発泡剤を含有する
発泡性の重合体粒子であってもよい。非発泡性重合体粒
子を種として用いた場合には、得られる発泡体粒子及び
それより得られる型内発泡成形体が光沢がよく半透明状
のものとなる。また、発泡性重合体粒子を種として用い
た場合には、得られる発泡体粒子及びそれより得られる
型内発泡成形体が不透明度の高いものとなる。その理由
は、前者の非発泡性粒子を種として用いた場合の発泡体
粒子は第9図に示すようにその外皮が肉厚10〜16μの一
枚のフイルム状の外皮のところどころに30〜60μの小さ
い気泡2″が形成された構造であるのに対し、後者の発
泡性粒子を種として用いた場合の発泡体粒子は第1−b
図に示すように、押しつぶされた小気泡2″が重なりあ
って肉厚が10〜100μの外皮が形成された構造である、
からである。
Examples of the thermoplastic polymer particles used as seeds in the suspension seed polymerization include polystyrene, polymethyl methacrylate, ABS, SAN, styrene / α-methylstyrene / acrylonitrile copolymer, and styrene / methyl methacrylate copolymer. Polymer, polyethylene,
Polymer particles such as polypropylene are exemplified. The thermoplastic polymer particles as such seeds may be non-expandable polymer particles containing no foaming agent, or may be foamable polymer particles containing a foaming agent. When non-expandable polymer particles are used as seeds, the obtained foam particles and the in-mold foam molded product obtained therefrom have a good gloss and a translucent shape. When the expandable polymer particles are used as seeds, the obtained foam particles and the in-mold foam molded product obtained therefrom have high opacity. The reason for this is that the foam particles obtained when the former non-expandable particles are used as seeds are, as shown in FIG. In contrast to the structure in which bubbles 2 ″ having a small diameter are formed, the foam particles when the latter expandable particles are used as seeds are the 1-b
As shown in the figure, the structure is such that crushed small bubbles 2 "overlap and an outer skin with a thickness of 10 to 100μ is formed.
Because.

その懸濁シード重合における不飽和単量体としては、
たとえばスチレン、メタクリル酸メチル、メタクリル酸
エチル、メタクリル酸ブチル、メタクリル酸2−エチル
ヘキシル、アクリル酸アルキルエステル(アルキル基の
炭素数が1〜8のもの)、アクリロニトリル、アクリル
アミド、α−メチルスチレン、p−メチルスチレン、ア
クリル酸、イタコン酸、マレイン酸、N−フェニルマレ
イミド等があげられる。そして、これらの不飽和単量体
は、前述のように、種としての重合体粒子を構成する不
飽和単量体と、同単量体とは水に対する溶解指数の異な
る他の不飽和単量体とを組合わせて使用される。
As the unsaturated monomer in the suspension seed polymerization,
For example, styrene, methyl methacrylate, ethyl methacrylate, butyl methacrylate, 2-ethylhexyl methacrylate, alkyl acrylate (having an alkyl group having 1 to 8 carbon atoms), acrylonitrile, acrylamide, α-methylstyrene, p- Examples include methylstyrene, acrylic acid, itaconic acid, maleic acid, N-phenylmaleimide and the like. These unsaturated monomers are, as described above, an unsaturated monomer constituting a polymer particle as a seed and another unsaturated monomer having a different solubility index to water from the monomer. Used in combination with the body.

そのシード重合における重合開始剤としては、10時間
半減期を得る分解温度が60〜120℃、好ましくは70〜110
℃である有機過酸化物が適する。好ましい重合開始剤の
具体例(具体例に付記したカッコ内の温度は10時間半減
期を得る分解温度である。)としては、t−ブチルパー
オキシ2−エチルヘキサノエート〔72℃〕、ベンゾイル
パーオキサイド〔74℃〕、1,1−ビス(t−ブチルパー
オキシ)−3,5,5−トリメチルシクロヘキサン〔90
℃〕、t−ブチルパーオキシラウレート〔96℃〕、2,5
−ジメチル−2,5−ジ(ベンゾイルパーオキシ)ヘキサ
ン〔100℃〕、t−ブチルパーオキシベンゾエート〔104
℃〕、メチルエチルケトンパーオキサイド〔109℃〕、
ジクミルパーオキサイド〔117℃〕等があげられる。重
合開始剤は、単量体混合物に対して0.05〜2重量%の割
合で用いられる。
As a polymerization initiator in the seed polymerization, a decomposition temperature for obtaining a half-life of 10 hours is 60 to 120 ° C., preferably 70 to 110 ° C.
Organic peroxides which are in ° C are suitable. Specific examples of preferred polymerization initiators (the temperature in parentheses added to the specific examples is a decomposition temperature for obtaining a half-life of 10 hours) include t-butylperoxy 2-ethylhexanoate [72 ° C] and benzoyl. Peroxide [74 ° C], 1,1-bis (t-butylperoxy) -3,5,5-trimethylcyclohexane [90
° C], t-butyl peroxylaurate [96 ° C], 2.5
-Dimethyl-2,5-di (benzoylperoxy) hexane [100 ° C], t-butylperoxybenzoate [104
° C), methyl ethyl ketone peroxide (109 ° C),
And dicumyl peroxide (117 ° C.). The polymerization initiator is used at a ratio of 0.05 to 2% by weight based on the monomer mixture.

そのシード重合の途中又は重合後に添加する発泡剤と
しては、常温常圧下に液体又は気体の有機化合物が使用
されるが、特にその沸点が発泡剤を含浸せしめるべき重
合体粒子の軟化温度より低いものが好ましい。その具体
例としては、プロパン、ブタン、ペンタン、ヘキサン、
石油エーテル等の脂肪族炭化水素、シクロヘキサン等の
環状炭化水素、塩化メチレン、塩化ビニル、トリクロロ
トリフルオロエタン、ジクロロジフルオロエタン等のハ
ロゲン化炭化水素があげられる。
As a foaming agent to be added during or after the seed polymerization, a liquid or gaseous organic compound is used at normal temperature and normal pressure. Particularly, those having a boiling point lower than the softening temperature of the polymer particles to be impregnated with the foaming agent are used. Is preferred. Specific examples include propane, butane, pentane, hexane,
Examples include aliphatic hydrocarbons such as petroleum ether, cyclic hydrocarbons such as cyclohexane, and halogenated hydrocarbons such as methylene chloride, vinyl chloride, trichlorotrifluoroethane, and dichlorodifluoroethane.

かかる懸濁シード重合においてその重合条件を調整し
ながら重合させて得られ、かつ発泡剤を含浸せしめた重
合体粒子を過、洗浄、乾燥して、重合体粒子中に発泡
剤が2〜10重量%、好ましくは3〜8重量%含有された
熱可塑性樹脂の発泡性粒子とし、この発泡性粒子を90〜
110℃の熱水又はスチーム等で加熱して見掛密度が10〜2
00g/lになるように発泡させると、本発明の中空球状熱
可塑性樹脂発泡体粒子が得られる。
In the suspension seed polymerization, the polymer particles obtained by polymerizing while adjusting the polymerization conditions, and impregnated with a foaming agent are washed, washed and dried, and the foaming agent is 2 to 10% by weight in the polymer particles. %, Preferably 3 to 8% by weight of thermoplastic resin expandable particles, and the expandable particles are 90 to 90% by weight.
Heated with hot water or steam at 110 ℃, apparent density is 10 ~ 2
Foaming to give 00 g / l gives the hollow spherical thermoplastic resin foam particles of the present invention.

かかる方法で得られる発泡体粒子は、発泡直後に一旦
収縮することがあるが、空気中に2〜10時間位放置(熟
成)するとその気泡内の気圧が大気圧と同じとなって中
空球状に戻る。そして、かかる本発明の中空球状発泡体
粒子は、通常、二次発泡能力を有していて、その二次発
泡能力は粒子を空気中に50日以上放置しても失なわれな
いことが確認された。
The foam particles obtained by such a method may shrink once immediately after foaming, but when left in the air for about 2 to 10 hours (aging), the air pressure in the air bubbles becomes the same as the atmospheric pressure and becomes a hollow spherical shape. Return. And, the hollow spherical foam particles of the present invention usually have secondary foaming ability, and it is confirmed that the secondary foaming ability is not lost even if the particles are left in air for 50 days or more. Was done.

本発明の中空球状熱可塑性樹脂発泡体粒子は、前述の
懸濁シード重合における重合条件、特に使用する不飽和
単量体(種類)の組合わせ及びその単量体混合比率等を
調整することにより得られるが、それらの好ましい条件
は、種としての重合体粒子の種類、単量体の種類や組合
わせなどに応じて変化し、一定しない。
The hollow spherical thermoplastic resin foam particles of the present invention can be obtained by adjusting the polymerization conditions in the above-mentioned suspension seed polymerization, in particular, by adjusting the combination of unsaturated monomers (types) used and the monomer mixing ratio. Although these conditions are obtained, their preferable conditions vary and vary depending on the type of polymer particles as a seed, the type and combination of monomers, and the like.

一例として、後述の実施例1におけると同一の種重合
体及び単量体を用い、かつその他の重合条件も同一の条
件を用い、ただし滴下する単量体混合物の混合比率だけ
を表1に示すように種々に変化させて重合を行なわせ
た。次いで、得られた各熱可塑性樹脂発泡性粒子を、実
施例1におけると同一の発泡条件を用いて加熱発泡させ
て発泡体粒子を製造した。得られた各発泡体粒子の単量
体含有比、気泡構造、粒径及び粒子外皮の平均膜厚は、
表1にそれぞれ示すとおりであった。
As an example, the same seed polymer and monomer as in Example 1 described below are used, and other polymerization conditions are also the same, except that the mixing ratio of the monomer mixture to be dropped is shown in Table 1. The polymerization was carried out with various changes as described above. Next, the obtained thermoplastic resin expandable particles were heated and foamed under the same foaming conditions as in Example 1 to produce foam particles. The average film thickness of the monomer content ratio of each of the obtained foam particles, the cell structure, the particle size, and the particle envelope is as follows:
Table 1 shows the results.

実験No.1(後述の比較例1)で得られた発泡体粒子
は、第6図に示したような多泡構造の粒子であり、これ
は従来公知の予備発泡体粒子(第10図)と同程度の気泡
数が200〜300個/mm2程度のもの、すなわち粒子1中に
多数の小気泡2″を含有する多泡構造のものであり、粒
子外皮の膜厚が約0.5〜1.0μ程度と薄く、圧縮強度の低
いものであった。
The foam particles obtained in Experiment No. 1 (Comparative Example 1 described later) are particles having a multi-bubble structure as shown in FIG. 6, which are conventionally known pre-foam particles (FIG. 10). The number of bubbles is about 200 to 300 / mm 2 , that is, a multi-bubble structure in which a number of small bubbles 2 ″ are contained in a particle 1, and the particle outer skin has a thickness of about 0.5 to 1.0. It was as thin as μ and had low compressive strength.

そして、実験No.の数が大きくなるにつれて(換言す
れば、滴下単量体混合物中のメタクリル酸メチルの割合
が高くなるにつれて)、mm2当りの気泡数が少なくな
り、したがって気泡の大きさが次第に大きくなり、粒子
外皮の膜厚が3〜100μと厚い粒子が得られた。
Then, as the number of experiments No. increases (in other words, as the proportion of methyl methacrylate in the dropped monomer mixture increases), the number of bubbles per mm 2 decreases, and thus the size of the bubbles decreases. The particles gradually increased in size, and thick particles having a particle skin thickness of 3 to 100 μ were obtained.

詳述すれば、実験No.2で得られた発泡体粒子は、第7
図に示されるように、一つの発泡体粒子1中に比較的大
きな気泡2′と比較的に小さい気泡2″とが混在してい
る気泡数が10〜30個/mm2程度のもので、外皮膜厚もや
や厚いものであった。また、実施例No.3で得られた発泡
体は、第3図で示されるように、9個の大きな気泡2′
と粒子外皮膜に密着した多数の小さな気泡2″を有する
中空球状粒子であり、粒子外皮の平均膜厚が30μ程度と
比較的に厚いものであった。
More specifically, the foam particles obtained in Experiment No.
As shown in the figure, the number of air bubbles in which relatively large air bubbles 2 ′ and relatively small air bubbles 2 ″ are mixed in one foam particle 1 is about 10 to 30 / mm 2 , The foam obtained in Example No. 3 had nine large cells 2 ′ as shown in FIG.
And hollow spherical particles having a large number of small bubbles 2 ″ adhered to the outer coat of the particles, and the average thickness of the outer coat of the particles was relatively thick, about 30 μm.

また、実験No.4(後述の実施例1)及び実験No.5で得
られた発泡体粒子は、第2図及び第1−a図と第1−b
図にそれぞれ示されるように、粒子1全体の容積の大部
分を占める巨大気泡2を実質上1個のみ有する中空球状
粒子であり、その外皮には押しつぶされた小気泡2″が
含有された構造のものであり、その外皮の小気泡を含め
た平均膜厚が約50μ程度と厚く、本発明の発泡体粒子の
代表例の一つであった。
The foam particles obtained in Experiment No. 4 (Example 1 described later) and Experiment No. 5 are shown in FIGS. 2 and 1-a and 1-b.
As shown in the figures, each of the particles 1 is a hollow spherical particle having substantially only one giant bubble 2 occupying most of the volume of the entire particle 1, and has a structure in which the outer skin contains crushed small bubbles 2 ″. The average film thickness including small bubbles in the outer skin was as thick as about 50 μm, and was one of the representative examples of the foam particles of the present invention.

さらに、実験No.6で得られた発泡体粒子は、第4図に
示されたように、第1図や第2図に示されたものと同様
に実質上巨大気泡2を1個のみ有するものであるが、そ
の気泡2内に樹脂(重合体)の小粒子3が1個〜2個程
度移動自在に収納されているものであり、その外皮の平
均膜厚も約50μ程度と厚く、この発泡体粒子も本発明の
発泡体粒子の他の代表例であった。そして、このような
粒子の気泡内に樹脂小粒子が移動自在に収納された発泡
体を型内発泡成形して得られる成形体は、その個々の粒
子内に樹脂小粒子がそれぞれ移動自在に収納された成形
体であるので、同成形体を手などで振るとさわやかな音
を発するから、かかる音の発生が好まれる用途、たとえ
ば玩具内装材用等に有利に使用できると考えられる。
Further, as shown in FIG. 4, the foam particles obtained in Experiment No. 6 have substantially only one giant gas bubble 2 as shown in FIGS. 1 and 2. However, about one to two small particles of resin (polymer) are movably housed in the bubbles 2, and the average thickness of the outer skin is as large as about 50 μm. This foam particle was another representative example of the foam particle of the present invention. A molded article obtained by in-mold foaming of a foam in which small resin particles are movably accommodated in the air bubbles of such particles has small resin particles movably accommodated in each individual particle. Since the molded article is shaken by hand or the like, the molded article emits a refreshing sound. Therefore, it is considered that the molded article can be advantageously used for applications in which generation of such a sound is preferable, for example, for toy interior materials.

本発明の発泡体粒子は、このように一つの巨大気泡を
有する実質的に中空球状粒子であり、粒径が0.5〜20m
m、粒子外皮の平均膜厚が3μ以上、好ましくは5〜100
μ程度であるから、従来公知の多泡構造の予備発泡体粒
子と較べて外皮膜厚が厚いので、中空球状構造であるに
かかわらず、粒子自体としても従来公知の予備発泡体粒
子と較べて圧縮強さ等の強度に優れていて、緩衝材、埋
立材、断熱材、充填材等として有利に使用することがで
きる。なお、本発明の発泡体粒子は、粒子のままで上記
のような用途に使用されるものの場合には、その発泡体
粒子が、必ずしも二次発泡能力を有する必要がない。
The foam particles of the present invention are substantially hollow spherical particles having one giant cell as described above, and have a particle size of 0.5 to 20 m.
m, the average film thickness of the particle coat is 3 μ or more, preferably 5 to 100
Since it is about μ, the outer coating thickness is thicker than the conventionally known pre-foamed particles having a multi-bubble structure, so that regardless of the hollow spherical structure, the particles themselves are also compared with conventionally known pre-foamed particles. It has excellent strength such as compressive strength, and can be advantageously used as a buffer, a landfill, a heat insulator, a filler, and the like. In the case where the foam particles of the present invention are used in the above-mentioned applications as they are, the foam particles do not necessarily have to have a secondary foaming ability.

しかし、上記したような製造方法(特に予備発泡法)
で製造された本発明の発泡体粒子は、既述のように通常
は、二次発泡能力を有するものである。そして、かかる
二次発泡能力を有する本発明の発泡体粒子は型内発泡成
形用の発泡体粒子として有利に使用できる。すなわち、
かかる二次発泡能力を有する本発明の発泡体粒子を、常
法にしたがって型内に充填し、所定の温度(たとえば11
0〜130℃)のスチーム又は熱湯等を用いて5〜120秒程
度加熱すると、容易に発泡して相互に融着し型内発泡成
形体が得られる。その型内発泡成形体は、従来公知の予
備発泡体粒子を型内発泡成形して得られる成形体と較べ
て、粒子の外皮膜が厚いので、圧縮強度及び圧縮回復率
がともに高いものとなるから、包装材、バンパー芯材、
緩衝材などとして有利に使用できる。また、樹脂小粒子
が移動自在に収納された本発明の発泡体粒子を型内発泡
成形して得られる成形体は、既述のように手で振るとさ
わやかな音を発するから、たとえば玩具内装材等として
有利に使用できる。
However, the manufacturing method as described above (especially the pre-foaming method)
As described above, the foam particles of the present invention produced by the above method usually have secondary foaming ability. The foam particles of the present invention having such a secondary foaming ability can be advantageously used as foam particles for in-mold foam molding. That is,
The foam particles of the present invention having such a secondary foaming ability are filled in a mold according to a conventional method, and a predetermined temperature (for example, 11
When it is heated for about 5 to 120 seconds using steam or hot water at 0 to 130 ° C.), it easily foams and fuses with each other to obtain an in-mold foam molded article. The in-mold foam molded article has a larger outer coating of particles compared to a molded article obtained by in-mold foam molding of conventionally known pre-foamed particles, so that both the compressive strength and the compression recovery rate are high. From, packaging material, bumper core material,
It can be used advantageously as a cushioning material. Also, since the molded product obtained by subjecting the foamed particles of the present invention in which small resin particles are movably stored to in-mold foaming emits a refreshing sound when shaken by hand as described above, for example, a toy interior It can be used advantageously as a material.

たとえば、添付の第5図は、前記の実験No.4(後述の
実施例1)で得られた発泡体粒子(第2図に示したも
の)を、型内発泡成形して得られた成形体の拡大断面図
であるが、比較的に大きな粒子が融着した構造のもので
あり、その融着した個個の粒子がほぼ中空球状である。
For example, the attached FIG. 5 shows that the foam particles (shown in FIG. 2) obtained in the above-mentioned Experiment No. 4 (Example 1 described later) were subjected to in-mold foam molding. FIG. 2 is an enlarged cross-sectional view of the body, which has a structure in which relatively large particles are fused, and the fused individual particles are substantially hollow spheres.

(実施例等) 以下に、実施例及び比較例をあげてさらに詳述する。(Examples, etc.) Hereinafter, examples and comparative examples will be described in more detail.

実施例1 容量3lの攪拌装置付き重合容器に純水1000g、第三リ
ン酸カルシウム10g、ドデシルベンゼンスルホン酸ソー
ダの1%水溶液3.0g、発泡剤としてブタンを6.1%含む
粒径0.5〜0.4mmに篩別された発泡性スチレン重合体粒子
212.2g(純スチレン重合体として200g)、及びベンゾイ
ルパーオキサイド2.4gを加え、450rpmで攪拌して均一な
懸濁分散液とした。
Example 1 1000 g of pure water, 10 g of tribasic calcium phosphate, 3.0 g of a 1% aqueous solution of sodium dodecylbenzenesulfonate, and 3.0 g of a 1% aqueous solution of sodium dodecylbenzenesulfonate were sieved to a polymerization vessel having a capacity of 3 liters having a particle size of 0.5 to 0.4 mm containing 6.1% butane as a blowing agent. Foamable styrene polymer particles
212.2 g (200 g as a pure styrene polymer) and 2.4 g of benzoyl peroxide were added, and stirred at 450 rpm to obtain a uniform suspension and dispersion.

この懸濁分散液を攪拌下に80℃まで昇温する途中の40
℃の温度に達した時点において、重合容器の空間部に、
同空間部の容積に対して10g/lの割合に相当する量であ
る18gのブタンを気化して供給した。次いで、重合系の
温度が80℃に到達したのち、同温度で8時間保ち、この
間に80℃に到達した時点から6時間かけて、ターシャリ
ーブチルパーベンゾエート1.2gを200gのスチレンと400g
のメタクリル酸メチルとの混合単量体に溶解した溶液
を、連続的に1時間当り100gの割合で添加した。
The temperature of this suspension dispersion was raised to 80 ° C. with stirring.
When the temperature of ° C. is reached, in the space of the polymerization vessel,
18 g of butane, an amount corresponding to a ratio of 10 g / l to the volume of the space, was vaporized and supplied. Then, after the temperature of the polymerization system reached 80 ° C., the temperature was maintained at the same temperature for 8 hours. During this time, from the time when the temperature reached 80 ° C., over 6 hours, 1.2 g of tertiary butyl perbenzoate was added to 200 g of styrene and 400 g.
Was dissolved in a monomer mixture with methyl methacrylate in a continuous manner at a rate of 100 g per hour.

単量体溶液の添加終了後、原料の発泡性スチレン重合
体粒子と、スチレン及びメタクリル酸メチル単量体との
合計量に対して10%に相当する量である80gのペンタン
を液状で添加してから、80℃より110℃まで1.5時間かけ
て昇温させ、110℃で4時間保持して重合を行なわせ、
熱可塑性樹脂発泡性粒子を生成させた。
After the completion of the addition of the monomer solution, 80 g of pentane, which is equivalent to 10% of the total amount of the raw material expandable styrene polymer particles and styrene and methyl methacrylate monomer, is added in a liquid state. After that, the temperature was raised from 80 ° C. to 110 ° C. over 1.5 hours, and kept at 110 ° C. for 4 hours to perform polymerization.
Thermoplastic foam particles were produced.

重合完了後の水性分散液を冷却、過、水洗、乾燥し
て得られた熱可塑性樹脂発泡性粒子を98℃、1.0kg/cm2
の水蒸気で加熱して予備発泡させ、かさ密度が20g/lの
発泡体粒子を得た。この発泡体粒子を30℃で6時間空気
中に放置して乾燥(熟成)させ、収縮のない粒子を得
た。この粒子は第2図に示すような構造を有するもので
あり、その粒子1は実質上巨大な気泡2を1個のみ有
し、粒径が2〜3mm、皮膜の平均膜厚が約50μであり、
かつ二次発泡能力を有する粒子であった。
After cooling, the aqueous dispersion after completion of the polymerization was cooled, filtered, washed with water, and dried to obtain a thermoplastic resin expandable particle at 98 ° C. and 1.0 kg / cm 2
And prefoamed by heating with water vapor to obtain foam particles having a bulk density of 20 g / l. The foam particles were left in the air at 30 ° C. for 6 hours and dried (aged) to obtain particles without shrinkage. The particle has a structure as shown in FIG. 2, and the particle 1 has substantially only one huge bubble 2 with a particle size of 2 to 3 mm and an average film thickness of about 50 μm. Yes,
The particles had secondary foaming ability.

次いで、この発泡体粒子を24時間空気中で放置後、10
0mm×100mm×200mmの金型のキャビティ内に充填し0.7kg
/cm2の水蒸気で20秒間加熱して発泡成形して得られた成
形体は第5図に示すようなハニカム構造を有するもので
あり、その融着された個々の発泡体粒子は実質的に中空
球構造を有していた。また、この成形体は、JIS A−951
1による5%圧縮強さが1.1kg/cm2であり、50%圧縮後の
圧縮回復率が97%であった。
Then, after leaving the foam particles in the air for 24 hours, 10
0.7 kg filled in a mold cavity of 0 mm x 100 mm x 200 mm
The molded body obtained by foaming by heating with steam of 20 cm / cm 2 for 20 seconds has a honeycomb structure as shown in FIG. 5, and the individual fused foam particles substantially have It had a hollow sphere structure. Also, this molded product is JIS A-951
The 5% compression strength according to 1 was 1.1 kg / cm 2 and the compression recovery after 50% compression was 97%.

比較例1 滴下する単量体としてスチレン402gとメタクリル酸メ
チル198gとの単量体混合物を用い、そのほかは実施例1
におけると同じ方法を用いて重合させ、得られた発泡性
粒子を実施例1におけると同じ方法で予備発泡させた。
得られた発泡性粒子1は、第6図に示すように多数の小
気泡2″を有する多泡構造のものであり、その気泡数が
200〜300個/mm2、粒径が2〜3mm、粒子外皮の膜厚が約
0.5〜1μであった。これは従来公知の予備発泡粒子と
類似するものである。
Comparative Example 1 A monomer mixture of styrene (402 g) and methyl methacrylate (198 g) was used as a monomer to be dropped.
Was polymerized using the same method as in Example 1, and the obtained expandable particles were pre-expanded by the same method as in Example 1.
The obtained expandable particles 1 have a multi-bubble structure having many small bubbles 2 ″ as shown in FIG.
200-300 pcs / mm 2 , particle size 2-3mm, particle skin thickness
0.5-1 μm. This is similar to previously known pre-expanded particles.

また、この予備発泡粒子を用いて実施例1におけると
同一の方法で型内発泡成形して得られた成形体は、JIS
A−9511による5%圧縮強さが1.0kg/cm2、50%圧縮後の
圧縮回復率が88%であった。
A molded article obtained by in-mold foam molding using the pre-expanded particles in the same manner as in Example 1 is JIS
The 5% compression strength according to A-9511 was 1.0 kg / cm 2 , and the compression recovery after 50% compression was 88%.

実施例2 実施例1において用いた単量体混合物の代りに、スチ
レン120gとメタクリル酸メチル480gとの単量体混合物を
用い、そのほかは実施例1と同様にして重合させ発泡性
粒子を得た。さらに、この発泡性粒子を実施例1におけ
ると同様にして予備発泡させたところ、第4図に示すよ
うな構造の二次発泡能力を有する発泡体粒子が得られ
た。この粒子1は、粒径が2〜3mm、外皮の平均膜厚が5
0μであり、実質上巨大な気泡2を1個のみ有し、かつ
その気泡2内に樹脂小粒子3が1個移動自在に収納され
た実質上中空球状の粒子であった。
Example 2 In place of the monomer mixture used in Example 1, a monomer mixture of 120 g of styrene and 480 g of methyl methacrylate was used, and the others were polymerized in the same manner as in Example 1 to obtain expandable particles. . Further, when the expandable particles were prefoamed in the same manner as in Example 1, foam particles having a secondary expandability having a structure as shown in FIG. 4 were obtained. This particle 1 has a particle size of 2-3 mm and an average thickness of the outer skin of 5 mm.
It was a substantially hollow spherical particle having 0 μm and having substantially only one huge bubble 2 and one small resin particle 3 movably contained in the bubble 2.

また、この発泡体粒子を用いて実施例1におけると同
様の方法で型内発泡成形した。得られた成形体は、手で
振ると収納された樹脂小粒子にもとづきさわやかな音を
発することができ、実施例1におけると同様の5%圧縮
強さが1.1kg/cm2、50%圧縮回復率が96%であった。
In-mold foam molding was performed using the foam particles in the same manner as in Example 1. The obtained molded body can emit a refreshing sound based on the stored small resin particles when shaken by hand, and has the same 5% compressive strength as in Example 1, 1.1 kg / cm 2 , 50% compressive strength. The recovery rate was 96%.

実施例3 実施例1の重合において用いた種の発泡性ポリスチレ
ン粒子212.2gの代りに、発泡剤を含有しないポリスチレ
ン粒子200gを用い、そのほかは実施例1と同様にして重
合させ、得られた発泡性粒子を実施例1におけると同様
にして予備発泡させて二次発泡能力を有する発泡体粒子
を得た。
Example 3 In place of 212.2 g of the expandable polystyrene particles of the seed used in the polymerization of Example 1, 200 g of polystyrene particles containing no foaming agent were used, and the other processes were carried out in the same manner as in Example 1 to obtain a foam. The foamed particles were prefoamed in the same manner as in Example 1 to obtain foamed particles having secondary foaming ability.

この発泡体粒子は、実施例1において得られた発泡体
粒子と同様の一つの巨大な気泡を有する中空球構造のも
のであり、その粒径が2〜3mm、粒子外皮の平均膜厚が1
5μであった。また、この発泡体粒子を用いて実施例1
におけると同様にして型内発泡成形して得られた成形体
は、その5%圧縮強さ及び50%圧縮回復率がともに実施
例1で得られた成形体のそれらとほぼ同じであったが、
その外観は、実施例1の成形体が不透明で光沢の低いも
のであるのに対して、半透明でかつ光沢の高いものであ
った。
The foam particles have a hollow sphere structure having one huge bubble similar to the foam particles obtained in Example 1, and have a particle diameter of 2 to 3 mm and an average film thickness of the particle outer skin of 1.
5μ. Example 1 was prepared using the foam particles.
In the molded article obtained by in-mold foam molding in the same manner as in the above, both the 5% compressive strength and the 50% compressive recovery were almost the same as those of the molded article obtained in Example 1. ,
Its appearance was translucent and high gloss, while the molded article of Example 1 was opaque and low gloss.

比較例2 この例は従来法の例である。Comparative Example 2 This is an example of the conventional method.

すなわち、容量3lの攪拌装置付きの重合容器に、純水
1000g、ピロリン酸ソーダ0.42g、酢酸ソーダ0.63g、亜
硝酸ソーダ0.10gを加え、350rpmで攪拌して均一な分散
液とした。次いで、攪拌下にこれに、ベンゾイルパーオ
キサイド7.0g、ターシャリーブチルパーブンゾエート2.
1gをスチレン350及びメタクリル酸メチル350gの単量体
混合物に溶解した溶液を投入して、均一な懸濁分散液と
した。
In other words, pure water was placed in a polymerization vessel with a stirrer having a capacity of
1000 g, 0.42 g of sodium pyrophosphate, 0.63 g of sodium acetate, and 0.10 g of sodium nitrite were added, and stirred at 350 rpm to obtain a uniform dispersion. Then, with stirring, 7.0 g of benzoyl peroxide, tert-butyl perbenzoate 2.
A solution in which 1 g was dissolved in a monomer mixture of 350 g of styrene and 350 g of methyl methacrylate was added to obtain a uniform suspension dispersion.

この懸濁分散液を攪拌しながら80℃まで昇温させ、さ
らに80℃から115℃まで6時間かけて昇温させた。この
間に、80℃に達してから1時間後の時点にポリビニルピ
ロリドンの10%水溶液50gを添加し、同じく4時間後の
時点にスチレンとメタクリル酸メチルとの単量体混合物
に対して10重量%に相当する量である70gのペンタンを
液状で添加した。115℃に到達後、同温度で5時間保持
して重合を完了させた。
The temperature of the suspension dispersion was increased to 80 ° C. while stirring, and further increased from 80 ° C. to 115 ° C. over 6 hours. During this period, one hour after reaching 80 ° C., 50 g of a 10% aqueous solution of polyvinylpyrrolidone was added. At the same time, four hours later, 10% by weight based on the monomer mixture of styrene and methyl methacrylate was added. A quantity of 70 g of pentane, corresponding to, was added in liquid form. After reaching 115 ° C., the temperature was maintained at the same temperature for 5 hours to complete the polymerization.

得られた重合生成物を冷却し、過し、乾燥して得ら
れた粒子を0.7〜1.0mmにカットしたものを、98℃、1.0k
g/cm2の水蒸気で加熱発泡させ、かさ密度が20g/lの予備
発泡粒子を得た。
The obtained polymerization product was cooled, passed, dried, and the obtained particles were cut into 0.7 to 1.0 mm.
The foam was heated and foamed with steam of g / cm 2 to obtain pre-foamed particles having a bulk density of 20 g / l.

この予備発泡粒子の断面構造は第8図に示されるよう
な多泡構造のものであり、粒径が2〜3mm、粒子外皮の
膜厚が約0.5〜1.0μ、気泡数が約220個/mm2の二次発泡
能力を有する粒子であった。
The cross-sectional structure of the pre-expanded particles is a multi-bubble structure as shown in FIG. 8, having a particle size of 2 to 3 mm, a particle outer film thickness of about 0.5 to 1.0 μm, and a bubble count of about 220 / a particle having a secondary foaming capacity of mm 2.

また、この予備発泡体粒子を用いて、実施例1におけ
ると同様の型内発泡成形をして得られた成形体は、実施
例1におけると同様の5%圧縮強さが0.9kg/cm2、50%
圧縮回復率が88%であった。
A molded product obtained by subjecting the pre-foamed particles to in-mold foam molding in the same manner as in Example 1 has a 5% compressive strength of 0.9 kg / cm 2 as in Example 1. , 50%
The compression recovery was 88%.

(c)発明の効果 本発明の熱可塑性樹脂発泡体粒子は、実質上中空球状
を有し、粒子外皮膜が厚くて粒子自体の強度が大であ
る。また、この発泡体粒子を用いて得られる型内発泡成
形体は、従来の型内発泡成形体と較べて中空球状粒子が
融着された構造のもので外観が良好であるばかりでな
く、圧縮強さ及び圧縮回復率がともに著しく高い。
(C) Effects of the Invention The thermoplastic resin foam particles of the present invention have a substantially hollow sphere, a thick outer particle coating, and high strength of the particles themselves. In addition, the in-mold foam molded article obtained by using the foam particles has a structure in which hollow spherical particles are fused to each other as compared with a conventional in-mold foam molded article, and has not only a good appearance but also a compression property. Both strength and compression recovery are significantly higher.

【図面の簡単な説明】[Brief description of the drawings]

第1−a図と第1−b図、第2図、第3図、第4図、第
6図及び第7図は、表1の実験No.5、同No.4(実施例
1)、同No.3及び同No.6(実施例2)、同No.1(比較例
1)、及び同No.2においてそれぞれ得られた発泡体粒子
の拡大断面図である。また、第5図は実験No.4(実施例
1)で得られた発泡体粒子の型内発泡成形体の拡大断面
図であり、第8図は比較例2で得られた発泡体粒子の拡
大断面図である。また、第9図は実施例3で得られた発
泡体粒子の拡大断面図であり、第10図は従来公知の予備
発泡体粒子の拡大断面図である。各図面に付記した倍数
は、拡大倍率である。 図中の各符号は、それぞれ下記のものを示す。 1……発泡体粒子、2……発泡体粒子の巨大気泡、2′
……発泡体粒子の大気泡、2″……発泡体粒子の小気
泡、3……発泡体粒子の巨大気泡内の樹脂小粒子。
FIGS. 1-a and 1-b, FIGS. 2, 3, 4, 6, and 7 show Experiment Nos. 5 and 4 in Table 1 (Example 1). , No. 3 and No. 6 (Example 2), No. 1 (Comparative Example 1), and an enlarged cross-sectional view of the foam particles obtained in No. 2 respectively. FIG. 5 is an enlarged sectional view of an in-mold foam molded article of the foam particles obtained in Experiment No. 4 (Example 1), and FIG. 8 is a view of the foam particles obtained in Comparative Example 2. It is an expanded sectional view. FIG. 9 is an enlarged cross-sectional view of the foam particles obtained in Example 3, and FIG. 10 is an enlarged cross-sectional view of conventionally known pre-foam particles. The magnification shown in each drawing is the magnification. Each symbol in the figure indicates the following. 1 ... foam particles, 2 ... huge bubbles of foam particles, 2 '
... large bubbles of foam particles, 2 "... small bubbles of foam particles, 3 ... small resin particles in giant cells of foam particles.

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】粒子の全容積の50%を超える容積を占める
一つの巨大気泡を有する実質的に中空球状粒子であり、
粒径が0.5〜20mmでかつ粒子外皮の平均膜厚が3μ以上
であることを特徴とする中空球状熱可塑性樹脂発泡体粒
子。
1. A substantially hollow spherical particle having one giant cell occupying more than 50% of the total volume of the particle,
Hollow spherical thermoplastic resin foam particles having a particle size of 0.5 to 20 mm and an average film thickness of the particle skin of 3 μ or more.
【請求項2】粒子外皮の平均膜厚が5〜100μである第
1請求項記載の発泡体粒子。
2. The foam particles according to claim 1, wherein the average particle thickness of the particle skin is 5 to 100 μm.
【請求項3】粒子の巨大気泡内に樹脂小粒子が移動自在
に収納されている第1請求項又は第2請求項記載の発泡
体粒子。
3. The foam particles according to claim 1 or 2, wherein the small resin particles are movably accommodated in the giant cells of the particles.
【請求項4】粒子が二次発泡能力を有するものである第
1請求項、第2請求項又は第3請求項記載の発泡体粒
子。
4. The foam particles according to claim 1, wherein the particles have secondary foaming ability.
【請求項5】第4請求項に記載の二次発泡能力を有する
各中空球状熱可塑性樹脂発泡体粒子から選ばれた少なく
とも1種の熱可塑性樹脂発泡体粒子を型内に充填し加熱
膨張させて発泡体粒子どうしを融着させる熱可塑性樹脂
型内発泡成形体の製造法。
5. A mold is filled with at least one kind of thermoplastic resin foam particles selected from the hollow spherical thermoplastic resin foam particles having the secondary foaming ability according to claim 4, and heated and expanded. For producing a foamed article in a thermoplastic resin mold in which foam particles are fused together.
【請求項6】融着させた個々の発泡体粒子が実質的に中
空球状構造である第5請求項記載の製造法。
6. The method of claim 5, wherein the individual fused foam particles have a substantially hollow spherical structure.
JP63174941A 1988-07-15 1988-07-15 Hollow spherical thermoplastic resin foam particles and method for producing expanded molded articles using the same Expired - Fee Related JP2604624B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63174941A JP2604624B2 (en) 1988-07-15 1988-07-15 Hollow spherical thermoplastic resin foam particles and method for producing expanded molded articles using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63174941A JP2604624B2 (en) 1988-07-15 1988-07-15 Hollow spherical thermoplastic resin foam particles and method for producing expanded molded articles using the same

Publications (2)

Publication Number Publication Date
JPH0228225A JPH0228225A (en) 1990-01-30
JP2604624B2 true JP2604624B2 (en) 1997-04-30

Family

ID=15987408

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63174941A Expired - Fee Related JP2604624B2 (en) 1988-07-15 1988-07-15 Hollow spherical thermoplastic resin foam particles and method for producing expanded molded articles using the same

Country Status (1)

Country Link
JP (1) JP2604624B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006162922A (en) * 2004-12-07 2006-06-22 Seiko Epson Corp Electro-optical device and electronic apparatus
JP2007262345A (en) * 2006-03-30 2007-10-11 Sekisui Plastics Co Ltd Expandable styrene-based resin particle, styrene-based resin expandable particle and styrene-based resin expanded molding
JP5914080B2 (en) * 2012-03-23 2016-05-11 積水化成品工業株式会社 Expandable styrene resin particles and method for producing the same

Also Published As

Publication number Publication date
JPH0228225A (en) 1990-01-30

Similar Documents

Publication Publication Date Title
US4368218A (en) Method of making expandable thermoplastic polymer beads
US4303756A (en) Process for producing expandable thermoplastic resin beads
US4303757A (en) Process for producing expandable thermoplastic resin beads using polypropylene as nucleus
JP2753039B2 (en) Method for producing carbon-containing styrene-modified foamable olefin-based resin particles
US4525486A (en) Process for preparing modified polyolefin particles and foamed article made from the particles
JP2933707B2 (en) Method for producing expandable styrene polymer particles
JP2604624B2 (en) Hollow spherical thermoplastic resin foam particles and method for producing expanded molded articles using the same
JPH0212258B2 (en)
JP2632389B2 (en) Thermoplastic resin pre-expanded particles and method for producing expanded molded articles using the same
US3832312A (en) Process for making foamed styrene polymers photodegradable
JP5486981B2 (en) Pre-foaming method for expandable thermoplastic resin particles
JPH0554854B2 (en)
JP2004155870A (en) Expandable styrenic resin particle for building material and its expanded molded product
CA1120650A (en) Process for producing expandable thermoplastic resin beads
JP2011208066A (en) Expansion-molded item, interior material for vehicle, tire spacer for vehicle and luggage box for vehicle
JPH08151471A (en) Expandable particle for producing impact-resistant foam and production thereof
JP2000302903A (en) Polystyrene-based resin for food container, polystyrene- based resin foamed sheet for food container and food container of polystyrene-based resin foamed sheet
KR100829345B1 (en) Expandable polystyrene type resin particles, a method for preparing the same, and expanded articles using the same resin particles
JPH09278924A (en) Expanded material based copolymer of styrene and 1,1-diphenylethene
JPS6368644A (en) Expandable thermoplastic resin particle
JPS5858374B2 (en) expandable thermoplastic resin particles
JP2736721B2 (en) Expandable styrene resin particles
JP2023100351A (en) Composite resin particle, and foamed molded product
JPS6324538B2 (en)
JPS60195114A (en) Manufacture of spherical ethylene resin beads

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees