JPH0228225A - Hollow spherical foam particle of thermoplastic resin and production of molded article of foam using the same particle - Google Patents

Hollow spherical foam particle of thermoplastic resin and production of molded article of foam using the same particle

Info

Publication number
JPH0228225A
JPH0228225A JP63174941A JP17494188A JPH0228225A JP H0228225 A JPH0228225 A JP H0228225A JP 63174941 A JP63174941 A JP 63174941A JP 17494188 A JP17494188 A JP 17494188A JP H0228225 A JPH0228225 A JP H0228225A
Authority
JP
Japan
Prior art keywords
particles
foam
particle
hollow spherical
foam particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63174941A
Other languages
Japanese (ja)
Other versions
JP2604624B2 (en
Inventor
Shinya Ogi
扇 晋哉
Masayuki Tanaka
正行 田中
Takanori Suzuki
鈴木 高徳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical BASF Co Ltd
Original Assignee
Mitsubishi Chemical BASF Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical BASF Co Ltd filed Critical Mitsubishi Chemical BASF Co Ltd
Priority to JP63174941A priority Critical patent/JP2604624B2/en
Publication of JPH0228225A publication Critical patent/JPH0228225A/en
Application granted granted Critical
Publication of JP2604624B2 publication Critical patent/JP2604624B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

PURPOSE:To obtain the title foam particles suitable as cushioning material, packaging material, heat insulating material, etc., having specific cell volume, average thickness of outer film and excellent strength by using polymer particles as a seed and expanding a suspended polymer containing a blowing agent under heating. CONSTITUTION:(A) Particles of thermoplastic polymer (e.g., polyethylene) having preferably 0.1-2mm particle diameter are suspended as a seed in water, (B) a polymerization initiator is added while dripping an unsaturated monomer such as styrene, the monomer is polymerized at 60-120 deg.C, the polymer is impregnated with (C) preferably 2-10wt.% blowing agent such as propane or butane and the resulting material is washed and dried. The material is heated to preferably 90-110 deg.C, expanded to give foam having 10-200g/apparent density and the aimed foam particles wherein >=50% whole volume of particle is one large cell, particle diameter is 0.5-20mm and average thickness of outer film of particle is >=3mum is obtained.

Description

【発明の詳細な説明】 (、)  発明の目的 (産業上の利用分野) 本発明は実質的に中空球状構造を有し、粒子外皮の膜厚
が比較的に厚い熱可塑性樹脂発泡体粒子、及び同発泡体
粒子を用いる型内発泡成形体の製造法に関する。
Detailed Description of the Invention (,) Object of the Invention (Field of Industrial Application) The present invention provides thermoplastic resin foam particles having a substantially hollow spherical structure and having a relatively thick particle outer shell; and a method for producing an in-mold foam molded article using the same foam particles.

本発明の発泡体粒子は、粒子の外皮膜厚が比較的に厚く
て強度が大で、粒子自体で緩衝材、埋立材、断熱材等と
して有利に使用できるばかりでなく、これを用いて型内
発泡成形して得られる成形体は包装材、バンパー芯材、
緩衝材、断熱材、玩具内装材等として有利に使用できる
The foam particles of the present invention have a relatively thick outer coating and high strength, and can not only be used advantageously as a cushioning material, a landfill material, a heat insulating material, etc., but also can be used to form molds. The molded product obtained by internal foam molding can be used as packaging materials, bumper core materials,
It can be advantageously used as a cushioning material, a heat insulating material, an interior material for toys, etc.

(従来の技術) 従来、包装緩衝材、断熱材等として、予備発泡させたポ
リスチレン粒子を型内でスチーム加熱等によシ発泡させ
て粒子どうしを融着させて得られた密度18〜309/
lの型内発泡成形体が知られていた。
(Prior art) Conventionally, polystyrene particles having a density of 18 to 309% have been used as packaging cushioning materials, heat insulating materials, etc. by foaming pre-expanded polystyrene particles in a mold by steam heating or the like and fusing the particles together.
In-mold foam molded articles of 1 were known.

かかる型内発泡成形体の製造に用いられる粒径が0.2
〜20曝のポリスチレン予備発泡粒子は、気泡(セル)
の数が60〜300個/簡2のような多数の気泡を有す
る多泡構造のものであり、気泡の粒径も、発泡倍率によ
って20〜1000μ(好ましくは50〜300μ)で
あり、かつ粒子の外皮を形成する気泡膜厚が平均値で0
.5〜3μ程度の比較的に薄い外皮を有するものであっ
た。また、かかる予備発泡粒子を用いて型内ビーズ発泡
成形して得られる型内ビーズ発泡成形体は、気泡の粒径
が20〜1000μ、気泡数が60〜300個/鴎2程
度であり、小さい気泡を多数に有する構造のものであっ
た。
The particle size used for producing such an in-mold foam molded product is 0.2
Polystyrene pre-expanded particles with ~20 exposures have air bubbles (cells)
It has a multi-cell structure with a large number of bubbles, such as 60 to 300 cells/2, and the particle size of the bubbles is 20 to 1000μ (preferably 50 to 300μ) depending on the expansion ratio, and The average thickness of the bubble film forming the outer skin of
.. It had a relatively thin outer skin of about 5 to 3 microns. In addition, the in-mold bead foam molded product obtained by in-mold bead foam molding using such pre-expanded particles has a particle diameter of 20 to 1000 μm and a number of bubbles of about 60 to 300/2, and is small. It had a structure with many bubbles.

また、熱可塑性樹脂の発泡体粒子としては、ポリプロピ
レン系のもの(たとえば特公昭59−43491号公報
)、ポリエチレン系のもの(たとえば特公昭51−22
951号、特公昭60−10047号各公報)、ポリメ
チルメタクリレート共重合体系のもの(たとえば特開昭
57−182333号公報)も知られていたが、これら
の発泡体粒子又は予備発泡粒子の気泡構造、及びそれら
の粒子を用いたを自発泡成形体の気泡構造も、上記のポ
リスチレン系のものの場合とほぼ同様であった。
Further, as the thermoplastic resin foam particles, polypropylene-based ones (for example, Japanese Patent Publication No. 59-43491), polyethylene-based ones (for example, Japanese Patent Publication No. 51-22
951, Japanese Patent Publication No. 60-10047) and polymethyl methacrylate copolymer type (for example, Japanese Patent Application Laid-open No. 57-182333), the air bubbles of these foamed particles or pre-expanded particles The structure and the cell structure of the self-foamed molded product using these particles were almost the same as those of the polystyrene-based product described above.

そして従来、この種の熱可塑性樹脂発泡体粒子(予備発
泡粒子を含む)において気泡数が少ないと発泡粒子が収
縮したり、発泡粒子の強度が弱いとされていた。また、
その気泡数が少ないと、型内発泡成形して得られる成形
体も収縮を起し、実用性がないとされていた。しかも、
熱可塑性樹脂の発泡体粒子として中空球状構造を有する
ものは、従来知られていなかった。
Conventionally, it has been believed that when the number of cells in this type of thermoplastic resin foam particles (including pre-expanded particles) is small, the foam particles shrink or the strength of the foam particles becomes weak. Also,
If the number of cells is small, the molded product obtained by in-mold foam molding will also shrink, making it impractical. Moreover,
Foam particles of thermoplastic resin having a hollow spherical structure have not been known so far.

なお、−船釣にみて、中空球状の粒子としては、たとえ
ばプラスの中空球状粒子(マイクロパルーン)や火山灰
(シラス)の中空球状粒子が知られていた。また、熱硬
化性樹脂については、流延、射出ノズル法等で製造され
たメラミン樹脂や尿素樹脂の中空球状粒子が知られてい
た(特公昭62−20212号公報)。しかし、これら
公知の中空球状粒子は樹脂やセメント製品などの充填材
等として利用できるが、型内ビーズ発泡成形に利用でき
るようなものではなかった。
In addition, in terms of boat fishing, for example, positive hollow spherical particles (microparoons) and hollow spherical particles of volcanic ash (whitebait) have been known as hollow spherical particles. As for thermosetting resins, hollow spherical particles of melamine resins and urea resins manufactured by casting, injection nozzle methods, etc. have been known (Japanese Patent Publication No. 62-20212). However, although these known hollow spherical particles can be used as fillers for resins, cement products, etc., they cannot be used for in-mold bead foam molding.

(発明が解決しようとする問題点) 本発明は、中空球状であって比較的に厚い外皮膜を有し
、粒子のitで緩衝材、埋立材、断熱材、充填材等とし
て優れているばかりでなく、型内発泡成形用の粒子とし
て用いても優れた型内発泡成形体を与えることができる
熱可塑性樹脂発泡体粒子を提供し、さらにその発泡体粒
子を用いて型内発泡成形体を製造する方法を提供しよう
とするものである。
(Problems to be Solved by the Invention) The present invention has a hollow spherical shape and a relatively thick outer coating, and is excellent as a buffer material, a landfill material, a heat insulating material, a filler material, etc. In addition, the present invention provides thermoplastic resin foam particles that can be used as particles for in-mold foam molding to provide an excellent in-mold foam molded product, and further provides an in-mold foam molded product using the foam particles. The purpose is to provide a manufacturing method.

(b)  発明の構成 (問題点を解決するだめの手段) 本発明の中空球状熱可塑性樹脂発泡体粒子は、粒子全容
積の50%を超える容積を占める一つの巨大気泡を有す
る実質的に中空球状粒子であり、粒径が0.5〜20瓢
でかつ粒子外皮の平均膜厚が3μ以上であるととを特徴
とする粒子である。
(b) Structure of the Invention (Means for Solving the Problems) The hollow spherical thermoplastic resin foam particles of the present invention are substantially hollow having one giant cell occupying more than 50% of the total volume of the particles. The particles are characterized by being spherical particles, having a particle size of 0.5 to 20 mm, and an average thickness of the particle outer layer of 3 μm or more.

また、本発明の熱可塑性樹脂型内発泡成形体の製造法は
、二次発泡能力を有する前記の中空球状熱可塑性樹脂発
泡体粒子を型内に充填し加熱膨脹させて発泡体粒子どう
しを融着させる方法である。
In addition, the method for producing an in-mold thermoplastic resin foam molded article of the present invention includes filling the above-mentioned hollow spherical thermoplastic resin foam particles having secondary foaming ability into a mold and heating and expanding them to melt the foam particles. This is a way to put it on.

本発明の中空球状熱可塑性樹脂発泡体粒子の外皮膜の平
均膜厚が3μ以上、好ましくは5〜100μである。本
発明におけるこの外皮の平均膜厚とは、発泡体粒子の最
も外側の外皮の平均膜厚をさすが、その外皮が押しつぶ
された小気泡γが重なり合って形成された構造のもので
あったり、或いは巨大気泡の内側に前記の外皮に密着し
て小気泡rが形成された構造のものである場合には、そ
れらの小気泡rをも含めた膜厚の平均値をさすものであ
る。その外皮膜厚が薄すぎると粒子自体及びそれよシ得
られる型内発泡成形体の圧縮強さ等の強度や圧縮回復率
が低下してくる。
The average thickness of the outer coating of the hollow spherical thermoplastic resin foam particles of the present invention is 3 microns or more, preferably 5 to 100 microns. In the present invention, the average film thickness of the outer skin refers to the average film thickness of the outermost skin of the foam particle, and the outer skin has a structure formed by crushed small cells γ overlapping each other, or In the case of a structure in which small bubbles r are formed inside giant bubbles in close contact with the outer skin, it refers to the average value of the film thickness including those small bubbles r. If the thickness of the outer coating is too thin, the strength such as compressive strength and compression recovery rate of the particles themselves and the resulting in-mold foamed product will decrease.

本発明の発泡体粒子は、種(シード)として重合体粒子
を存在させた水性媒体中で2種又はそれ以上の不飽和単
量体を重合させるいわゆる懸濁シード重合において、そ
の重合途中又は重合後の重合体粒子に発泡剤を吸収せし
めて熱可塑性樹脂の発泡性粒子を製造し、さらにその発
泡性粒子を加熱して発泡させる方法において、その重合
条件を調整することにより製造することができる。
The foam particles of the present invention can be used during or during the polymerization in so-called suspension seed polymerization in which two or more unsaturated monomers are polymerized in an aqueous medium in which polymer particles are present as seeds. It can be produced by adjusting the polymerization conditions in a method in which a blowing agent is absorbed into the subsequent polymer particles to produce expandable particles of a thermoplastic resin, and the expandable particles are further heated and foamed. .

すなわち、粒径が0.1〜2mの熱可塑性重合体粒子を
水中に種として懸濁せしめた水性懸濁系に、その重合体
粒子を構成する不飽和単量体と、同単量体とは異なる他
の不飽和単量体との2種以上の単量体混合物を滴下しな
がら懸濁重合を実施し、その重合体粒子及び生成しつつ
ある重合体粒子に前記の単量体混合物を吸収させながら
重合を行表わせ、その懸濁重合の途中又は重合後に、生
成熱可塑性重合体粒子を膨潤も溶解もせしめないか又は
僅かに膨潤せしめるにすぎない発泡剤を添加して、生成
熱可塑性重合体粒子に同発泡剤を吸収させて発泡性樹脂
粒子を製造し、得られた発泡性樹脂粒子を分離してから
同粒子を加熱して見掛密度がlO〜2001/l程度に
なるように発泡させて熱可塑性樹脂発泡体粒子を製造す
る方法において、その重合条件、特に滴下する単量体混
合物の組合わせや単量体混合比率等を適宜に調整するこ
とにより、本発明の中空球状熱可塑性樹脂発泡体粒子を
製造することができる。
That is, in an aqueous suspension system in which thermoplastic polymer particles with a particle size of 0.1 to 2 m are suspended as seeds in water, the unsaturated monomers constituting the polymer particles and the same monomers are added. Suspension polymerization is carried out while dropping a mixture of two or more monomers with different other unsaturated monomers, and the monomer mixture is applied to the polymer particles and the polymer particles that are being formed. Polymerization is carried out with absorption, and during or after the suspension polymerization, a blowing agent that does not swell or dissolve the produced thermoplastic polymer particles, or only slightly swells them, is added to the produced thermoplastic polymer particles. The foaming agent is absorbed into the polymer particles to produce foamable resin particles, and the resulting foamable resin particles are separated and then heated so that the apparent density becomes about 10 to 2001/l. In the method for manufacturing thermoplastic resin foam particles by foaming, the hollow spherical shape of the present invention can be produced by appropriately adjusting the polymerization conditions, especially the combination of monomer mixtures to be added, the monomer mixing ratio, etc. Thermoplastic foam particles can be produced.

その懸濁シード重合において種(シード)として用いら
れる熱可塑性重合体粒子としては、たとえばポリスチレ
ン、ポリメチルメタクリレート、ABS、SAN、スチ
レン・α−メチルスチレン・アクリロニトリル共重合体
、スチレン・メタクリル酸メチル共重合体、ポリエチレ
ン、ポリプロピレン等の重合体粒子があげられる。かか
る種としての熱可塑性重合体粒子は、発泡剤を含有しな
い非発泡性重合体粒子であってもよいし、発泡剤を含有
する発泡性の重合体粒子であってもよい。非発泡性重合
体粒子を種として用いた場合には、得られる発泡体粒子
及びそれより得られる型内発泡成形体が光沢がよく半透
明状のものとなる。また、発泡性重合体粒子を種として
用いた場合には、得られる発泡体粒子及びそれより得ら
れる型内発泡成形体が不透明度の高いものとなる。その
理由は、前者の非発泡性粒子を種として用いた場合の発
泡体粒子は第9図に示すようにその外皮が肉厚10〜1
6μの一枚のフィルム状の外皮のところどころに30〜
60μの小さな気泡γが形成された構造であるのに対し
、後者の発泡性粒子を種として用いた場合の発泡体粒子
は第1−b図に示すように、押しつぶされた小気泡2′
が重なりあって肉厚が10〜100μの外皮が形成され
た構造である、からである。
Thermoplastic polymer particles used as seeds in the suspension seed polymerization include, for example, polystyrene, polymethyl methacrylate, ABS, SAN, styrene/α-methylstyrene/acrylonitrile copolymer, and styrene/methyl methacrylate copolymer. Examples include polymer particles such as polymers, polyethylene, and polypropylene. The seed thermoplastic polymer particles may be non-expandable polymer particles containing no blowing agent, or may be expandable polymer particles containing a blowing agent. When non-expandable polymer particles are used as seeds, the resulting foam particles and the in-mold foam molded product obtained from them have good gloss and are translucent. Furthermore, when expandable polymer particles are used as seeds, the resulting foam particles and the in-mold foam molded product obtained from them have high opacity. The reason for this is that when the former non-expandable particles are used as seeds, the foam particles have a wall thickness of 10 to 1 mm, as shown in Figure 9.
30 ~ 6 μm in some places on the film-like outer skin
The structure has a structure in which small bubbles γ of 60μ are formed, whereas the foam particles when the latter foamable particles are used as seeds are crushed small bubbles 2' as shown in Figure 1-b.
This is because the structure has a structure in which the two layers are overlapped to form an outer skin with a wall thickness of 10 to 100 μm.

その!@濁シーP重合における不飽和単量体としては、
たとえばスチレン、メタクリル酸メチル、メタクリル酸
エチル、メタクリル酸ブチル、メタクリル酸2−エチル
ヘキシル、アクリル酸アルキルエステル(アルキル基の
炭素数が1〜8のもの)、アクリロニトリル、アクリル
アミド、α−メチルスチレン、p−メチルスチレン、ア
クリル酸、イタコン酸、マレイン酸、N−フェニルマレ
イミド等があげられる。そして、これらの不飽和単量体
は、前述のように、種としての重合体粒子を構成する不
飽和単量体と、同単量体とは水に対する溶解指数の異な
る他の不飽和単量体とを組合わせて使用される。
the! @Unsaturated monomers in turbidity P polymerization include:
For example, styrene, methyl methacrylate, ethyl methacrylate, butyl methacrylate, 2-ethylhexyl methacrylate, acrylic acid alkyl ester (alkyl group having 1 to 8 carbon atoms), acrylonitrile, acrylamide, α-methylstyrene, p- Examples include methylstyrene, acrylic acid, itaconic acid, maleic acid, and N-phenylmaleimide. As mentioned above, these unsaturated monomers are composed of the unsaturated monomers constituting the polymer particles as seeds and other unsaturated monomers that have a different water solubility index from the same monomers. Used in combination with the body.

そのシード重合における重合開始剤としては、10時間
半減期を得る分解温度が60〜120℃、好ましくは7
0〜110℃である有機過酸化物が適する。好ましい重
合開始剤の具体例(具体例に付記したカッコ内の温度は
10時間半減期を得る分解温度である。)としては、t
−ブチルパーオキシ2−エチルヘキサノエート〔72℃
〕、ベンゾイルl?−オキサイド〔74℃L  1,1
−ビス(t〜ブチルパーオキシ) −3,5,5−)リ
メチルシクロヘキサン〔90℃〕、t−ブチルパーオキ
シラウレート〔96℃〕、2,5−ツメチル−2,5−
シ(−<ンソイルパーオキシ)ヘキサン[100℃]、
t−ffルパーオキシペンゾエー) (104℃〕、メ
チルエチルケトン7や−オキサイド〔109℃〕、ジク
ミルパーオキサイド〔117℃〕等があげられる。重合
開始剤は、単量体混合物に対して0.05〜2重tチの
割合で用いられる。
The polymerization initiator in the seed polymerization has a decomposition temperature of 60 to 120°C, preferably 7
Organic peroxides having a temperature of 0 to 110°C are suitable. Specific examples of preferable polymerization initiators include t
-Butylperoxy 2-ethylhexanoate [72℃
], benzoyl l? -Oxide [74℃L 1,1
-bis(t-butylperoxy)-3,5,5-)limethylcyclohexane [90°C], t-butylperoxylaurate [96°C], 2,5-tumethyl-2,5-
cy(-<nsoylperoxy)hexane [100°C],
Examples include t-ff luperoxypenzoate) (104°C), methyl ethyl ketone 7 and -oxide [109°C], and dicumyl peroxide (117°C). It is used in a ratio of .05 to 2 times.

そのシード重合の途中又は重合後に添加する発泡剤とし
ては、常温常圧下に液体又は気体の有機化合物が使用さ
れるが、特にその沸点が発泡剤を含浸せしめるべき重合
体粒子の軟化温度よシ低いものが好ましい。その具体例
としては、プロパン、ブタン、ペンタン、ヘキサン、石
油エーテル等の脂肪族炭化水素、シクロヘキサン等の環
状炭化水素、塩化メチレン、塩化ビニル、トリクロロト
リフルオロエタン、ジクロロジフルオロエタン等のハロ
ゲン化炭化水素があげられる。
As the blowing agent added during or after the seed polymerization, a liquid or gaseous organic compound is used at room temperature and pressure, but in particular, its boiling point is lower than the softening temperature of the polymer particles to be impregnated with the blowing agent. Preferably. Specific examples include aliphatic hydrocarbons such as propane, butane, pentane, hexane, and petroleum ether, cyclic hydrocarbons such as cyclohexane, and halogenated hydrocarbons such as methylene chloride, vinyl chloride, trichlorotrifluoroethane, and dichlorodifluoroethane. can give.

かかる懸濁シード重合においてその重合条件を調整しな
がら重合させて得られ、かつ発泡剤を含浸せしめた重合
体粒子を濾過、洗浄、乾燥して、重合体粒子中に発泡剤
が2〜10重量%、好ましくは3〜8重t%含有された
熱可塑性樹脂の発泡性粒子とし、この発泡性粒子を90
〜110℃の熱水又はスチーム等で加熱して見掛密度が
10〜2001//lになるように発泡させると、本発
明の中空球状熱可塑性樹脂発泡体粒子が得られる。
In such suspension seed polymerization, the polymer particles obtained by polymerization while adjusting the polymerization conditions and impregnated with a blowing agent are filtered, washed, and dried, so that 2 to 10 weight of the blowing agent is contained in the polymer particles. %, preferably 3 to 8 wt. %, the expandable particles are made of thermoplastic resin containing 90
The hollow spherical thermoplastic resin foam particles of the present invention are obtained by heating with hot water or steam at ~110°C and foaming to an apparent density of 10 to 200 l/l.

かかる方法で得られる発泡体粒子は、発泡直後に一旦収
縮することがあるが、空気中に2〜10時間位放置(熟
成)するとその気泡内の気圧が大気圧と同じとなって中
空球状に戻る。そして、かかる本発明の中空球状発泡体
粒子は、通常、二次発泡能力を有していて、その二次発
泡能力は粒子を空気中に50日以上放置しても失なわれ
ないことが確認された。
The foam particles obtained by this method may shrink once immediately after foaming, but if left in the air for about 2 to 10 hours (ripening), the pressure inside the bubbles becomes the same as atmospheric pressure and becomes hollow spherical. return. It was confirmed that the hollow spherical foam particles of the present invention normally have secondary foaming ability, and that this secondary foaming ability is not lost even if the particles are left in the air for 50 days or more. It was done.

本発明の中空球状熱可塑性樹脂発泡体粒子は、前述の懸
濁シード重合における重合条件、特に使用する不飽和単
量体(種類)の組合わせ及びその単量体混合比率等を調
整することによシ得られるが、それらの好ましい条件は
、種としての重合体粒子の種類、単量体の種類や組合わ
せなどに応じて変化し、一定しない。
The hollow spherical thermoplastic resin foam particles of the present invention can be obtained by adjusting the polymerization conditions in the above-mentioned suspension seed polymerization, particularly the combination of unsaturated monomers (types) used, the monomer mixing ratio, etc. However, the preferred conditions vary depending on the type of polymer particles as seeds, the types and combinations of monomers, and are not constant.

一例として、後述の実施例1におけると同一の種重合体
及び単量体を用い、かつその他の重合条件も同一の条件
を用い、ただし滴下する単量体混合物の混合比率だけを
表1に示すように種々に変化させて重合を行なわせた。
As an example, using the same seed polymer and monomer as in Example 1 described later, and using the same other polymerization conditions, only the mixing ratio of the monomer mixture to be added dropwise is shown in Table 1. Polymerization was carried out with various changes.

次いで、得られた各熱可塑性樹脂発泡性粒子を、実施例
1におけると同一の発泡条件を用いて加熱発泡させて発
泡体粒子を製造した。得られた各発泡体粒子の単量体含
有比、気泡構造、粒径及び粒子外皮の平均膜厚は、表1
にそれぞれ示すとおりであった。
Next, each of the obtained thermoplastic resin expandable particles was heated and foamed using the same foaming conditions as in Example 1 to produce foam particles. The monomer content ratio, cell structure, particle size, and average film thickness of the particle outer layer of each obtained foam particle are shown in Table 1.
The results were as shown in the following.

1じ、 実験A I (後述の比較例1)で得られた発泡体粒子
は、WJ6図に示しだような多泡構造の粒子であり、こ
れは従来公知の予備発泡体粒子(第10図)と同程度の
気泡数が200〜300個/ff111+2程度のもの
、すなわち粒子1中に多数の小気泡γを含有する多泡構
造のものであシ、粒子外皮の膜厚が約0.5〜1.0μ
程度と薄く、圧縮強度の低いものであった。
1. The foam particles obtained in Experiment A I (Comparative Example 1 described below) have a multicellular structure as shown in Figure WJ6, which is different from the conventional pre-foam particles (see Figure 10). ), the number of bubbles is about 200 to 300/ff111+2, that is, the particle has a multicellular structure containing many small bubbles γ in the particle 1, and the thickness of the particle outer layer is about 0.5 ~1.0μ
It was relatively thin and had low compressive strength.

そして、実験屋の数が大きくなるにつれて(換言すれば
、滴下単量体混合物中のメタクリル酸メチルの割合が高
くなるにつれて)、鴫2当りの気泡数が少なくなシ、し
たがって気泡の大きさが次第に大きくなシ、粒子外皮の
膜厚が3〜100μと厚い粒子が得られた。
And, as the number of bubbles increases (in other words, as the proportion of methyl methacrylate in the dropped monomer mixture increases), the number of bubbles per 2 drops becomes smaller, and therefore the size of the bubbles increases. Gradually larger particles were obtained, and the particle outer layer had a thickness of 3 to 100 μm.

詳述すれば、実験A2で得られた発泡体粒子は、第7図
に示されるように、一つの発泡体粒子1中に比較的大き
な気泡2′と比較的に小さい気泡τ′とが混在している
気泡数が10〜30個/鴇2程度のもので、外皮膜厚も
やや厚いものであった。また、実験屋3で得られた発泡
体は、第3図で示されるように、9個の大きな気泡2′
と粒子外皮膜に密着した多数の小さな気泡2“を有する
中空球状粒子であり、粒子外皮の平均膜厚が30μ程度
と比較的に厚いものであった。
Specifically, as shown in FIG. 7, the foam particles obtained in Experiment A2 have a mixture of relatively large bubbles 2' and relatively small bubbles τ' in one foam particle 1. The number of bubbles formed was about 10 to 30/2 bubbles, and the outer coating thickness was also somewhat thick. In addition, the foam obtained at Experimental House 3 had nine large bubbles 2', as shown in Figure 3.
The particles were hollow spherical particles having a large number of small air bubbles 2'' in close contact with the particle outer coating, and the particle outer coating had a relatively thick average thickness of about 30 μm.

また、実験A4(後述の実施例1)及び実験点5で得ら
れた発泡体粒子は、第2図及び第1−a図と第1−b図
にそれぞれ示されるように、粒子1全体の容積の大部分
を占める巨大気泡2を実質上1個のみ有する中空球状粒
子であり、その外皮には押しつぶされた小気泡rが含有
された構造のものであり、その外皮の小気泡を含めた平
均膜厚が約50μ程度と厚く、本発明の発泡体粒子の代
表例の一つであった。
In addition, the foam particles obtained in Experiment A4 (Example 1 to be described later) and Experimental Point 5 have a total area of 100% of the entire particle 1, as shown in Fig. 2 and Figs. 1-a and 1-b, respectively. It is a hollow spherical particle that has substantially only one giant bubble 2 that occupies most of its volume, and has a structure in which the outer shell contains crushed small bubbles r, including the small bubbles in the outer shell. The average film thickness was as thick as about 50 μm, and it was one of the representative examples of the foam particles of the present invention.

さらに、実験A6で得られた発泡体粒子は、第4図に示
されたように、第1図や第2図に示されたものと同様に
実質上巨大気泡2を1個のみ有するものであるが、その
気泡2内に樹脂(重合体)の小粒子3が1個〜2個程度
移動自在に収納されているものであり、その外皮の平均
膜厚も約50μ程度と厚く、この発泡体粒子も本発明の
発泡体粒子の他の代表例であった。そして、このような
粒子の気泡内に樹脂小粒子が移動自在に収納された発泡
体を型内発泡成形して得られる成形体は、その個々の粒
子内に樹脂小粒子がそれぞれ移動自在に収納された成形
体であるので、同成形体を手などで振るとされやかな音
を発するから、かかる音の発生が好まれる用途、たとえ
ば玩具内装材用等に有利に使用できると考えられる。
Furthermore, as shown in FIG. 4, the foam particles obtained in Experiment A6 had substantially only one giant bubble 2, similar to those shown in FIGS. 1 and 2. However, one or two small resin (polymer) particles 3 are movably housed within the bubbles 2, and the average thickness of the outer skin is as thick as about 50 μm. Foam particles were also another representative example of foam particles of the present invention. A molded product obtained by in-mold foam molding of a foam in which small resin particles are movably housed within the air bubbles of such particles is a molded product in which small resin particles are movably housed within each individual particle. Since the molded product emits a gentle sound when shaken by hand, it is thought that it can be advantageously used in applications where generation of such a sound is preferred, such as interior materials for toys.

本発明の発泡体粒子は、このように一つの巨大気泡を有
する実質的に中空球状粒子であり、粒径が05〜20m
、粒子外皮の平均膜厚が3μ以上、好ましくは5〜10
0μ程度であるから、従来公知の多泡構造の予備発泡体
粒子と較べて外皮膜厚が厚いので、中空球状構造である
にかかわらず、粒子自体としても従来公知の予備発泡体
粒子と較べて圧縮強さ等の強度に優れていて、緩衝材、
埋立材、断熱材、充填材等として有利に使用することが
できる。なお、本発明の発泡体粒子は、粒子のfまで上
記のような用途に使用されるものの場合には、その発泡
体粒子が、必ずしも二次発泡能力を有する必要がない。
The foam particles of the present invention are thus substantially hollow spherical particles having one giant cell, and have a particle size of 05 to 20 m.
, the average thickness of the particle shell is 3 μ or more, preferably 5 to 10
Since the particle size is about 0 μ, the outer coating thickness is thicker than that of the conventionally known pre-foamed particles with a multi-cell structure, so the particles themselves are also thicker than the conventionally known pre-foamed particles, regardless of their hollow spherical structure. It has excellent strength such as compressive strength, and can be used as a cushioning material,
It can be advantageously used as a landfill material, a heat insulating material, a filler material, etc. In addition, when the foam particles of the present invention are used for the above-mentioned purposes up to f of the particles, the foam particles do not necessarily need to have secondary foaming ability.

しかし、上記したような製造方法(特に予備発泡法)で
製造された本発明の発泡体粒子は、既述のように通常は
、二次発泡能力を有するものである。そして、かかる二
次発泡能力を有する本発明の発泡体粒子は型内発泡成形
用の発泡体粒子として有利に使用できる。すなわち、か
かる二次発泡能力を有する本発明の発泡体粒子を、常法
にしたがって型内に充填し、所定の温度(たとえば11
0〜130℃)のスチーム又は熱湯等を用いて5〜12
0秒程−へ加熱すると、容易に発泡して相互に融着し型
内発泡成形体が得られる。その型内発泡成形体は、従来
公知の予備発泡体粒子を型内発泡成形して得られる成形
体と較べて、粒子の外皮膜が厚いので、圧縮強度及び圧
縮回復率がともに高いものとなるから、包装材、パン/
4’−芯材、緩衝材などとして有利に使用できる。また
、樹脂小粒子が移動自在に収納された本発明の発泡体粒
子を型内発泡成形して得られる成形体は、既述のように
手で振るとされやかな音を発するから、たとえば玩具内
装材等として有利に使用できる。
However, the foam particles of the present invention produced by the above-mentioned production method (particularly the pre-foaming method) usually have a secondary foaming ability, as described above. The foam particles of the present invention having such secondary foaming ability can be advantageously used as foam particles for in-mold foam molding. That is, the foam particles of the present invention having such secondary foaming ability are filled into a mold according to a conventional method, and heated to a predetermined temperature (for example, 11
5 to 12 minutes using steam or boiling water (0 to 130℃)
When heated to about 0 seconds, they easily foam and fuse together to obtain an in-mold foamed molded product. The in-mold foamed molded product has a thicker outer coating on the particles than a molded product obtained by in-mold foam molding of conventionally known pre-foamed particles, so it has high compressive strength and compression recovery rate. From, packaging materials, bread/
4'-Can be advantageously used as a core material, cushioning material, etc. Furthermore, the molded product obtained by in-mold foam molding of the foam particles of the present invention in which small resin particles are movably housed emits a soft sound when shaken by hand as described above, so it can be used, for example, as a toy. It can be advantageously used as an interior material, etc.

たとえば、添付の第5図は、前記の実験44(後述の実
施例1)で得られた発泡体粒子(第2図に示したもの)
を、型内発泡成形して得られた成形体の拡大断面図であ
るが、比較的に大きな粒子が融着した構造のものであり
、その融着した何個の粒子がほぼ中空球状である。
For example, the attached FIG. 5 shows the foam particles (shown in FIG. 2) obtained in Experiment 44 (Example 1 below).
This is an enlarged cross-sectional view of a molded product obtained by in-mold foam molding, which has a structure in which relatively large particles are fused together, and the fused particles are almost hollow spherical. .

(実施例等) 以下に、実施例及び比較例をあげてさらに詳述する。(Examples, etc.) The following is a more detailed explanation of Examples and Comparative Examples.

実施例1 容fk31の攪拌装置付き重合容器に純水100011
第三リン酸カルシウム10g、ドデシルベンゼンスルホ
ン酸ソーダの1チ水溶液3.0,9.発泡剤としてブタ
ンを6.1%含む粒径0.5〜0.4瓢に篩別された発
泡性スチレン重合体粒子212.2/(純スチレン重合
体として2oom)、及びベンゾイルパーオキサイド2
.4yを加え、450 rpmで攪拌して均一な懸濁分
散液とした。
Example 1 Pure water 100011 was added to a polymerization vessel with a stirring device having a capacity of fk31.
10 g of tribasic calcium phosphate, 1 t aqueous solution of sodium dodecylbenzenesulfonate 3.0.9. Expandable styrene polymer particles 212.2/(2oom as pure styrene polymer) sieved to particle size 0.5-0.4 gourd containing 6.1% butane as a blowing agent, and benzoyl peroxide 2
.. 4y was added and stirred at 450 rpm to form a uniform suspension dispersion.

この懸濁分散液を攪拌下に80℃まで昇温する途中の4
0℃の温度に達した時点において、重合容器の空間部に
、同空間部の容積に対して10I/lの割合に相当する
量である18IIのブタンを気化して供給した。次いで
、重合系の温度が80℃に到達したのち、同温度で8時
間保ち、この間に80℃に到達した時点から6時間かけ
て、ターシャリープチルノや一ベンゾニー)1.2Fを
2001シ100yの割合で添加した。
4 while heating this suspended dispersion to 80°C while stirring.
When the temperature reached 0° C., 18II butane was vaporized and supplied to the space of the polymerization vessel in an amount corresponding to a ratio of 10 I/l to the volume of the space. Next, after the temperature of the polymerization system reached 80°C, it was kept at the same temperature for 8 hours, and during this period, from the time when it reached 80°C, 1.2F of tert. added in proportion.

単量体溶液の添加終了後、原料の発泡性スチレン重合体
粒子と、スチレン及びメタクリル酸メチル単量体との合
計量に対して10チに相当する量である80gのペンタ
ンを液状で添加してから、80℃よシ110℃まで1.
5時間かけて昇温させ、110℃で4時間保持して重合
を行なわせ、熱可塑性樹脂発泡性粒子を生成させた。
After the addition of the monomer solution was completed, 80 g of pentane, which is an amount equivalent to 10 g of the total amount of the raw material expandable styrene polymer particles and the styrene and methyl methacrylate monomers, was added in liquid form. 1. From 80℃ to 110℃.
The temperature was raised over 5 hours and held at 110° C. for 4 hours to effect polymerization, thereby producing expandable thermoplastic resin particles.

重合完了後の水性分散液を冷却、濾過、水洗、乾燥して
得られた熱可塑性樹脂発泡性粒子を98℃、1.0 k
g/cm2の水蒸気で加熱して予備発泡させ、かさ密度
が20971の発泡体粒子を得た。この発泡体粒子を3
0℃で6時間空気中に放置して乾燥(熟成)させ、収縮
のない粒子を得た。この粒子は第2図に示すような構造
を有するものであり、その粒子1は実質上巨大な気泡2
を1個のみ有し、粒径が2〜3m+、皮膜の平均膜厚が
約50μであり、かつ二次発泡能力を有する粒子であっ
た。
After the completion of polymerization, the aqueous dispersion was cooled, filtered, washed with water, and the resulting thermoplastic resin expandable particles were heated at 98°C for 1.0 k.
The foam particles were pre-foamed by heating with water vapor of g/cm2 to obtain foam particles having a bulk density of 20,971. 3 of these foam particles
The particles were dried (ripened) by being left in the air at 0° C. for 6 hours to obtain particles without shrinkage. This particle has a structure as shown in Fig. 2, and the particle 1 is essentially a huge bubble 2.
The particles had only one particle size, had a particle size of 2 to 3 m+, had an average film thickness of about 50 μm, and had secondary foaming ability.

次いで、この発泡体粒子を24時間空気中で放置後、1
00+mX100mX200+mの金型のキャピテイ内
に充填し0.7 ’g&/cm2の水蒸気で20秒間加
熱して発泡成形して得られた成形体は第5図に示すよう
な・・ニカム構造を有するものであり、その融着された
個々の発泡体粒子は実質的に中空球構造を有していた。
The foam particles were then left in the air for 24 hours and then
The molded product obtained by filling the cavity of a mold of 00+m x 100m x 200+m and heating with 0.7'g/cm2 of water vapor for 20 seconds to form a foam has a nicum structure as shown in Figure 5. The fused individual foam particles had a substantially hollow sphere structure.

また、この成形体は、JIS A−9511による5%
圧縮強さが1.1 kg7cm  であり、50チ圧縮
後の圧縮回復率が97%であった。
In addition, this molded product has a 5% rating according to JIS A-9511.
The compressive strength was 1.1 kg7cm, and the compression recovery rate after compression of 50 inches was 97%.

比較例1 滴下する単量体としてスチレン402Iとメタクリル酸
メチル198yとの単量体混合物を用い、そのほかは実
施例1におけると同じ方法を用いて重合させ、得られた
発泡性粒子を実施例1におけする多泡構造のものであり
、その気泡数が200〜300個/II+12、粒径が
2〜3mm1粒子外皮の膜厚が約0.5〜1μであった
。これは従来公知の予備発泡粒子と類似するものである
Comparative Example 1 Using a monomer mixture of styrene 402I and methyl methacrylate 198y as the monomer to be added dropwise, the polymerization was otherwise performed in the same manner as in Example 1, and the obtained expandable particles were used in Example 1. The number of cells was 200 to 300/II+12, the particle size was 2 to 3 mm, and the thickness of the outer layer of each particle was about 0.5 to 1 μm. This is similar to previously known pre-expanded particles.

また、この予備発泡粒子を用いて実施例IKおけると同
一の方法で型内発泡成形して得られた成形体は、JIS
 A−9511による5チ圧縮強さが1.0に97cm
250チ圧縮後の圧縮回復率がf?チであった。
In addition, the molded product obtained by in-mold foam molding using the pre-expanded particles in the same manner as in Example IK is
5 inch compressive strength by A-9511 is 1.0 97cm
Compression recovery rate after 250chi compression is f? It was Chi.

実施例2 実施例1において用いた単量体混合物の代りに、スチレ
ン120gとメタクリル酸メチル480gとの単量体混
合物を用い、そのほかは実施例1と同様にして重合させ
発泡性粒子を得た。さらに、この発泡性粒子を実施例1
におけると同様にして予備発泡させたところ、第4図に
示すような構造の二次発泡能力を有する発泡体粒子が得
られた。
Example 2 Instead of the monomer mixture used in Example 1, a monomer mixture of 120 g of styrene and 480 g of methyl methacrylate was used, and the polymerization was otherwise performed in the same manner as in Example 1 to obtain expandable particles. . Furthermore, this expandable particle was used in Example 1.
When pre-foaming was carried out in the same manner as in , foamed particles having a structure as shown in FIG. 4 and having secondary foaming ability were obtained.

この粒子1は、粒径が2〜3間、外皮の平均膜厚!。This particle 1 has a particle size of 2 to 3 and an average thickness of the outer skin! .

動自在に収納された実質上中空球状の粒子であった。They were substantially hollow spherical particles that were movably housed.

また、この発泡体粒子を用いて実施例1におけると同様
の方法で型内発泡成形した。得られた成形体は、手で振
ると収納された樹脂小粒子にもとづきされやかな音を発
することができ、実施例1におけると同様の5チ圧縮強
さが1.1ψ’cm2.50チ圧縮回復率が96%であ
った。
Further, in-mold foam molding was performed using the foam particles in the same manner as in Example 1. When the obtained molded body is shaken by hand, it can emit a gentle sound based on the small resin particles contained therein, and the same 5 inch compressive strength as in Example 1 is 1.1 ψ'cm and 2.50 inch. The compression recovery rate was 96%.

実施例3 実施例1の重合において用いた種の発泡性ポリスチレン
粒子212.21の代りに、発泡剤を含有しないポリス
チレン粒子200gを用い、そのほかは実施例1と同様
にして重合させ、得られた発泡性粒子を実施例1におけ
ると同様にして予備発泡させて二次発泡能力を有する発
泡体粒子を得た。
Example 3 In place of the expandable polystyrene particles 212.21 used in the polymerization of Example 1, 200 g of polystyrene particles containing no blowing agent were used, and the polymerization was otherwise carried out in the same manner as in Example 1. The expandable particles were pre-foamed in the same manner as in Example 1 to obtain foam particles having secondary foaming ability.

この発泡体粒子は、実施例Iにおいて得られた発泡体粒
子と同様の一つの巨大な気泡を有する中空球構造のもの
であり、その粒径が2〜3噸、粒子外皮の平均膜厚が1
5μであった。また、この発泡体粒子を用いて実施例1
におけると同様にして型内発泡成形して得られた成形体
は、その5チ圧縮強さ及び50%圧縮回復率がともに実
施例1で得られた成形体のそれらとほぼ同じであったが
、その外観は、実施例1の成形体が不透明で光沢の低い
ものであるのに対して、半透明でかつ光沢の高いもので
あった。
These foam particles have a hollow spherical structure with one giant cell similar to the foam particles obtained in Example I, and have a particle size of 2 to 3 cm and an average thickness of the particle outer layer. 1
It was 5μ. In addition, using this foam particle, Example 1
The molded product obtained by in-mold foam molding in the same manner as in Example 1 had a 5-inch compressive strength and a 50% compression recovery rate that were almost the same as those of the molded product obtained in Example 1. The appearance of the molded product of Example 1 was translucent and high gloss, whereas the molded product of Example 1 was opaque and low gloss.

比較例2 この例は従来法の例である。Comparative example 2 This example is an example of the conventional method.

すなわち、容量31の攪拌装置付きの重合容器に、純水
1000g、ビロリン酸ソーダ0.42.1酢酸ソーダ
0.63g、亜硝酸ソーダ0.10gを加え、350 
rpmで攪拌して均一な分散液とした。
That is, 1000 g of pure water, 0.42.1 g of sodium birophosphate, 0.63 g of sodium acetate, and 0.10 g of sodium nitrite were added to a polymerization container with a capacity of 31 mm and equipped with a stirring device.
A homogeneous dispersion was obtained by stirring at rpm.

次いで、攪拌下にこれに、ベンゾイルパーオキサイド7
.0g、ターシャリープチルノ4−ベンゾエート2.1
.9をスチレン350及びメタクリル酸メチル350g
の単量体混合物に溶解した溶液を投入して、均一な懸濁
分散液とした。
Then, to this was added 7 ml of benzoyl peroxide while stirring.
.. 0g, tertiarybutylno-4-benzoate 2.1
.. 9 with 350 g of styrene and 350 g of methyl methacrylate
A solution dissolved in the monomer mixture was added to form a uniform suspension and dispersion.

この懸濁分散液を攪拌しながら80℃まで昇温させ、さ
らに80℃から115℃まで6時間かけて昇温させた。
The temperature of this suspension dispersion was raised to 80°C while stirring, and then the temperature was further raised from 80°C to 115°C over 6 hours.

この間に、80℃に達してから1時間後の時点にポリビ
ニルピロリドンの10%水溶液50.9を添加し、同じ
く4時間後の時点にスチレンとメタクリル酸メチルとの
単量体混合物に対して10重tチに相当する量である7
0.9の被ンタンを液状で添加した。115℃に到達後
、同温度で5時間保持して重合を完了させた。
During this period, 50.9 g of a 10% aqueous solution of polyvinylpyrrolidone was added 1 hour after the temperature reached 80°C, and 10.9 g of a 10% aqueous solution of polyvinylpyrrolidone was added to the monomer mixture of styrene and methyl methacrylate at the same time of 4 hours. The amount is equivalent to 7.
0.9% of the tantan was added in liquid form. After reaching 115°C, the temperature was maintained for 5 hours to complete the polymerization.

得られた重合生成物を冷却し、濾過し、乾燥して得られ
た粒子を0.7〜1.0−にカットしたものを、98℃
、1.0 kg7cm2の水蒸気で加熱発泡させ、かさ
密度が20 E/lの予備発泡粒子を得た。
The obtained polymerization product was cooled, filtered, and dried, and the obtained particles were cut into 0.7 to 1.0 particles and heated at 98°C.
, 1.0 kg and 7 cm 2 of steam were heated and foamed to obtain pre-expanded particles having a bulk density of 20 E/l.

この予備発泡粒子の断面構造は第8図に示されるような
多泡構造のものであり、粒径が2〜3瓢、粒子外皮の膜
厚が約0.5〜1.0μ、気泡数が約220個/燗2の
二次発泡能力を有する粒子であった。
The cross-sectional structure of the pre-expanded particles is a multi-cell structure as shown in Figure 8, with a particle size of 2 to 3 mm, a particle outer layer thickness of about 0.5 to 1.0 μm, and a number of bubbles. The particles had a secondary foaming ability of approximately 220 particles/2 cups.

また、この予備発泡体粒子を用いて、実施例1における
と同様の型内発泡成形をして得られた成形体は、実施例
1におけると同様の5チ圧縮強さが0.9 kg/cm
250チ圧縮回復率が88チであった。
Furthermore, a molded article obtained by performing in-mold foam molding using the pre-foamed particles in the same manner as in Example 1 had a 5-inch compressive strength of 0.9 kg/cm, similar to that in Example 1. cm
The 250 inch compression recovery rate was 88 inch.

(c)  発明の効果 本発明の熱可塑性樹脂発泡体粒子は、実質上中空球状を
有し、粒子外皮膜が厚くて粒子自体の強度が犬である。
(c) Effects of the Invention The thermoplastic resin foam particles of the present invention have a substantially hollow spherical shape, have a thick outer coating, and have excellent strength.

また、この発泡体粒子を用いて得られる型内発泡成形体
は、従来の型内発泡成形体と較べて中空球状粒子が融着
された構造のもので外観が良好であるばかりでなく、圧
縮強さ及び圧縮回復率がともに著しく高い。
In addition, the in-mold foam molded product obtained using this foam particle has a structure in which hollow spherical particles are fused together compared to conventional in-mold foam molded products, so it not only has a better appearance but also has a better compression Both strength and compression recovery rate are extremely high.

【図面の簡単な説明】[Brief explanation of the drawing]

第1−a図と第1−b図、第2図、第3図、第4図、第
6図及び第7図は、表1の実験A5、同A4(実施例1
)、同点3及び同A6(実施例2)、同煮1(比較例1
)、及び同点2においてそれぞれ得られた発泡体粒子の
拡大断面図である。また、第5図は実験A 4 (実施
例1)で得られた発泡体粒子の型内発泡成形体の拡大断
面図であり、第8図は比較例2で得られた発泡体粒子の
拡大断画図である。また、第9図は実施例3で得られた
発泡体粒子の拡大断面図であシ、第10図は従来公知の
予備発泡体粒子の拡大断面図である。各図面に付記した
倍数は、拡大倍率である。 図中の各符号は、それぞれ下記のものを示す。 1・・・発泡体粒子、2・・・発泡体粒子の巨大気泡、
2′・・・発泡体粒子の大気泡、2″・・・発泡体粒子
の小気泡、3・・・発泡体粒子の巨大気泡内の樹脂小粒
子。 特許出願人 三菱油化パーデイツシエ株式会社代 理 
人 弁理士 中 谷 守 也 第1−a図 第1−b図 第 図 第3図 第4図 第6図 第 図 第8図 第10 −」ノ (30(骨ン
Figure 1-a, Figure 1-b, Figure 2, Figure 3, Figure 4, Figure 6, and Figure 7 show Experiment A5 and Experiment A4 (Example 1) in Table 1.
), Tie 3 and Tie A6 (Example 2), Tie 1 (Comparative Example 1)
), and enlarged cross-sectional views of foam particles obtained at the same point 2, respectively. Moreover, FIG. 5 is an enlarged cross-sectional view of the in-mold foam molded product of the foam particles obtained in Experiment A 4 (Example 1), and FIG. 8 is an enlarged view of the foam particles obtained in Comparative Example 2. This is a cross-sectional view. Further, FIG. 9 is an enlarged cross-sectional view of the foam particles obtained in Example 3, and FIG. 10 is an enlarged cross-sectional view of the conventionally known pre-foam particles. The multiples appended to each drawing are enlargement magnifications. Each symbol in the figure indicates the following. 1... Foam particles, 2... Huge bubbles of foam particles,
2'... Large bubbles in foam particles, 2''... Small bubbles in foam particles, 3... Small resin particles within giant bubbles in foam particles. Patent applicant: Mitsubishi Yuka Perdice Co., Ltd. Reason
Patent Attorney Mamoru Nakatani Figure 1-a Figure 1-b Figure 3 Figure 4 Figure 6 Figure 8 Figure 10

Claims (1)

【特許請求の範囲】 1)粒子の全容積の50%を超える容積を占める一つの
巨大気泡を有する実質的に中空球状粒子であり、粒径が
0.5〜20mmでかつ粒子外皮の平均膜厚が3μ以上
であることを特徴とする中空球状熱可塑性発泡体粒子。 2)粒子外皮の平均膜厚が5〜100μである第1請求
項記載の発泡体粒子。 3)粒子の巨大気泡内に樹脂小粒子が移動自在に収納さ
れている第1請求項又は第2請求項記載の発泡体粒子。 4)粒子が二次発泡能力を有するものである第1請求項
、第2請求項又は第3請求項記載の発泡体粒子。 5)第4請求項に記載の二次発泡能力を有する各中空球
状熱可塑性樹脂発泡体粒子から選ばれた少なくとも1種
の熱可塑性樹脂発泡体粒子を型内に充填し加熱膨脹させ
て発泡体粒子どうしを融着させる熱可塑性樹脂型内発泡
成形体の製造法。 6)融着させた個々の発泡体粒子が実質的に中空球状構
造である第5請求項記載の製造法。
[Scope of Claims] 1) Substantially hollow spherical particles having one giant bubble occupying more than 50% of the total volume of the particles, with a particle size of 0.5 to 20 mm, and an average membrane of the particle outer shell. Hollow spherical thermoplastic foam particles having a thickness of 3μ or more. 2) The foam particles according to claim 1, wherein the particle outer skin has an average thickness of 5 to 100 microns. 3) The foam particles according to claim 1 or 2, wherein small resin particles are movably housed in giant cells of the particles. 4) The foam particles according to claim 1, 2, or 3, wherein the particles have secondary foaming ability. 5) At least one kind of thermoplastic resin foam particles selected from the hollow spherical thermoplastic resin foam particles having secondary foaming ability according to claim 4 is filled into a mold and heated and expanded to form a foam. A method for manufacturing thermoplastic resin in-mold foam moldings that fuses particles together. 6) The method of claim 5, wherein the individual fused foam particles have a substantially hollow spherical structure.
JP63174941A 1988-07-15 1988-07-15 Hollow spherical thermoplastic resin foam particles and method for producing expanded molded articles using the same Expired - Fee Related JP2604624B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63174941A JP2604624B2 (en) 1988-07-15 1988-07-15 Hollow spherical thermoplastic resin foam particles and method for producing expanded molded articles using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63174941A JP2604624B2 (en) 1988-07-15 1988-07-15 Hollow spherical thermoplastic resin foam particles and method for producing expanded molded articles using the same

Publications (2)

Publication Number Publication Date
JPH0228225A true JPH0228225A (en) 1990-01-30
JP2604624B2 JP2604624B2 (en) 1997-04-30

Family

ID=15987408

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63174941A Expired - Fee Related JP2604624B2 (en) 1988-07-15 1988-07-15 Hollow spherical thermoplastic resin foam particles and method for producing expanded molded articles using the same

Country Status (1)

Country Link
JP (1) JP2604624B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006162922A (en) * 2004-12-07 2006-06-22 Seiko Epson Corp Electro-optical device and electronic apparatus
JP2007262345A (en) * 2006-03-30 2007-10-11 Sekisui Plastics Co Ltd Expandable styrene-based resin particle, styrene-based resin expandable particle and styrene-based resin expanded molding
JP2013199548A (en) * 2012-03-23 2013-10-03 Sekisui Plastics Co Ltd Foamable styrene resin particle and method for manufacturing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006162922A (en) * 2004-12-07 2006-06-22 Seiko Epson Corp Electro-optical device and electronic apparatus
JP2007262345A (en) * 2006-03-30 2007-10-11 Sekisui Plastics Co Ltd Expandable styrene-based resin particle, styrene-based resin expandable particle and styrene-based resin expanded molding
JP2013199548A (en) * 2012-03-23 2013-10-03 Sekisui Plastics Co Ltd Foamable styrene resin particle and method for manufacturing the same

Also Published As

Publication number Publication date
JP2604624B2 (en) 1997-04-30

Similar Documents

Publication Publication Date Title
US4368218A (en) Method of making expandable thermoplastic polymer beads
US4303756A (en) Process for producing expandable thermoplastic resin beads
JP3732418B2 (en) Expandable styrene resin particles
TW201219468A (en) Expandable polystyrene resin bead and producing method thereof, polystyrene resin preliminary expanded bead, polystyrene resin foam and producing method thereof, heat insulating material and cushioning material
JPH0228225A (en) Hollow spherical foam particle of thermoplastic resin and production of molded article of foam using the same particle
JP3474995B2 (en) Method for producing expandable styrene polymer particles
US3832312A (en) Process for making foamed styrene polymers photodegradable
JP5486981B2 (en) Pre-foaming method for expandable thermoplastic resin particles
JP2760361B2 (en) Method for producing expandable styrene-modified polyolefin resin particles
JP2632389B2 (en) Thermoplastic resin pre-expanded particles and method for producing expanded molded articles using the same
JPH0554854B2 (en)
JPH0598062A (en) Foamable styrene resin granule and production thereof
JP3805209B2 (en) Expandable styrenic resin particles, styrenic resin foam moldings and methods for producing them
CA1120650A (en) Process for producing expandable thermoplastic resin beads
JPH06100724A (en) Production of synthetic resin expansion molded body good in dimensional stability
JP3955783B2 (en) Method for producing expandable styrene resin particles and expandable styrene resin particles
JP4582674B2 (en) Polyester resin expanded particles and molded articles thereof
JPH05310986A (en) Production of synthetic resin expansion molded body good in dimensional stability
JPH11152364A (en) Preparation of foamable styrenic polymer particle
JP3597109B2 (en) Method for producing expandable styrene resin particles, expandable styrene resin particles, and molded foam
JP2000302903A (en) Polystyrene-based resin for food container, polystyrene- based resin foamed sheet for food container and food container of polystyrene-based resin foamed sheet
KR100829345B1 (en) Expandable polystyrene type resin particles, a method for preparing the same, and expanded articles using the same resin particles
JPS6368644A (en) Expandable thermoplastic resin particle
JPS6324538B2 (en)
JP2023100351A (en) Composite resin particle, and foamed molded product

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees