JPS5858374B2 - expandable thermoplastic resin particles - Google Patents

expandable thermoplastic resin particles

Info

Publication number
JPS5858374B2
JPS5858374B2 JP517580A JP517580A JPS5858374B2 JP S5858374 B2 JPS5858374 B2 JP S5858374B2 JP 517580 A JP517580 A JP 517580A JP 517580 A JP517580 A JP 517580A JP S5858374 B2 JPS5858374 B2 JP S5858374B2
Authority
JP
Japan
Prior art keywords
thermoplastic resin
foaming
resin particles
particles
ester
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP517580A
Other languages
Japanese (ja)
Other versions
JPS56103231A (en
Inventor
英昭 柴田
繁雄 粟野
透 藤井
弘 宮嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP517580A priority Critical patent/JPS5858374B2/en
Publication of JPS56103231A publication Critical patent/JPS56103231A/en
Publication of JPS5858374B2 publication Critical patent/JPS5858374B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

【発明の詳細な説明】 本発明は特性の優れた高発泡可能な発泡性熱可塑性樹脂
粒子に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to highly foamable expandable thermoplastic resin particles with excellent properties.

発泡性熱可塑性樹脂粒子は、加熱により予め発泡を行な
い(1次発泡)、さらに一定時間放置(熟成)後、金型
に充填し、1次発泡時より強く加熱(成形加熱)して所
望の形状の発泡体とされる。
The expandable thermoplastic resin particles are foamed in advance by heating (primary foaming), and then left for a certain period of time (ripening), then filled into a mold and heated more strongly than during the primary foaming (molding heating) to form the desired shape. It is said to be a shaped foam.

従来、この工程において、発泡体はカサ倍数約5〜70
倍(カサ密度0.2〜0.014g/a)になるように
発泡されるが、カサ倍数が60倍以上の高発泡体、特に
70倍以上の高発泡体にすると種々の問題があった。
Conventionally, in this process, the foam has a bulk multiple of about 5 to 70.
(bulk density 0.2 to 0.014 g/a), but there were various problems when making highly foamed products with a bulk density of 60 times or more, especially 70 times or more. .

例えば、通称ブロックと呼ばれる大型の直方体は、直径
が3mrIt程度の大粒の発泡性樹脂粒子を原料として
、成形加熱を2回行なう二段発泡またはサイクルフォー
ミングという特殊な方法によって、はじめてカサ倍数7
0倍以上の発泡体を製造することができるが、この方法
であれば原料粒子が大粒であるため小さな形状の発泡体
の製造に適さず、2回に分けて成形加熱するため、余分
な装置と長い工程を必要とするなどの欠点があった。
For example, large rectangular parallelepipeds, commonly known as blocks, are produced using a special method called two-stage foaming or cycle forming, which uses large expandable resin particles with a diameter of about 3 mrIt as a raw material and heats them twice.
Although it is possible to produce foams with a size of 0 times or more, this method is not suitable for producing small-sized foams because the raw material particles are large, and the molding and heating process is performed in two steps, which requires extra equipment. There were disadvantages such as requiring a long process.

また、小さい原料粒子では、発泡体の安定性が悪いすな
わち、収縮、変形を起こすという欠点がある。
In addition, small raw material particles have the disadvantage that the foam has poor stability, that is, shrinkage and deformation occur.

そのほか、一回の成形加熱によって高発泡体を製造しよ
うとしても、作業条件の変動に対する許容度が小さく、
得られた発泡体は、収縮、変形等を起こすものであった
In addition, even if we try to manufacture highly foamed products by one-time molding and heating, there is little tolerance for fluctuations in working conditions.
The obtained foam was subject to shrinkage, deformation, etc.

さらに、高発泡体を製造するために、原料粒子中の発泡
剤を多くしたり、1次発泡の条件を強くする方法などが
考えられるが、前者の方法では、粒子中に安定して含浸
できる発泡剤の量に限界があり(約6.5〜7.5重量
φ)、これ以上発泡剤を含浸して高発泡可能としても発
泡体の気泡が不均一で輸送中などに発泡剤が逸散してし
まい、後者の方法では、1次発泡後、粒子を冷却した場
合、粒子内部の発泡剤、水蒸気の凝縮により内部が減圧
状態となり、粒子が収縮変形する。
Furthermore, in order to produce highly foamed products, methods such as increasing the amount of blowing agent in the raw material particles or strengthening the primary foaming conditions can be considered, but the former method allows stable impregnation into the particles. There is a limit to the amount of blowing agent (approximately 6.5 to 7.5 weight φ), and even if it is possible to achieve high foaming by impregnating more blowing agent, the bubbles in the foam may be uneven and the blowing agent may be lost during transportation. In the latter method, when the particles are cooled after primary foaming, the blowing agent and water vapor inside the particles condense, resulting in a reduced pressure inside the particles, causing the particles to shrink and deform.

本発明は、これらの問題点を解決するものであり、高発
泡体を製造できると共に、そのための成形法が例えば従
来から行なわれているような簡単な方法でよい高発泡可
能な発泡性熱可塑性樹脂粒子に関するものである。
The present invention solves these problems, and provides a highly foamable thermoplastic material that can produce highly foamed products and can be molded using a simple method, such as conventional methods. It relates to resin particles.

すなわち、本発明は、スチレン系単量体、ジアリルフタ
レート並びにアクリル酸エステル若しくはメタクリル酸
エステルを重合させて得られる熱可塑性樹脂の粒子に発
泡剤を含浸させてなる発泡性熱可塑性樹脂粒子に関する
That is, the present invention relates to expandable thermoplastic resin particles obtained by impregnating a blowing agent into thermoplastic resin particles obtained by polymerizing a styrene monomer, diallyl phthalate, and an acrylic ester or a methacrylic ester.

ここでスチレン系単量体とは、スチレン、αメチルスチ
レン、クロロスチレン、ビニルトルエン等のスチレン系
誘導体であり、これら以外の単量体を含んでいてもよい
Here, the styrene monomer is a styrene derivative such as styrene, α-methylstyrene, chlorostyrene, vinyltoluene, etc., and may contain monomers other than these.

このような単量体のうち、スチレン系誘導体特にスチレ
ンが50重重量板上の割合で使用される。
Among these monomers, styrenic derivatives, particularly styrene, are used in a proportion of 50% by weight.

スチレン系単量体として、スチレン誘導体特にスチレン
が50重量φ以上使用されないならば、発泡性樹脂粒子
として必要な溶融粒度特性、スチーム透過性が得られな
い。
Unless a styrene derivative, particularly styrene, is used as the styrene monomer at a weight of 50 weight φ or more, the melt particle size characteristics and steam permeability necessary for the expandable resin particles cannot be obtained.

上記ジアリルフタレートとしては、ジアリル・オルト・
フタレート、ジアリル・イソ・フタレート等があり、そ
の使用量は、熱可塑性樹脂の原料中、0.05〜3重量
饅重量ましい。
The above diallyl phthalates include diallyl, ortho,
There are phthalates, diallyl iso-phthalates, etc., and the amount used thereof is preferably 0.05 to 3 weight by weight in the raw material of the thermoplastic resin.

0.05重量φ未満では、発泡成形終了後に収縮しやす
く、3重量係を越えると高発泡させるのに工業的に有利
でないような強い加熱条件が必要となる。
If it is less than 0.05 weight φ, it will tend to shrink after the completion of foam molding, and if it exceeds 3 weight, strong heating conditions that are not industrially advantageous will be required to achieve high foaming.

上記アクリル酸エステルまたはメタクリル酸エステルと
しては、その単独重合体が0℃以下の軟化点を有するも
のが好ましく、このときに、加熱条件の広い範囲で、特
に開放状態での発泡、密閉−加熱状態での発泡、成形工
程での発泡において、安定性に優れている。
The above-mentioned acrylic ester or methacrylic ester is preferably one whose homopolymer has a softening point of 0°C or lower, and in this case, it can be used under a wide range of heating conditions, especially foaming in an open state, closed-heating state. Excellent stability in foaming during foaming and molding processes.

特に、このようなものとして、アクリル酸エチル、アク
リル酸イソプロピル、アクリル酸n−プロピル、アクリ
ル酸イソブチル、アクリル酸n−ブチル、アクリル酸オ
クチル、アクリル酸2−エチルヘキシル、メタクリル酸
nヘキシルなどがある。
In particular, these include ethyl acrylate, isopropyl acrylate, n-propyl acrylate, isobutyl acrylate, n-butyl acrylate, octyl acrylate, 2-ethylhexyl acrylate, n-hexyl methacrylate, and the like.

これらの使用量は、熱可塑性樹脂原料に対して0.5〜
10重量係重量性しい。
The amount of these used is 0.5 to 0.5 to
10 weight ratio.

0.5重量φ未満では高発泡しやすくするという効果が
小さく、10重量φを越えると高発泡体の収縮、粒子中
の発泡剤の逸散が起こりやすい。
If it is less than 0.5 weight φ, the effect of facilitating high foaming is small, and if it exceeds 10 weight φ, the highly foamed product tends to shrink and the foaming agent in the particles tends to escape.

本発明において、上記したジアリルフタレートおよびア
クリル酸エステル若しくはメタクリル酸エステルを併用
することが重要であるが、これは、前者が高発泡体に必
要な剛直性を付与し、後者が熱可塑性樹脂に内部可塑化
効果を付与する役目をする。
In the present invention, it is important to use diallyl phthalate and acrylic ester or methacrylic ester together. It serves to impart a plasticizing effect.

特にジアリルフタレートの代わりに他の2個の重合性二
重結合を有する化合物例えばジビニルベンゼン等を使用
することができない。
In particular, other compounds having two polymerizable double bonds such as divinylbenzene cannot be used in place of diallylphthalate.

この場合には、成形に適した温度での良好な発泡特性が
得られない。
In this case, good foaming properties at a temperature suitable for molding cannot be obtained.

ジアリルフタレートとアクリル酸エステル若しくはメタ
クリル酸エステルの使用割合は、重量比で前者1に対し
て後者3〜10であるが、熱可塑性樹脂の剛直性と内部
可塑化の効果のバランスの上で好ましい。
The weight ratio of diallyl phthalate and acrylic ester or methacrylic ester is 1 to 3 to 10 for the latter, which is preferable in view of the balance between the rigidity of the thermoplastic resin and the effect of internal plasticization.

上記熱可塑性樹脂を得るための重合は、懸濁重合が好ま
しい。
The polymerization for obtaining the above thermoplastic resin is preferably suspension polymerization.

この場合、原料モノマーを水性媒体に一度に添加して重
合させてもよいし、分割して添加して重合させてもよい
In this case, the raw material monomers may be added to the aqueous medium all at once and polymerized, or may be added in portions and polymerized.

また、予め一部のスチレン性単量体の重合体粒子を製造
し、この粒子子を水性媒体に分散させておき、これにス
チレン系単量体、ジアリルフタレート、アクリル酸エス
テル若しくはメタクリル酸エステルを添加含浸し、重合
させてもよい。
Alternatively, some polymer particles of a styrenic monomer are produced in advance, the particles are dispersed in an aqueous medium, and the styrenic monomer, diallyl phthalate, acrylic ester, or methacrylic ester is added to the particles. It may be added and impregnated and polymerized.

その他、懸濁重合に関する常法で行なうことができる。In addition, conventional methods relating to suspension polymerization can be used.

重合時に使用する重合触媒としては、ベンゾイルパーオ
キサイド、1−ブチルパーベンゾエイト、ラウロイルパ
ーオキサイド、ジクミルパーオキサイド等の有機過酸化
物、アゾビスイソブチロニトリル等のアゾ化合物などが
あり、原料モノマーに溶解して使用すればよい。
Polymerization catalysts used during polymerization include organic peroxides such as benzoyl peroxide, 1-butyl perbenzoate, lauroyl peroxide, and dicumyl peroxide, and azo compounds such as azobisisobutyronitrile. It can be used by dissolving it in a monomer.

重合開始剤の使用量は、モノマーに対して約0.05〜
1.5重量優の範囲であればよい。
The amount of polymerization initiator used is approximately 0.05 to 100% of the monomer.
It may be within the range of 1.5 weight or more.

未反応モノマーは、発泡特性、成形特性に対して影響力
を有するので、約0.5重量多収下になるように重合を
終了させる。
Since unreacted monomers have an influence on foaming properties and molding properties, the polymerization is terminated so that the yield is approximately 0.5 weight.

懸濁重合に際して、分散剤としては、炭酸カルシウム、
ベントナイト、ピロリン酸マグネシウム、リン酸三カル
シウム等の難溶性無機塩の微粉末、ポリビニルアルコー
ル、デンプン、ヒドロキシエチルセルロース等の水溶性
高分子などをまたは、これらとアルキルベンゼンスルホ
ン酸ナトリウム等の水溶性界面活性剤を併用して使用さ
れる。
During suspension polymerization, calcium carbonate,
Fine powder of poorly soluble inorganic salts such as bentonite, magnesium pyrophosphate, and tricalcium phosphate, water-soluble polymers such as polyvinyl alcohol, starch, and hydroxyethyl cellulose, or these together with water-soluble surfactants such as sodium alkylbenzenesulfonate. used in combination.

無機塩の使用量は、水性媒体に対して0.1〜1重量重
量水溶性高分子の使用量は水性媒体に対して約0.05
〜3重量φ、界面活性剤は多く無機塩と併用されるがそ
の使用量は水性媒体中10〜1100ppであればよい
The amount of inorganic salt used is 0.1 to 1 weight per aqueous medium, and the amount of water-soluble polymer used is about 0.05 per weight per aqueous medium.
~3 weight φ, many surfactants are used in combination with inorganic salts, but the amount used may be 10 to 1100 pp in the aqueous medium.

熱可塑性樹脂の粒子に含浸させる発泡剤としては、プロ
パン、ブタン、ペンタン等の低沸点の脂肪族炭化水素類
、モノクロルメタン、モノクロルジフルオロメタン、ジ
クロルジフルオロメタン等の低沸点のハロゲン化炭化水
素類を用いることができる。
The blowing agent to be impregnated into the thermoplastic resin particles includes low-boiling aliphatic hydrocarbons such as propane, butane, and pentane, and low-boiling halogenated hydrocarbons such as monochloromethane, monochlorodifluoromethane, and dichlorodifluoromethane. can be used.

このうち、イソブタン、イソペンタン、ネオペンタンを
他の発泡剤と併用するのが好ましい。
Among these, isobutane, isopentane, and neopentane are preferably used in combination with other blowing agents.

特に、発泡剤中、イソブ重量40〜80重量係、イソペ
ン置板5〜30重量多またはネオパフ2重量−30重量
饅使用するのが好ましい。
In particular, it is preferable to use 40 to 80 parts by weight of Isobu, 5 to 30 parts by weight of Isopene, or 2 to 30 parts by weight of NeoPuff in the foaming agent.

発泡剤の熱可塑性樹脂の粒子への含浸量は、得られる発
泡性熱可塑性樹脂粒子に対して6〜10重量多重量型し
い。
The amount of the blowing agent impregnated into the thermoplastic resin particles is 6 to 10% by weight relative to the resulting expandable thermoplastic resin particles.

発泡剤は多すぎると発泡後の気泡状態が不安定で気泡ム
ラが生じやすい。
If the amount of foaming agent is too large, the foam state after foaming will be unstable and bubble unevenness will easily occur.

発泡後の気泡状態を安定させるためには約8重量饅以下
の使用が好ましい。
In order to stabilize the foam state after foaming, it is preferable to use about 8 weight cake or less.

発泡剤の含浸は、上記懸濁重合においては、その重合途
中、重合完了後に発泡剤を圧入して行なっても、別に得
られた熱可塑性樹脂粒子を水性媒体に分散させ、これに
発泡剤を圧入して行なってもよい。
In the above-mentioned suspension polymerization, impregnation with a blowing agent can be carried out by press-injecting the blowing agent during the polymerization or after the completion of polymerization, or by dispersing separately obtained thermoplastic resin particles in an aqueous medium and adding the blowing agent thereto. It may also be done by press-fitting.

本発明に係る発泡性熱可塑性樹脂粒子は予備発泡して、
成形に供すればよいが、予備発泡においては、直接加熱
でもスチームを使用してもよく、開放状態で行なっても
加圧状態で行なってもよい。
The expandable thermoplastic resin particles according to the present invention are pre-foamed,
The pre-foaming may be performed by direct heating or by using steam, and may be performed in an open state or under pressure.

本発明に係る発泡性熱可塑性樹脂粒子は加圧下の発泡時
でも発泡しやすく、予備発泡後、収縮しないという優れ
た特性を示す。
The expandable thermoplastic resin particles according to the present invention exhibit excellent properties in that they are easy to foam even when foaming under pressure and do not shrink after pre-foaming.

次に本発明の実施例を示す。Next, examples of the present invention will be shown.

実施例 1 脱イオン水6000g、リン酸三カルシウム9g1ドデ
シルベンゼンスルホン酸ナトリウム0.012gを回転
攪拌機付2011耐圧オートクレーブに入れよく攪き混
ぜた。
Example 1 6000 g of deionized water, 9 g of tricalcium phosphate, and 0.012 g of sodium dodecylbenzenesulfonate were placed in a 2011 pressure autoclave equipped with a rotary stirrer and thoroughly mixed.

次にスチレン4900gにアクリル酸n−ブチルエステ
ル100g、ジアリルフタレート10g、過酸化ベンゾ
イル6.0g、アゾビスイソブチロニトリル6.0g、
t−プチルハーヘンゾイル3.0gを混合溶解し同じオ
ートクレーブ内に注いで攪拌を行ない次いで85℃まで
温度を高め、油滴が0.8〜1.0mmの径となる攪拌
条件に調整した。
Next, to 4900 g of styrene, 100 g of acrylic acid n-butyl ester, 10 g of diallyl phthalate, 6.0 g of benzoyl peroxide, 6.0 g of azobisisobutyronitrile,
3.0 g of t-butylhachenzoyl was mixed and dissolved, poured into the same autoclave, and stirred.Then, the temperature was raised to 85°C, and the stirring conditions were adjusted so that the oil droplets had a diameter of 0.8 to 1.0 mm.

その後この液滴径を維持するためにリン酸三カルシウム
6gを4時間以内に3回に亘り分割して添加して合一に
なる液滴の成長を防止した。
Thereafter, in order to maintain this droplet size, 6 g of tricalcium phosphate was added in three portions within 4 hours to prevent the growth of droplets that would coalesce.

85℃到達後9時間でi−ブタン60%、nブタン40
俤の混合物発泡剤450gを30分間で圧入した。
9 hours after reaching 85℃, i-butane 60%, n-butane 40%
450 g of a mixed blowing agent was injected over 30 minutes.

オートクレーブ内の圧力は12kgf/dを示した。The pressure inside the autoclave was 12 kgf/d.

発泡剤の圧入終了1時間後オートクレーブ内温度を12
0℃まで2時間20分で高めこの温度で4時間保持した
後35℃まで冷却し、次いで空間内の剰余発泡剤を排出
し最後に、塩酸を注入して水素イオン濃度(pH)を4
として20分維持した。
One hour after the injection of the foaming agent is completed, the temperature inside the autoclave is set to 12
The temperature was raised to 0°C in 2 hours and 20 minutes, maintained at this temperature for 4 hours, and then cooled to 35°C. Then, the excess blowing agent in the space was discharged, and finally, hydrochloric acid was injected to bring the hydrogen ion concentration (pH) to 4.
It was maintained for 20 minutes.

次いで内容物を取り出し、水洗いして乾燥し、発泡性熱
可塑性樹脂粒子を得た。
Next, the contents were taken out, washed with water, and dried to obtain expandable thermoplastic resin particles.

この粒子は、8.21%の発泡剤(i−ブタン、n−ブ
タン)、0.42%の未反応物(スチレンモノマー、エ
チルベンゼン)を含有していた。
The particles contained 8.21% blowing agent (i-butane, n-butane) and 0.42% unreacted materials (styrene monomer, ethylbenzene).

これを15℃の雰囲気中に放置し4日後発泡剤が6.6
優に減少した時に発泡性粒子のうちJIS篩12′メツ
シュ通過、16メツシユ残のものを分取して発泡特性を
測定した。
This was left in an atmosphere at 15℃, and after 4 days the foaming agent was 6.6
When the volume had decreased significantly, the foamable particles that passed through a 12' mesh JIS sieve and remained on a 16 mesh were separated and their foaming properties were measured.

測定は内容積401の開閉可能で、閉じた状態では気密
で耐圧の箱型オートクレーブを用い試料は網上に載せて
、吹込むスチールと直接接触、加熱した。
The measurement was carried out using a box-type autoclave with an internal volume 401 that could be opened and closed, and which was airtight and pressure-resistant when closed, and the sample was placed on a mesh and directly contacted and heated with the steel to be blown.

このような測定を行なうのは常圧から加圧の発泡条件下
で高い発泡特性がどのように維持されるかを知るためで
ある。
The purpose of performing such measurements is to find out how high foaming properties are maintained under foaming conditions ranging from normal pressure to elevated pressure.

この発泡特性はゲージ圧Okgf/d2分で67m1/
9となった。
This foaming characteristic is 67m1/at gauge pressure Okgf/d2min.
It became 9.

以下ゲージ圧を高め0.1 kgf /ca、0.2
kgf /crib。
Increase the gauge pressure to 0.1 kgf/ca, 0.2
kgf/crib.

0.3kgf/ffl、 0.4kyf/ffl、
0.5kyf/−とした時の発泡倍率はそれぞれ76
m1l/g、84TLl/、9゜91m1/g、96y
d!/g、 101縦/f!となった。
0.3kgf/ffl, 0.4kyf/ffl,
The foaming ratio when set to 0.5kyf/- is 76.
m1l/g, 84TLl/, 9°91m1/g, 96y
d! /g, 101 vertical /f! It became.

この発泡特性を第1図に曲線1として図示する。This foaming characteristic is illustrated as curve 1 in FIG.

次に上記発泡性熱可塑性樹脂粒子を回転攪拌翼性の耐圧
発泡機を用いて発泡した。
Next, the foamable thermoplastic resin particles were foamed using a pressure foaming machine with rotating stirring blades.

発泡条件は内部スチーム圧0.2 kgf /criY
でカサ倍率90m1/9になるように発泡したときスチ
ームの吹き込みを停止した。
Foaming conditions are internal steam pressure 0.2 kgf/criY
When the foaming reached a bulk ratio of 90 m 1/9, the blowing of steam was stopped.

このようにして得られた予備発泡粒子を通気性のよい網
に入れ15℃の雰囲気中で20時間放置した後、成形を
行なった。
The pre-expanded particles thus obtained were placed in a well-ventilated mesh and left in an atmosphere at 15° C. for 20 hours, and then molded.

成形機は通常の梱包材、魚箱の成形用に設計された機械
(関製作所製バリアl0N)を用い、金型は縦25へ横
30cffL1深さ25cIfLの内のり寸法のものを
用いた。
The molding machine used was a machine designed for molding ordinary packaging materials and fish boxes (Barrier 10N, manufactured by Seki Seisakusho), and the mold had inner dimensions of 25 cm long, 30 cffL wide, and 25 cIfL deep.

成形は従来汎用されている発泡ポリスチレンと同じよう
に、金型予熱→発泡粒子充填→一方加熱(スチーム流入
側の背圧が設定値に上昇するまで金型の一方からスチー
ムを吹込む)→両面加熱(金型全面からスチーム吹込)
水冷→放冷→金型開放(成形物の排出)という工程で行
なった。
Molding is done in the same way as conventionally used expanded polystyrene: mold preheating → foam particle filling → one-sided heating (steam is blown from one side of the mold until the back pressure on the steam inflow side rises to the set value) → both sides Heating (steam blowing from the entire surface of the mold)
The process was water cooling → cooling → mold opening (ejecting the molded product).

成形条件を一方加熱の終了設定圧を0.4 kgf /
cr?t。
The molding conditions were set to 0.4 kgf / 0.4 kgf /
cr? t.

0.5kgf/−加熱スチームの最高圧を0.8ky
f /cra、1、Okgf/祠、両面加熱の時間を1
0〜20秒に選択して組み合わせて8種類の成形品を得
たが、いずれも収縮変形がなく、また、含水もなく良好
なものであった。
0.5kgf/-maximum pressure of heating steam 0.8ky
f/cra, 1, Okgf/shrine, double-sided heating time 1
Eight types of molded products were obtained by selecting and combining 0 to 20 seconds, and all of them were good, with no shrinkage deformation and no water content.

成形品を50℃の乾燥器内に6時間放置したのち箱の各
部から試験片を切り出し、密度(カサ発泡倍数)を測定
したところ11.4g/l(カサ倍率88倍)から1o
、9g/l(カサ倍率92倍)の範囲内であった。
After leaving the molded product in a dryer at 50°C for 6 hours, test pieces were cut out from each part of the box and the density (bulk expansion ratio) was measured.
, 9 g/l (bulk magnification: 92 times).

実施例 2 ポリビニルアルコール(日本合成化学製GH20)の0
.3%の水溶液45kg、懸濁重合で製造されたポリス
チレン(電気化学工業製PS−LBZ)21.0kgを
内容積130A?のステンレス製耐圧オートクレーブに
入れ攪拌しながら75℃に昇温した。
Example 2 0 of polyvinyl alcohol (GH20 manufactured by Nippon Gosei Kagaku)
.. 45 kg of a 3% aqueous solution and 21.0 kg of polystyrene manufactured by suspension polymerization (PS-LBZ manufactured by Denki Kagaku Kogyo) were placed in a container with an internal volume of 130 A? The mixture was placed in a pressure-resistant stainless steel autoclave and heated to 75° C. with stirring.

次いで、スチレンモノマー8.4 ky、アクリル酸n
−ブチルエステル0.60 kpおよびジアリルフタレ
ー)0.09kgを混合溶解したものを4等分し、1時
間おきに20分間に亘り滴下して水中に懸濁しているポ
リスチレン粒子に吸収させた。
Next, styrene monomer 8.4 ky, acrylic acid n
A mixed solution of 0.60 kp of -butyl ester and 0.09 kg of diallylphthale was divided into four equal parts, and the mixture was added dropwise over a period of 20 minutes every hour to be absorbed into polystyrene particles suspended in water.

この際、第4回目のモノマー混合物には過酸化ベンゾイ
ル0.009kg、アゾビスイソブチロニトリル0,0
09kg、t−ブチル過安息香酸0.0045kyを溶
解して滴下した。
At this time, the fourth monomer mixture contained 0.009 kg of benzoyl peroxide and 0.0 kg of azobisisobutyronitrile.
09 kg and 0.0045 ky of t-butyl perbenzoic acid were dissolved and added dropwise.

4回目のモノマー混合液の滴下後2時間経過したのち、
オートクレーブ内を85℃まで昇温し3時間保持し、こ
こで、iブタンとn−ブタンの混合物を5kg圧入した
Two hours after the fourth dropwise addition of the monomer mixture,
The temperature inside the autoclave was raised to 85° C. and maintained for 3 hours, at which time 5 kg of a mixture of i-butane and n-butane was injected under pressure.

内圧は11kgf/dとなった。The internal pressure was 11 kgf/d.

1時間後オートクレーブ内を120℃まで昇温し5時間
保持したのち冷却した。
After 1 hour, the temperature inside the autoclave was raised to 120°C, maintained for 5 hours, and then cooled.

40℃まで内温か降下したところで空間に残留する残余
のガスを放出し、内容物を取り出し次に洗浄脱水、乾燥
し、発泡性熱可塑性樹脂粒子を得た。
When the internal temperature decreased to 40° C., residual gas remaining in the space was released, and the contents were taken out, washed, dehydrated, and dried to obtain expandable thermoplastic resin particles.

この粒子は7.8係の発泡剤(i−ブタン、n−ブタン
)、0.38%の未反応物(スチレンモノマー、エチル
ベンゼン)を含有していた。
The particles contained 7.8% blowing agent (i-butane, n-butane) and 0.38% unreacted substances (styrene monomer, ethylbenzene).

これを15℃の雰囲気中に放置し、発泡剤が6.6優に
なったときに実施例1と同様に発泡特性を測定した。
This was left in an atmosphere at 15°C, and the foaming properties were measured in the same manner as in Example 1 when the foaming agent amount was 6.6%.

その結果は、ゲージ圧(kgf/祠)が0゜0.1 、
0.2 、0.3 、0.4および0.5でそれぞれカ
サ倍率(TIll/g)が73,87,97,106゜
104および98であった。
The result is that the gauge pressure (kgf/kiln) is 0°0.1,
The bulk ratio (TIll/g) was 73, 87, 97, 106°104 and 98 at 0.2, 0.3, 0.4 and 0.5, respectively.

この発泡特性を第1図に曲線2として図示する。This foaming characteristic is illustrated as curve 2 in FIG.

次に予備発泡を実施例1にならい0.2kyf/iの圧
力で加熱し、密度0.01 g/ynlの予備発泡粒子
を得た。
Next, the pre-foamed particles were heated at a pressure of 0.2 kyf/i as in Example 1 to obtain pre-foamed particles with a density of 0.01 g/ynl.

これを放置熟成後、実施例1と同じ成形機、金型、加熱
条件で同−条件物を2ケずつ成形した。
After this was left to ripen, two pieces were molded using the same molding machine, mold, and heating conditions as in Example 1 under the same conditions.

成形品の箱の外観はいずれも良好であった。The appearance of the molded product boxes was good.

次に同一条件の成形物の一方を15℃の雰囲気中に、他
を50℃の温室中に放置した。
Next, one of the molded products under the same conditions was left in an atmosphere at 15°C, and the other in a greenhouse at 50°C.

いずれも成形後2時間経過まで成形品は若干変形し続け
た。
In both cases, the molded products continued to be slightly deformed until 2 hours had passed after molding.

しかし、15℃雰囲気中で放置したものは12時間後、
50℃温室中のものは4時間後に変形状態から完全な状
態に回復した。
However, for those left in an atmosphere of 15℃, after 12 hours,
Those in the 50°C greenhouse recovered from the deformed state to the complete state after 4 hours.

これらの箱から試料を切り出し密度を測定したところ一
様に10 g/lとなっていた。
When samples were cut out from these boxes and their densities were measured, they were uniformly 10 g/l.

比較例 1 実施例1に準じてただし、アクリル酸n−ブチルとフタ
ル酸ジアリルを用いずモノマーとしてはスチレンのみ5
000gを用い、これに可塑剤としてトルエン100.
9溶解し実施例1と同様に懸濁重合し発泡性ポリスチレ
ン粒子を得た。
Comparative Example 1 Same as Example 1 except that n-butyl acrylate and diallyl phthalate were not used and only styrene was used as the monomer.
000g, and 100.0g of toluene was used as a plasticizer.
9 was dissolved and suspension polymerized in the same manner as in Example 1 to obtain expandable polystyrene particles.

これは発泡剤を8.3%、トルエン1.62 %、未反
応物(スチレン、エチルベンゼン)を0.41 %含有
していた。
This contained 8.3% blowing agent, 1.62% toluene, and 0.41% unreacted substances (styrene, ethylbenzene).

この粒子を15℃の雰囲気中で発泡剤が6.6優となる
まで放置した後、発泡特性、成形特性を評価した。
The particles were left in an atmosphere at 15°C until the foaming agent concentration was 6.6%, and then the foaming properties and molding properties were evaluated.

発泡特性は実施例1,2にならって測定した。The foaming properties were measured according to Examples 1 and 2.

ゲージ圧(kyf/CrILが0.0.1 、0.2゜
0.3,0.4および0.5でそれぞれカサ倍率(ml
7g)が70,76.71,62,50および45で収
縮を起こさず発泡できるのは低い加熱条件の場合で、か
つ、80m7/7までは到達せず、0.1kg f /
cntを越える加熱条件では収縮が著しかった。
Gauge pressure (kyf/CrIL is 0.0.1, 0.2°, bulk magnification (ml
7g) can be foamed without shrinkage in 70, 76.71, 62, 50 and 45 under low heating conditions, and does not reach 80m7/7, and is 0.1kg f /
Shrinkage was significant under heating conditions exceeding cnt.

上記発泡特性を第2図に曲線3として示す。The above foaming characteristics are shown as curve 3 in FIG.

比較例 2 実施例1においてジアリルフタレートを使用しない以外
は実施例1に準じて発泡性熱可塑性樹脂粒子を製造し、
発泡特性を測定した。
Comparative Example 2 Expandable thermoplastic resin particles were produced according to Example 1 except that diallyl phthalate was not used in Example 1,
Foaming properties were measured.

その結果は第2図に曲線4として示すように、最高75
m1/gにしか発泡しなかっただけでなく、0,2kg
f/d以上のスチーム圧の条件下では収縮が起こり、発
泡条件の幅は著しく狭いものであった。
The results are shown as curve 4 in Figure 2, with a maximum of 75
Not only did it foam only at m1/g, but it also foamed at 0.2 kg.
Shrinkage occurred under steam pressure conditions of f/d or higher, and the range of foaming conditions was extremely narrow.

成形特性も、成形終了後金型から取り出したあと収縮、
変形が犬キ<、好ましいものでなかった。
The molding characteristics also include shrinkage after being removed from the mold after molding,
The deformation was not favorable.

比較例 3 ジアリルフタレート10gの代わりにジビニルベンゼン
2.5gを用いた以外は実施例1に準じて発泡性熱可塑
性樹脂粒子を製造した。
Comparative Example 3 Expandable thermoplastic resin particles were produced according to Example 1 except that 2.5 g of divinylbenzene was used instead of 10 g of diallylphthalate.

この粒子には、発泡剤8.7%、未反応物(スチレン、
エチルベンゼン)0.39%を含有していた。
These particles contain 8.7% blowing agent, unreacted substances (styrene,
It contained 0.39% (ethylbenzene).

この粒子を用い、やはり実施例1に準じて発泡特性を測
定した。
Using these particles, the foaming properties were measured in the same manner as in Example 1.

その結果は、第2図に曲線5として示す。すなわち、加
熱条件が弱いところでは高い発泡倍率に発泡しない。
The results are shown as curve 5 in FIG. That is, foaming does not occur to a high expansion ratio under weak heating conditions.

上記粒子を耐圧発泡機を用いて、0.41y f /’
cyytの圧力で90m1/9になるように予備発泡後
、通気のない状態で20時間保持したのち、実施例1と
同様に成形したが、金型内の加熱スチームの圧力を1.
1 kgf /crAにしなければ成形体である箱の内
外部が充分内部融着せず、賦形が不完全であった。
The above particles were heated to 0.41y f /' using a pressure foaming machine.
After pre-foaming to a volume of 90 ml 1/9 at a pressure of 1.0 ml, the molding was carried out in the same manner as in Example 1, but the pressure of the heated steam in the mold was reduced to 1.0 ml.
If the pressure was not set at 1 kgf/crA, the inside and outside of the molded box would not be sufficiently fused internally, resulting in incomplete shaping.

また、成形特の加熱スチーム圧を1.1kyf/CI?
Lにして成形して得た成形体は、乾燥時の重量基準で3
0〜50係の含水があり、金型から取り出したのち収縮
変形した。
Also, the heating steam pressure for molding is 1.1kyf/CI?
The molded product obtained by molding the L size has a weight of 3 on a dry weight basis.
It had a moisture content of 0 to 50, and was shrunk and deformed after being taken out from the mold.

これを50℃の乾燥家中で20時間放置したのちも変形
状態が回復しなかつた。
Even after this was left in a dry house at 50° C. for 20 hours, the deformed state did not recover.

従来汎用されている発泡性ポリスチレン粒子を広く行な
われている開放型大気圧下の発泡で行なう公知技術では
65〜70Tll/gの発泡倍数しか得られず、また汎
用の発泡性ポリスチレン粒子を発泡を加圧状態で行なう
と収縮を生じ易く、安定して60m1ニア9以上の発泡
倍数が得ることができなかった。
The conventionally widely used known technology of foaming expandable polystyrene particles under open atmospheric pressure can only obtain an expansion ratio of 65 to 70 Tll/g; When carried out under pressure, shrinkage tends to occur and it was not possible to stably obtain a foaming ratio of 60 ml near 9 or more.

本発明に係る発泡性熱可塑性樹脂粒子は大気圧下から加
圧状態に至るスチームによる加熱発泡条件下で安定して
60 rnl/ 9以上、特に80TLl/g以上の発
泡倍数が得られる。
The expandable thermoplastic resin particles according to the present invention can stably obtain an expansion ratio of 60 rnl/9 or more, particularly 80 TLl/g or more under steam heating and foaming conditions ranging from atmospheric pressure to pressurized state.

また、この結果、大幅に軽量の成形体を作ることができ
、軽量物の梱包材の材料低減ひいては省資源に寄与する
ことができる。
Moreover, as a result, it is possible to produce a significantly lighter molded body, which contributes to the reduction of packaging materials for lightweight items and thus to resource conservation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例1〜2の、第2図は比較例1〜3の発泡
特性を示す。 符号の説明、1・・・・・・実施例1の発泡特性を示す
曲線、2・・・・・・実施例2の発泡特性を示す曲線、
3・・・・・・比較例1の発泡特性を示す曲線、4・・
・・・・比較例2の発泡特性を示す曲線、5・・・・・
・比較例3の発泡特性を示す曲線。
FIG. 1 shows the foaming characteristics of Examples 1 to 2, and FIG. 2 shows the foaming characteristics of Comparative Examples 1 to 3. Explanation of symbols: 1...Curve showing the foaming characteristics of Example 1; 2...Curve showing the foaming characteristics of Example 2;
3...Curve showing the foaming characteristics of Comparative Example 1, 4...
...Curve showing the foaming characteristics of Comparative Example 2, 5...
- A curve showing the foaming characteristics of Comparative Example 3.

Claims (1)

【特許請求の範囲】 1 スチレン系単量体、ジアリルフタレート並びにアク
リル酸エステル若しくはメタクリル酸エステルを重合さ
せて得られる熱可塑性樹脂の粒子に発泡剤を含浸させて
なる発泡性熱可塑性樹脂粒子。 2 アクリル酸エステルおよびメタクリル酸エステルが
、その単独重合体の2次転移点が0℃以下であるアクリ
ル酸エステルまたはメタクリル酸エステルである特許請
求の範囲第1項記載の発泡性熱可塑性樹脂粒子。 3 ジアリルフタレートの使用量が熱可塑性樹脂原料に
対して0.05〜3重量宏アクリル酸エステルおよび/
またはメタクリル酸エステルの使用量が熱可塑性樹脂原
料に対して0.5〜10重量饅重量品特許請求の範囲第
1項または第2項記載の発泡性熱可塑性樹脂粒子。 4 ジアリルフタレートとアクリル酸エステル若しくは
メタクリル酸エステルの使用比率が前者1に対して後者
3〜10である特許請求の範囲第1項、第2項または第
3項記載の発泡性熱可塑性樹脂粒子。
[Scope of Claims] 1. Expandable thermoplastic resin particles obtained by impregnating a blowing agent into thermoplastic resin particles obtained by polymerizing a styrene monomer, diallyl phthalate, and an acrylic ester or a methacrylic ester. 2. The expandable thermoplastic resin particles according to claim 1, wherein the acrylic ester and methacrylic ester are acrylic esters or methacrylic esters whose homopolymer has a secondary transition point of 0° C. or lower. 3. The amount of diallyl phthalate used is 0.05 to 3% by weight based on the thermoplastic resin raw material.Acrylic acid ester and/or
Alternatively, the expandable thermoplastic resin particles according to claim 1 or 2, wherein the amount of methacrylic acid ester used is 0.5 to 10% by weight based on the thermoplastic resin raw material. 4. The expandable thermoplastic resin particles according to claim 1, 2, or 3, wherein the ratio of diallylphthalate and acrylic ester or methacrylic ester is 1 to 3 to 10 of the latter.
JP517580A 1980-01-18 1980-01-18 expandable thermoplastic resin particles Expired JPS5858374B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP517580A JPS5858374B2 (en) 1980-01-18 1980-01-18 expandable thermoplastic resin particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP517580A JPS5858374B2 (en) 1980-01-18 1980-01-18 expandable thermoplastic resin particles

Publications (2)

Publication Number Publication Date
JPS56103231A JPS56103231A (en) 1981-08-18
JPS5858374B2 true JPS5858374B2 (en) 1983-12-24

Family

ID=11603896

Family Applications (1)

Application Number Title Priority Date Filing Date
JP517580A Expired JPS5858374B2 (en) 1980-01-18 1980-01-18 expandable thermoplastic resin particles

Country Status (1)

Country Link
JP (1) JPS5858374B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019093121A1 (en) 2017-11-13 2019-05-16 京セラ株式会社 Paste composition, semiconductor device, and electrical/electronic component

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5689044B2 (en) * 2011-09-12 2015-03-25 積水化成品工業株式会社 Polystyrene-based resin particles, expandable resin particles, expanded particles, expanded molded articles, and methods for producing them
JP2015048356A (en) * 2013-08-29 2015-03-16 積水化成品工業株式会社 Foamable styrenic resin particle, foamed particle, foam molded body and manufacturing method of foamed particle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019093121A1 (en) 2017-11-13 2019-05-16 京セラ株式会社 Paste composition, semiconductor device, and electrical/electronic component
KR20200062333A (en) 2017-11-13 2020-06-03 교세라 가부시키가이샤 Paste composition, semiconductor device, and electrical and electronic parts

Also Published As

Publication number Publication date
JPS56103231A (en) 1981-08-18

Similar Documents

Publication Publication Date Title
US4303757A (en) Process for producing expandable thermoplastic resin beads using polypropylene as nucleus
EP0017086B1 (en) Expandable thermoplastic polymer beads and process for their production
US4303756A (en) Process for producing expandable thermoplastic resin beads
US3657162A (en) Process of making expandable polymeric styrene particles
US3503908A (en) Method of making expandable polymers
US3192169A (en) Method of making expandable polymeric styrene particles
KR0138974B1 (en) Process for producing pearl-shaped expandable styrenic polymers
US4459373A (en) Pre-expanded plastic beads based on poly-para-methylstyrene
JPH11106548A (en) Styrene-based foaming resin particulate
JPS5858374B2 (en) expandable thermoplastic resin particles
JP2760361B2 (en) Method for producing expandable styrene-modified polyolefin resin particles
JPS598294B2 (en) Anti-clumping expandable styrenic polymer
JPS6213442A (en) Production of carbon-containing expandable styrene resin particle
JP2632389B2 (en) Thermoplastic resin pre-expanded particles and method for producing expanded molded articles using the same
US6310109B1 (en) Process for the preparation of polymer particles
KR100659450B1 (en) Colored expandable polystyrene resin having high strength, method for producing therof, and expandable molded product using the same
JPS6338063B2 (en)
CA1120650A (en) Process for producing expandable thermoplastic resin beads
KR100829345B1 (en) Expandable polystyrene type resin particles, a method for preparing the same, and expanded articles using the same resin particles
JP2604624B2 (en) Hollow spherical thermoplastic resin foam particles and method for producing expanded molded articles using the same
JP2002284915A (en) Expandable styrene-based resin particle, styrene-based resin expanded molded product and method for producing these
JPH05295160A (en) Production of expandable styrene resin particle
KR100682241B1 (en) Expandable Polystyrene Resin, Process for Preparing Thereof and Expanded Product Produced by Using Said Resin Particules
JPH04202443A (en) Production of expandable vinyl resin particle
KR100536087B1 (en) Method for preparing styrenic resin particles with high degree of expansion