JPH04202443A - Production of expandable vinyl resin particle - Google Patents

Production of expandable vinyl resin particle

Info

Publication number
JPH04202443A
JPH04202443A JP33442790A JP33442790A JPH04202443A JP H04202443 A JPH04202443 A JP H04202443A JP 33442790 A JP33442790 A JP 33442790A JP 33442790 A JP33442790 A JP 33442790A JP H04202443 A JPH04202443 A JP H04202443A
Authority
JP
Japan
Prior art keywords
particles
vinyl monomer
resin particles
vinyl resin
vinyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33442790A
Other languages
Japanese (ja)
Inventor
Atsushi Osada
淳 長田
Masato Akama
赤真 正人
Mitsugi Yanagisawa
柳沢 賦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainippon Ink and Chemicals Co Ltd filed Critical Dainippon Ink and Chemicals Co Ltd
Priority to JP33442790A priority Critical patent/JPH04202443A/en
Publication of JPH04202443A publication Critical patent/JPH04202443A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

PURPOSE:To obtain, in a short time, stable expandable vinyl resin particles giving a foam having a uniform cell structure by copolymerizing a vinyl monomer and an organosilicon compd. having a double bond copolymerizable with the vinyl monomer in suspension in an aq. medium and impregnating a blowing agent into the resulting copolymer particles. CONSTITUTION:A vinyl monomer (e.g. styrene) and an organosilicon compd. having a double bond copolymerizable with the vinyl monomer (e.g. methacryloly loxyalkyltristrialkylsiloxysilane) are copolymerized in suspension in an aq. medium. During or after the polymn., a blowing agent (e.g. propane) is impregnated into the resulting copolymer particles, giving expandable vinyl resin particles. The organosilicon compd., which contributes to stabilize the dispersion of suspended particles during polymn., is used pref. in an amt. of 0.1-15 pts.wt. based on 100 pts.wt. the vinyl monomer.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は改良された発泡性ビニル系樹脂粒子の製造方法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to an improved method for producing expandable vinyl resin particles.

(従来の技術) ビニル系樹脂粒子にプロパン、ブタン、ペンタン等の脂
肪族炭化水素類、シクロブタン、シクロペンタン等の環
式脂肪族炭化水素類、メチルクロライド、モノクロルエ
タン、ジクロルエタン、ジクロルフルオルエタン等のハ
ロゲン化炭化水素類等の易揮発性発泡剤をビニル系樹脂
粒子の重量に対して1〜20重量%含浸させたものは発
泡性ビニル系樹脂粒子として公知である。
(Prior art) Vinyl resin particles contain aliphatic hydrocarbons such as propane, butane, and pentane, cycloaliphatic hydrocarbons such as cyclobutane and cyclopentane, methyl chloride, monochloroethane, dichloroethane, and dichlorofluoroethane. Those impregnated with easily volatile foaming agents such as halogenated hydrocarbons in an amount of 1 to 20% by weight based on the weight of the vinyl resin particles are known as expandable vinyl resin particles.

かかる発泡性ビニル系樹脂粒子を水蒸気等により軟化点
以上に加熱すると、該発泡性ビニル系樹脂粒子中に数十
〜数百μmの大きさの独立気泡(以下、セルと称す)を
多数含有し、かつ該発泡性ビニル系樹脂粒子の数倍〜数
百倍程度の体積を有する予備発泡粒子が得られる。次に
、この予備発泡粒子を小さな孔やスリットから水蒸気等
で内部を加熱できる閉鎖型金型に充填し、水蒸気等で加
熱すると、更に1.5倍程度に体積が膨張した発泡粒子
となり該予備発泡粒子間の空隙を無くし該予備発泡粒子
同士が密着すると共に該予備発泡粒子表面付近が水蒸気
等の熱により溶融され、該予備発泡粒子同士が互いに溶
融圧着されることにより、上記密閉型金型通りの多泡性
ビニル系成形体(以下、発泡成形体と称す)が容易に製
造されることが知られており、このようにして作られた
発泡成形体は各種緩衝材、断熱材、包装容器等に利用さ
れている。
When such expandable vinyl resin particles are heated to a temperature higher than their softening point with water vapor or the like, the expandable vinyl resin particles contain a large number of closed cells (hereinafter referred to as cells) with a size of several tens to hundreds of μm. , and pre-expanded particles having a volume several times to several hundred times that of the expandable vinyl resin particles can be obtained. Next, these pre-expanded particles are filled into a closed mold that can be heated inside with steam or the like through small holes or slits, and when heated with steam, etc., the pre-expanded particles become foamed particles whose volume has further expanded by about 1.5 times. The voids between the foamed particles are eliminated, the pre-expanded particles are brought into close contact with each other, and the vicinity of the surface of the pre-expanded particles is melted by heat such as water vapor, and the pre-expanded particles are melted and pressed together, thereby forming the closed mold. It is known that foamed vinyl molded products (hereinafter referred to as foamed molded products) can be easily manufactured, and the foamed molded products made in this way can be used as various cushioning materials, insulation materials, and packaging materials. Used for containers, etc.

これら発泡成形体の強度等の品質特性は、予備発泡粒子
のセル径の大きさと均一性に大きく影響されることは公
知であり、従来セル径の調整や均一なセル径を有する予
備発泡粒子を得るため、ビニル系単量体の懸濁重合反応
時にエチレンビスステアリルアマイド系添加剤等(以下
、EBS等と称す)やヘキサブロムシクロドデカン系添
加剤等(以下、HBCD等と称す)を添加することが知
られている。
It is well known that the quality characteristics such as the strength of these foamed molded products are greatly influenced by the size and uniformity of the cell diameter of the pre-expanded particles. In order to obtain this, ethylene bisstearylamide additives (hereinafter referred to as EBS, etc.) and hexabromocyclododecane additives (hereinafter referred to as HBCD, etc.) are added during the suspension polymerization reaction of vinyl monomers. It is known.

(発明が解決しようとする課題) しかし、EBS等は懸濁重合反応中の懸濁粒子の分散を
不安定にし、HBCD等は懸濁重合において連鎖移動剤
としての作用があるため重合時間の無用な遅延を招くと
いう大きな課題を有している。
(Problem to be solved by the invention) However, EBS etc. make the dispersion of suspended particles unstable during suspension polymerization reaction, and HBCD etc. act as a chain transfer agent in suspension polymerization, so polymerization time is unnecessary. This poses the major problem of causing long delays.

(課題を解決するための手段) 本発明者らは、上記の課題を解決すべく鋭意研究を重ね
た結果、ビニル系単量体と共にビニル基と共重合可能を
有機シリコン系化合物を共重合させると、EBS等やH
BCD等の添加なしにセル径の調整や均一なセル径を有
する予備発泡粒子が得られることを見い出し、本発明を
完成するに至った。
(Means for Solving the Problems) As a result of extensive research to solve the above problems, the present inventors copolymerized an organosilicon compound capable of copolymerizing with a vinyl group together with a vinyl monomer. and EBS etc.
It was discovered that the cell diameter could be adjusted and pre-expanded particles having a uniform cell diameter could be obtained without adding BCD or the like, and the present invention was completed.

即ち、本発明は、ビニル系単量体(A)と、該ビニル系
単量体(A)と共重合可能な二重結合を1個有する有機
シリコン系化合物(B)とを必須成分として水性媒体中
で懸濁重合させると共に、重合中又は重合後に発泡剤を
共重合体粒子中に含浸させることを特徴とする発泡性ビ
ニル系樹脂粒子の製造方法を提供することにある。
That is, the present invention provides an aqueous solution containing as essential components a vinyl monomer (A) and an organosilicon compound (B) having one double bond copolymerizable with the vinyl monomer (A). An object of the present invention is to provide a method for producing expandable vinyl resin particles, which comprises carrying out suspension polymerization in a medium and impregnating a blowing agent into the copolymer particles during or after the polymerization.

本発明で用いるビニル系単量体(A)としては、例えば
スチレン;α−メチルスチレン、ビニルトルエン、クロ
ルスチレン、ジビニルベンゼン等の各NW換スチレン;
アクリルニトリル等のシアン化ヒニル化合物;メチルア
クリレート、エチルアクリレート、ブチルアクリレート
、ヒドロキシエチルアクリレート等のアクリル酸エステ
ル;メチルメタクリレート、エチルメタクリレート、ブ
チルメタクリレート、ヒドロキシエチルメタクリレート
等のメタクリル酸エステル;無水マレイン酸等の不飽和
カルボン酸無水物等の一種又は二種以上が上げられる。
Examples of the vinyl monomer (A) used in the present invention include styrene; NW-converted styrenes such as α-methylstyrene, vinyltoluene, chlorostyrene, and divinylbenzene;
Hinyl cyanide compounds such as acrylonitrile; acrylic esters such as methyl acrylate, ethyl acrylate, butyl acrylate, and hydroxyethyl acrylate; methacrylic esters such as methyl methacrylate, ethyl methacrylate, butyl methacrylate, and hydroxyethyl methacrylate; maleic anhydride, etc. One or more types of unsaturated carboxylic acid anhydrides can be used.

また、本発明においてスチレン系単量体とは該ビニル系
単量体(A)中スチレン又は上述した各種置換スチレン
を50重量%以上含有するものである。尚、該ビニル系
単量体(A)として必ずしもスチレン系単量体を選択す
る必要はないが、原料コスト・発泡剤の保持性・発泡倍
率等を考慮すればスチレン系単量体、なかでもスチレン
50重量%以上含有するもの、特にスチレンを使用する
ことが望ましい。
Furthermore, in the present invention, the styrenic monomer is one that contains 50% by weight or more of styrene or the various substituted styrenes mentioned above in the vinyl monomer (A). Incidentally, it is not necessary to select a styrene monomer as the vinyl monomer (A), but in consideration of raw material cost, foaming agent retention, foaming ratio, etc., a styrene monomer, especially a styrene monomer, may be selected. It is desirable to use a material containing 50% by weight or more of styrene, especially styrene.

本発明で用いる有機シリコン系化合物(B)としては、
ビニル系単量体(A)と共重合可能な二重結合を1個有
する有機シリコン系化合物であれば良く、いずれも使用
できるが、通常は平均分子量300〜10000、好ま
しくは平均分子量400〜2000のもの、例えば(メ
タ)アクリロ牛ジアルキルトリストリアルキルシロ牛ン
ンラン、 (メタ)アクリロキシアルキルトリストリフ
ェニルシロキシシラン、シリコーンアクリレートオリゴ
マー、ビニル変性シリコーンオリゴマー等ヲ使用する。
As the organosilicon compound (B) used in the present invention,
Any organosilicon compound having one double bond copolymerizable with the vinyl monomer (A) can be used, but it usually has an average molecular weight of 300 to 10,000, preferably an average molecular weight of 400 to 2,000. For example, (meth)acryloxyalkyltristriphenylsiloxysilane, (meth)acryloxyalkyltristriphenylsiloxysilane, silicone acrylate oligomer, vinyl-modified silicone oligomer, etc. are used.

以下にこれら有機シリコン系化合物(B)の一部を構造
式で示すが、なかでも構造式(1)で示すγ−(メタ)
アクリロ牛ジアルキルトリストリアルキルシロ牛ジシラ
ンおよび構造式(2)で示すシリコーンアクリレートの
様にトリストリアルキルシロキシ基を末端に有するもの
が好ましい。
Structural formulas of some of these organosilicon compounds (B) are shown below, and among them, γ-(meta) shown by structural formula (1)
Preferably, those having a tristrialkylsiloxy group at the end, such as acrylo-cow dialkyl tristrialkyl silo-cow disilane and silicone acrylate represented by structural formula (2), are preferred.

・ ・ (2) ・ −(3) トリアルキルシロキシシラン又(まト1Jフェニルシロ
キシシランとを反応させる方法カシ、ま1こンIノコー
ンアクリレートオリコ゛マーで(よ、7に酸基等の反り
コーンオリゴマーては、ンアルキルンアルコキシシラン
とビニルモノアルキルジアルコキジンランとを共重合さ
せる方法等が挙げられる。
・ ・ (2) ・ -(3) A method of reacting trialkylsiloxysilane or phenylsiloxysilane (1) with a cone acrylate oligomer (7) with a warped cone such as an acid group. Examples of the oligomer include a method of copolymerizing a vinylmonoalkyldialkoxysilane and a vinylmonoalkyldialkoxysilane.

本発明で使用する有機シリコン系化合物(B)の量は、
ビニル系単量体(A)の種類により適宜決定され、必ず
しも限定されないが、通常はビニル系単量体(A)10
0重量部に対して0.1〜15重量部の範囲で使用する
。なかでも、ビニル系単量体としてスチレン系単量体を
使用する場合、スチレン系単量体100重量部に対して
0.1〜10重量%の範囲で用いるのが最も好ましい。
The amount of the organosilicon compound (B) used in the present invention is
Although it is determined as appropriate depending on the type of vinyl monomer (A) and is not necessarily limited, usually vinyl monomer (A) 10
It is used in an amount of 0.1 to 15 parts by weight relative to 0 parts by weight. Among these, when a styrene monomer is used as the vinyl monomer, it is most preferably used in an amount of 0.1 to 10% by weight based on 100 parts by weight of the styrene monomer.

また、本発明で使用する有機シリコン系化合物(B)の
反応系への添加時期は、重合反応前あるいは重合反応途
中のいかなる時期でもよい。更にビニル系樹脂粒子を水
性媒体中で懸濁させ、これにビニル系単量体(A)と前
記有機シリコン系化合物(B)とを、それぞれ単独で、
又は混合物として添加し、共重合化を行ってもよい。な
かでもトリストリアルキルシロキシ基又はトリストリフ
ェニルシロキシ基等を末端に有するものを使用する場合
は、重合反応前あるいは重合反応の初期において添加す
ると好ましく、これら以外のものを使用する場合には、
重合反応の途中で添加すると好ましい。
Further, the organosilicon compound (B) used in the present invention may be added to the reaction system at any time before or during the polymerization reaction. Further, the vinyl resin particles are suspended in an aqueous medium, and the vinyl monomer (A) and the organosilicon compound (B) are added to the suspension, respectively.
Alternatively, they may be added as a mixture and copolymerized. Among them, when using those having a trialkylsiloxy group or tristriphenylsiloxy group at the end, it is preferable to add them before the polymerization reaction or at the beginning of the polymerization reaction.When using other substances,
It is preferable to add it during the polymerization reaction.

本発明では、ビニル系樹脂粒子の重合に際して重合開始
剤を使用すると好ましく、重合開始剤としては、例えば
過酸化ベンゾイル、過酸化ジクロルベンゾイル、ジクミ
ルペルオキシド、ジーt−フ゛チルペルオ牛シト、2,
5−ジ(ベルオキ/ヘンシェード)ヘキシン−3,1,
3−ビス(1−ブチルペルオキシイソプロビル)ベンゼ
ン、過酸化ラウロイル、t−ブチルペルアセテート、2
゜5−ジメチル−2,5−ジ(t−ブチルペルオキシ)
ヘキシン−3,2,5−ジメチル−2,5−ジ(t−ブ
チルペルオキシ)へ牛サン、およびt−ブチルペルベン
ゾエート、メチルエチルケトンペルオキサイド、メチル
シクロヘキサノンペルオ牛サイド等の有機過酸化物;ア
ゾビス−イソブチロニトリル、ジメチルアゾジイソブチ
レート等のアブ系化合物等が挙げられ、これらは単独又
は二種以上混合して使用できる。この使用量は、ビニル
系単量体(A)と有機シリコン系化合物(B)の種類お
よび得られる樹脂粒子の目的とする分子量により適宜法
められるものであるが、ビニル系単量体(A)と有機シ
リコン系化合物(B)の合計100重量部に対して0.
1〜4重量%使用すると好ましい。
In the present invention, it is preferable to use a polymerization initiator during polymerization of the vinyl resin particles, and examples of the polymerization initiator include benzoyl peroxide, dichlorobenzoyl peroxide, dicumyl peroxide, di-t-phytyl peroxide, 2,
5-di(beloki/henshade)hexyne-3,1,
3-bis(1-butylperoxyisopropyl)benzene, lauroyl peroxide, t-butyl peracetate, 2
゜5-dimethyl-2,5-di(t-butylperoxy)
Organic peroxides such as hexyne-3,2,5-dimethyl-2,5-di(t-butylperoxy) hexasan, and t-butyl perbenzoate, methyl ethyl ketone peroxide, and methylcyclohexanone peroxide; azobis Ab-based compounds such as -isobutyronitrile and dimethyl azodiisobutyrate are mentioned, and these can be used alone or in a mixture of two or more. The amount used is determined as appropriate depending on the types of the vinyl monomer (A) and the organosilicon compound (B) and the desired molecular weight of the resulting resin particles. ) and organosilicon compound (B) in total of 100 parts by weight.
It is preferable to use 1 to 4% by weight.

本発明に使用される発泡剤としては、発泡せしめるビニ
ル系樹脂粒子の軟化点よりも低い沸点を有し、かつビニ
ル系樹脂粒子を溶解しないか又は僅かに膨潤させる性質
を持ったものである。かかる発泡剤としては、例えばプ
ロパン、ブタン、またはペンタン等の脂肪族炭化水素類
;シクロブタン、シクロペンタン、シクロへ牛サン等の
環式脂肪族炭化水素類;メチルクロライド、モノクロル
エタン、ジクロルエタンまたは、ジクロルフルオルエタ
ン等のハロケン化炭化水素等の易揮発性発泡剤などを挙
げることができる。この発泡剤の使用量は、発泡性ビニ
ル系樹脂粒子と未反応ビニル系単量体(A)と未反応有
機ノリコン系化合物(B)の合計100重量部に対して
通常1〜20重量部である。
The foaming agent used in the present invention has a boiling point lower than the softening point of the vinyl resin particles to be foamed, and has the property of not dissolving the vinyl resin particles or causing them to swell slightly. Such blowing agents include, for example, aliphatic hydrocarbons such as propane, butane, or pentane; cycloaliphatic hydrocarbons such as cyclobutane, cyclopentane, and cyclohexane; methyl chloride, monochloroethane, dichloroethane, or dichloroethane; Easily volatile blowing agents such as halogenated hydrocarbons such as chlorofluoroethane and the like can be mentioned. The amount of this blowing agent used is usually 1 to 20 parts by weight per 100 parts by weight of the expandable vinyl resin particles, unreacted vinyl monomer (A), and unreacted organic Noricone compound (B). be.

尚、上記発泡剤のうち、プロパン、ブタン、ペンタン又
はシクロへ牛サン等を単独あるいは併用で使用する場合
、発泡剤含浸時にビニル系樹脂粒子を溶解する有機溶剤
を併用するのが好ましい。
When propane, butane, pentane, cyclohexan, etc. are used alone or in combination among the above blowing agents, it is preferable to use an organic solvent that dissolves the vinyl resin particles during impregnation with the blowing agent.

かかる有機溶剤の例としてはベンゼン、トルエン、キシ
レン、エチルベンゼン等の芳香族炭化水素類;エチレン
ジクロライド、トリクロロエチレン、テトラクロロエチ
レン等のハロゲン化炭化水素類;酢酸エチル、酢酸ブチ
ル等のエステル類などの公知慣用の溶剤を挙げることが
できる。この有機溶剤の使用量は、発泡性ビニル系樹脂
粒子と未反応ビニル系単量体(A)と未反応有機シリコ
ン系化合物(B)の合計100重量部に対して通常0.
1〜5重量部である。
Examples of such organic solvents include aromatic hydrocarbons such as benzene, toluene, xylene, and ethylbenzene; halogenated hydrocarbons such as ethylene dichloride, trichlorethylene, and tetrachloroethylene; and known and commonly used organic solvents such as esters such as ethyl acetate and butyl acetate. Mention may be made of solvents. The amount of this organic solvent used is usually 0.00 parts by weight per 100 parts by weight of the expandable vinyl resin particles, unreacted vinyl monomer (A), and unreacted organic silicon compound (B).
It is 1 to 5 parts by weight.

発泡剤の含浸は、重合途中に水性媒体中に発泡剤を添加
するが、重合終了後に樹脂粒子を水性媒体中に懸濁させ
た状態で系内に発泡剤を添加することによって行うこと
ができる。尚、重合途中で発泡剤を添加する場合は、ビ
ニル系単量体(A)および有機シリコン系化合物(B)
からなる単量体等の転化率が50重量%以上になってか
ら行うのが、重合系の安定性の点て好ましい。
For impregnation with a blowing agent, the blowing agent is added to the aqueous medium during polymerization, but it can also be carried out by adding the blowing agent into the system after the polymerization is complete with the resin particles suspended in the aqueous medium. . In addition, when adding a blowing agent during the polymerization, the vinyl monomer (A) and the organosilicon compound (B)
From the viewpoint of stability of the polymerization system, it is preferable to carry out the reaction after the conversion rate of the monomer consisting of is 50% by weight or more.

本発明において、上記ビニル系単量体(A)と有機シリ
コン系化合物(B)は水性媒体中で重合させられるが、
この場合、分散剤として難溶性リン酸塩、水溶性高分子
保護コロイドなどを重合系に添加することができる。難
溶性リン酸塩としては、例えばリン酸三カルシウム、リ
ン酸マグ不ソウム等が挙げられる。また、高分子保護コ
ロイドとしては、例えばポリビニルアルコール、アル牛
ルセルロース、ヒドロ牛ジアルキルセルロース、カルボ
キシアルキルセルロース等の水溶性セルロース銹導体;
ポリアクリル酸ナトリウム等が挙げられる。難溶性リン
酸塩は重合系の全量に対する含有率が0.01重量%以
上となる範囲、水溶性高分子保護コロイドは重合系の全
量に対する含有率が0.001〜1重量%となる範囲で
使用すると好ましい。
In the present invention, the vinyl monomer (A) and the organosilicon compound (B) are polymerized in an aqueous medium,
In this case, a poorly soluble phosphate, a water-soluble polymer protective colloid, etc. can be added to the polymerization system as a dispersant. Examples of poorly soluble phosphates include tricalcium phosphate and magfusium phosphate. In addition, examples of the polymeric protective colloid include water-soluble cellulose conductors such as polyvinyl alcohol, alkylcellulose, hydrodialkylcellulose, and carboxyalkylcellulose;
Examples include sodium polyacrylate. The content of the sparingly soluble phosphate is 0.01% by weight or more based on the total amount of the polymerization system, and the content of the water-soluble polymer protective colloid is 0.001 to 1% by weight based on the total amount of the polymerization system. Preferably used.

本発明では、上記の他、ドデシルヘンセンスルフオン酸
ナトリウム等の陰イオン系界面活性剤;水酸化ナトリウ
ム、水酸化カルシウム等の水溶性無機塩等も併用するこ
とかできる。
In the present invention, in addition to the above, anionic surfactants such as sodium dodecylhensensulfonate; water-soluble inorganic salts such as sodium hydroxide and calcium hydroxide may also be used in combination.

尚、本発明に係わる発泡性ビニル系樹脂粒子の重合工程
において、難燃剤、帯電防止剤、酸化防止剤、顔料等の
公知の添加剤を含有させてもよい。
In addition, in the polymerization process of the expandable vinyl resin particles according to the present invention, known additives such as flame retardants, antistatic agents, antioxidants, pigments, etc. may be included.

さらに、本発明により得られる発泡性ビニル系樹脂粒子
表面に予備発泡時におけるブロッキング防止剤等の公知
の各種改質剤、成形時における成形サイクル向上剤、帯
電防止剤等の公知の各種改質剤を塗布させてもよい。
Furthermore, various known modifiers such as anti-blocking agents during pre-foaming, molding cycle improvers and antistatic agents during molding are added to the surface of the expandable vinyl resin particles obtained by the present invention. may be applied.

(実施例) 以下に実施例および比較例を挙げて、本発明を具体的に
説明する。
(Example) The present invention will be specifically described below with reference to Examples and Comparative Examples.

実施例1 5Qの回転攪拌機付きオートクレーブに、イオン交換水
2000 g、  スチレン2000gおよびγ−メタ
クリロキシプロピルトリストリメチルシロキシシラン2
.0gを入れ、攪拌開始後、塩基性リン酸塩5.0gお
よび過硫酸カリウム0.003gを添加し、さらにヘン
シイルベルオキサイド6.0gおよびt−プチルペルヘ
ンゾエト2.0gを添加した後、90°Cて6時間懸濁
重合反応させて、ポリスチレン粒子を形成させた。
Example 1 In a 5Q autoclave equipped with a rotary stirrer, 2000 g of ion-exchanged water, 2000 g of styrene, and 2 g of γ-methacryloxypropyltristrimethylsiloxysilane were added.
.. After starting stirring, 5.0 g of basic phosphate and 0.003 g of potassium persulfate were added, and 6.0 g of hensyl peroxide and 2.0 g of t-butylperhenzoet were added. A suspension polymerization reaction was carried out at 90°C for 6 hours to form polystyrene particles.

次にトルエン30gを添加し、15分後にブタンガス1
40gを圧入した後、15°C/時で120°Cまで昇
温し、この温度でさらに2時間反応させた。反応終了後
、25℃まで冷却してから内容物を抜き出し、乾燥・ふ
るい分けを行い、粒径0.84〜1.41mmの発泡性
ビニル系樹脂粒子を得、平均粒径、粒径分布傾きnおよ
び重量平均分子量を測定した。結果を表1に示す。
Next, 30g of toluene was added, and after 15 minutes, 1 butane gas was added.
After 40 g was injected, the temperature was raised to 120°C at a rate of 15°C/hour, and the reaction was continued at this temperature for an additional 2 hours. After the reaction was completed, the contents were cooled to 25°C and extracted, dried and sieved to obtain expandable vinyl resin particles with a particle size of 0.84 to 1.41 mm, and the average particle size and particle size distribution slope n and weight average molecular weight were measured. The results are shown in Table 1.

次いで、この樹脂粒子を水蒸気で加熱し、カサ倍率60
倍の予備発泡粒子とし、約−昼夜熟成後、予備発泡粒子
のセル径を測定した。また、この予備発泡粒子を密閉金
型に充填し、水蒸気で加熱して溶融・圧着させ表面の美
しい融着率の良好な発泡成形体を得、この成形品の発泡
粒子の融着率を測定した。結果を表2に示す。
Next, the resin particles are heated with steam to give a bulk ratio of 60.
The pre-expanded particles were made into pre-expanded particles, and after aging for about 24 hours, the cell diameter of the pre-expanded particles was measured. In addition, these pre-expanded particles were filled into a closed mold, heated with steam to melt and press together to obtain a foamed molded product with a beautiful surface and a good fusion rate, and the fusion rate of the expanded particles of this molded product was measured. did. The results are shown in Table 2.

実施例2 γ−メタクリロキシプロピルトリストリメチルシロキシ
シランの添加量を100gに変更した以外は実施例1と
同様にして発泡性ビニル系樹脂粒子を得、平均粒径、粒
径分布傾きnおよび重量平均分子量を測定した。結果を
表1に示す。
Example 2 Expandable vinyl resin particles were obtained in the same manner as in Example 1 except that the amount of γ-methacryloxypropyltristrimethylsiloxysilane added was changed to 100 g, and the average particle size, particle size distribution slope n, and weight average were obtained. The molecular weight was measured. The results are shown in Table 1.

次いで、得られた樹脂粒子を用い、実施例1と同様にし
て予備発泡粒子と表面の美しい融着率の良好な発泡成形
体を得、予備発泡粒子のセル径と成形品の発泡粒子の融
着率を測定した。結果を表2に示す。
Next, using the obtained resin particles, a foamed molded article having a beautiful surface and a good fusion rate with the pre-expanded particles was obtained in the same manner as in Example 1, and the cell diameter of the pre-expanded particles and the fusion of the expanded particles of the molded article were The adhesion rate was measured. The results are shown in Table 2.

実施例3 5Qの回転攪拌機付きオートクレーブに、イオン交換水
2000 g、  スチレン2000gおよびγ−メタ
クリロキシプロピルトリストリメチルンロキシシラン2
.0gを入れ、攪拌開始後、塩基性リン酸塩5.0gお
よび過硫酸カリウムo、oosgを添加し、さらにペン
ソイルペルオキサイド6.0gおよびt−プチルベルヘ
ンソエト2.Ogを添加した後、90’Cて6時間懸濁
重合反応させ、ポリスチレン粒子を形成させ、冷却後、
乾燥・ふるい分けを行い、084〜1.41mrIlの
発泡性ビニル系樹脂粒子を得た。次に5Qの回転攪拌機
付きオートクレーブに、イオン交換水3000 g、塩
基性リン酸塩5.0g、ドデンルベンゼンスルフォン酸
ナトリム0.04gおよび上記ポリスチレン粒子100
0gを入れ、攪拌しながら90°Cに昇温後、トルエン
15gを添加し、15分後にブタンガス70gを圧入し
た後、15℃/時で120°Cにまで昇温し、この温度
でさらに2時間反応させた。反応終了後、25°Cまて
冷却から内容物を抜き出し、乾燥し、発泡性ビニル系樹
脂粒子を得、平均粒径、粒径分布傾きnおよび重量平均
分子量を測定した。結果を表1に示す。
Example 3 In a 5Q autoclave equipped with a rotary stirrer, 2000 g of ion-exchanged water, 2000 g of styrene, and 2 g of γ-methacryloxypropyltristrimethyluroxysilane were added.
.. After starting stirring, 5.0 g of basic phosphate and potassium persulfate were added, followed by 6.0 g of pensoyl peroxide and 2.0 g of t-butylbergensoeth. After adding Og, a suspension polymerization reaction was carried out at 90'C for 6 hours to form polystyrene particles, and after cooling,
Drying and sieving were performed to obtain expandable vinyl resin particles having a size of 084 to 1.41 mrIl. Next, in a 5Q autoclave equipped with a rotary stirrer, 3000 g of ion-exchanged water, 5.0 g of basic phosphate, 0.04 g of sodium dodenlebenzenesulfonate, and 100 g of the above polystyrene particles were added.
After heating to 90°C with stirring, 15g of toluene was added, and after 15 minutes, 70g of butane gas was introduced under pressure, and the temperature was raised to 120°C at a rate of 15°C/hour. Allowed time to react. After the reaction was completed, the contents were cooled to 25° C., then the contents were extracted and dried to obtain expandable vinyl resin particles, and the average particle size, particle size distribution slope n, and weight average molecular weight were measured. The results are shown in Table 1.

次いで、得られた樹脂粒子を用い、実施例1と同様にし
て予備発泡粒子と表面の美しい融着率の良好な発泡成形
体を得、予備発泡粒子のセル径と成形品の発泡粒子の融
着率を測定した。結果を表2に示す。
Next, using the obtained resin particles, a foamed molded article having a beautiful surface and a good fusion rate with the pre-expanded particles was obtained in the same manner as in Example 1, and the cell diameter of the pre-expanded particles and the fusion of the expanded particles of the molded article were The adhesion rate was measured. The results are shown in Table 2.

実施例4 γ−メタクリロキンプロピルトリストリメチルシロキシ
シランを、重合前でなくスチレンの重合転化率が30重
量%になった時点て、懸濁重合系に2g添加した以外は
実施例1と同様にして発泡性ビニル系樹脂粒子を得、平
均粒径、粒径分布傾きnおよび重量平均分子量を測定し
た。結果を表1に示す。
Example 4 The same procedure as Example 1 was carried out, except that 2 g of γ-methacryloquinepropyltristrimethylsiloxysilane was added to the suspension polymerization system not before polymerization, but after the polymerization conversion rate of styrene reached 30% by weight. Expandable vinyl resin particles were obtained, and the average particle diameter, particle size distribution slope n, and weight average molecular weight were measured. The results are shown in Table 1.

次いで、得られた樹脂粒子を用い、実施例1と同様にし
て予備発泡粒子と表面の美しい融着率の良好な発泡成形
体を得、予備発泡粒子のセル径と成形品の発泡粒子の融
着率を測定した。結果を表2に示す。
Next, using the obtained resin particles, a foamed molded article having a beautiful surface and a good fusion rate with the pre-expanded particles was obtained in the same manner as in Example 1, and the cell diameter of the pre-expanded particles and the fusion of the expanded particles of the molded article were The adhesion rate was measured. The results are shown in Table 2.

実施例5 γ−メタクリロキシプロピルトリストリメチルシロキシ
シランの代わりに下記構造式 で示される化合物を、重合前でなくスチレンの重合転化
案が60重量%になっ1こ時7点て、懸濁重合系に2g
添加した以外は実施例1と同様にして発泡性ビニル系樹
脂粒子を得、平均粒径、粒径分布傾きnおよび重量平均
分子量を測定した。結果を表1に示す。
Example 5 In place of γ-methacryloxypropyltristrimethylsiloxysilane, a compound represented by the following structural formula was added to the suspension polymerization system at 7 points when the planned styrene polymerization conversion was 60% by weight, not before polymerization. 2g per
Expandable vinyl resin particles were obtained in the same manner as in Example 1, except that the particles were added, and the average particle diameter, particle size distribution slope n, and weight average molecular weight were measured. The results are shown in Table 1.

次いで、得られた樹脂粒子を用い、実施例1と同様にし
て予備発泡粒子と表面の美しい融着率の良好な発泡成形
体を得、予備発泡粒子のセル径と成形品の発泡粒子の融
着率を測定した。結果を表2に示す。
Next, using the obtained resin particles, a foamed molded article having a beautiful surface and a good fusion rate with the pre-expanded particles was obtained in the same manner as in Example 1, and the cell diameter of the pre-expanded particles and the fusion of the expanded particles of the molded article were The adhesion rate was measured. The results are shown in Table 2.

実施例6 5Qの回転攪拌機付きオートクレーブに、イオン交換水
2000 g、塩基性リン酸塩5.0g、ドデシルベン
ゼンスルフオン酸ナトリム0.04gおよび分級され粒
径範囲が0.71〜1.14にあるポリスチレン粒子1
800gを入れ、攪拌しながら90℃に昇温後、スチレ
ン200gにγ−メタクリロキシプロピルトリストリメ
チルシロキシシラン2gを溶解させた溶液202g、ヘ
ンシイルベルオキサイド0.58gおよびt−プチルペ
ルベンゾエ)0.2gを10分間かけて添加し、30分
後にトルエン30gを添加し、さらに15分後にブタン
ガス140gを圧入した後、15℃/時で120℃にま
で昇温し、この温度でさらに2時間反応させた。反応終
了後、25°Cまで冷却してから内容物を抜き出し、乾
燥し、発泡性ビニル系樹脂粒子を得、平均粒径、粒径分
布傾きnおよび重量平均分子量を測定した。結果を表1
に示す。
Example 6 In a 5Q autoclave equipped with a rotary stirrer, 2000 g of ion-exchanged water, 5.0 g of basic phosphate, 0.04 g of sodium dodecylbenzenesulfonate, and the particles were classified to have a particle size range of 0.71 to 1.14. A certain polystyrene particle 1
Add 800 g of styrene and raise the temperature to 90°C with stirring, then add 202 g of a solution of 2 g of γ-methacryloxypropyltristrimethylsiloxysilane dissolved in 200 g of styrene, 0.58 g of hensyl peroxide, and 0.0 .2g was added over 10 minutes, 30g of toluene was added after 30 minutes, 140g of butane gas was injected after another 15 minutes, the temperature was raised to 120°C at a rate of 15°C/hour, and the reaction was continued at this temperature for another 2 hours. I let it happen. After the reaction was completed, the contents were cooled to 25° C., and the contents were extracted and dried to obtain expandable vinyl resin particles, and the average particle size, particle size distribution slope n, and weight average molecular weight were measured. Table 1 shows the results.
Shown below.

次いで、得られた樹脂粒子を用い、実施例1と同様にし
て予備発泡粒子と表面の美しい融着率の良好な発泡成形
体を得、予備発泡粒子のセル径と成形品の発泡粒子の融
着率を測定した。結果を表2に示す。
Next, using the obtained resin particles, a foamed molded article having a beautiful surface and a good fusion rate with the pre-expanded particles was obtained in the same manner as in Example 1, and the cell diameter of the pre-expanded particles and the fusion of the expanded particles of the molded article were The adhesion rate was measured. The results are shown in Table 2.

比較例1 γ−メタクリロキシプロピルトリストリメチルシロキシ
シランの添加を省略した以外は実施例1と同様にして発
泡性ビニル系樹脂粒子を得、平均粒径、粒径分布傾きn
および重量平均分子量を測定した。結果を表1に示す。
Comparative Example 1 Expandable vinyl resin particles were obtained in the same manner as in Example 1 except that the addition of γ-methacryloxypropyltristrimethylsiloxysilane was omitted, and the average particle size and particle size distribution slope n
and weight average molecular weight were measured. The results are shown in Table 1.

次いて、得られた樹脂粒子を用い、実施例1と同様にし
て予備発泡粒子と発泡成形体を得、予備発泡粒子のセル
径と成形品の発泡粒子の融着率を測定したが、予備発泡
粒子のセルが不均一であり、発泡成形体の融着率は劣っ
ていた。結果を表2に示す。
Next, using the obtained resin particles, pre-expanded particles and a foamed molded article were obtained in the same manner as in Example 1, and the cell diameter of the pre-expanded particles and the fusion rate of the expanded particles of the molded article were measured. The cells of the foamed particles were non-uniform, and the fusion rate of the foamed molded product was poor. The results are shown in Table 2.

比較例2 γ−メタクリロキシプロピルトリストリメチルシロキシ
シランの添加を省略し、エチレンビストリステアリルア
マイド2gを添加した以外は実施例1と同様にして発泡
性ビニル系樹脂粒子を得、平均粒径、粒径分布傾きnお
よび重量平均分子量を測定したが、重合における分散系
が不安定で、ポリスチレン粒子は粒径分布の広いもので
あった。
Comparative Example 2 Expandable vinyl resin particles were obtained in the same manner as in Example 1, except that the addition of γ-methacryloxypropyltristrimethylsiloxysilane was omitted and 2 g of ethylene bistristearylamide was added, and the average particle size and particle size were The distribution slope n and weight average molecular weight were measured, but the dispersion system during polymerization was unstable and the polystyrene particles had a wide particle size distribution.

結果を表1に示す。The results are shown in Table 1.

次いで、得られた樹脂粒子を用い、実施例1と同様にし
て予備発泡粒子と発泡成形体を得、予備発泡粒子のセル
径と成形品の発泡粒子の融着率を測定した。予備発泡粒
子のセルが均一であったが、発泡成形体の融着率は劣っ
ていた。結果を表2に示す。
Next, using the obtained resin particles, pre-expanded particles and a foamed molded article were obtained in the same manner as in Example 1, and the cell diameter of the pre-expanded particles and the fusion rate of the expanded particles of the molded article were measured. Although the cells of the pre-expanded particles were uniform, the fusion rate of the foamed molded product was poor. The results are shown in Table 2.

比較例3 γ−メタクリロキシプロピルトリストリメチルシロキシ
シランの添加を省略し、ヘキサブロムシクロドデカンを
添加した以外は実施例1と同様にして発泡性ビニル系樹
脂粒子を得、平均粒径、粒径分布傾きnおよび重量平均
分子量を測定したが、重合における分散系が不安定で、
ポリスチレン粒子は粒径分布の広いものであった。結果
を表1に示す。
Comparative Example 3 Expandable vinyl resin particles were obtained in the same manner as in Example 1, except that the addition of γ-methacryloxypropyltristrimethylsiloxysilane was omitted and hexabromocyclododecane was added, and the average particle size and particle size distribution were The slope n and weight average molecular weight were measured, but the dispersion system during polymerization was unstable.
The polystyrene particles had a wide particle size distribution. The results are shown in Table 1.

次いで、得られた樹脂粒子を用い、実施例1と同様にし
て予備発泡粒子と発泡成形体を得、予備発泡粒子のセル
径と成形品の発泡粒子の融着率を測定した。予備発泡粒
子のセルが均一であったが、発泡成形体の融着率は劣っ
ていた。結果を表2に示す。
Next, using the obtained resin particles, pre-expanded particles and a foamed molded article were obtained in the same manner as in Example 1, and the cell diameter of the pre-expanded particles and the fusion rate of the expanded particles of the molded article were measured. Although the cells of the pre-expanded particles were uniform, the fusion rate of the foamed molded product was poor. The results are shown in Table 2.

表1 表2 *1)粒度分布傾きn:粒径分布の傾きnは、ふるい上
百分率を測定し、各測定粒径におけるふるい上百分率を
ロジン・ラムラーの粒径分布の下記公式(I)に代入し
、最小2乗法により算出した。
Table 1 Table 2 *1) Particle size distribution slope n: The slope n of the particle size distribution is determined by measuring the percentage above the sieve, and calculating the percentage above the sieve for each measured particle size using the formula (I) below for the Rosin-Ramler particle size distribution. It was calculated using the method of least squares.

2−12−1oβxn・・・ (I) 尚、式中のn:傾き X:粒径 R:ふるい上百分率 β:係数 *2)予備発泡粒子のセル径:予備発泡粒子を切断し、
中心部で切断されている独立気泡の直径を測定し、平均
値を算出した。
2-12-1oβxn... (I) In the formula, n: slope
The diameter of the closed cells cut at the center was measured and the average value was calculated.

*3)成形品融着率: 板状成形品を中心部で折って破
断し、この破断面にある粒子の融着率を測定した。
*3) Molded product fusion rate: A plate-shaped molded product was broken and broken at the center, and the fusion rate of particles on the fractured surface was measured.

(発明の効果) 本発明の製造方法によれば、懸濁重合中の懸濁粒子の分
散が安定し、重合時間の無用な遅延がなくなる。また、
製造後においても一般に使用されるEBS等やHBCD
等の如き非反応性添加物のように懸濁粒子中から懸濁粒
子表面にブリートアウトし、経日による製品の変化を起
こすことかなく、しかも従来必要とされていた均一なセ
ル径を有する発泡性ビニル系樹脂の予備発泡粒子を得る
ことかできる。
(Effects of the Invention) According to the production method of the present invention, the dispersion of suspended particles during suspension polymerization is stabilized, and unnecessary delays in polymerization time are eliminated. Also,
Even after manufacturing, EBS etc. and HBCD are commonly used.
It bleeds out from the suspended particles to the surface of the suspended particles like non-reactive additives such as, does not cause product changes over time, and has the uniform cell diameter that was previously required. Pre-expanded particles of expandable vinyl resin can be obtained.

Claims (1)

【特許請求の範囲】 1、ビニル系単量体(A)と、該ビニル系単量体(A)
と共重合可能な二重結合を1個有する有機シリコン系化
合物(B)とを必須成分として水性媒体中で懸濁重合重
合させると共に、重合中又は重合後に発泡剤を共重合体
粒子中に含浸させることを特徴とする発泡性ビニル系樹
脂粒子の製造方法。 2、有機シリコン系化合物(B)が、(メタ)アクリロ
キシアルキルトリストリアルキルシロキシシラン、(メ
タ)アクリロキシアルキルトリストリフェニルシロキシ
シラン、シリコーンアクリレートオリゴマーおよびビニ
ル変性シリコーンオリゴマーからなる群から選ばれる1
種以上の化合物である請求項1記載の製造方法。 3、有機シリコン系化合物(B)が、トリストリアルキ
ルシロキシ基を有する化合物である請求項2記載の製造
方法。 4、有機シリコン系化合物(B)が、γ−メタクリロキ
シプロピルトリストリメチルシロキシシランである請求
項1記載の製造方法。 5、ビニル系単合体(A)が、スチレンを50重量%以
上含有するスチレン系単量体である請求項1、2又は3
記載の製造方法。 6、ビニル系単合体(A)が、スチレンである請求項1
、2又は3記載の製造方法。
[Claims] 1. Vinyl monomer (A) and the vinyl monomer (A)
and an organosilicon compound (B) having one copolymerizable double bond as essential components, which are subjected to suspension polymerization in an aqueous medium, and a blowing agent is impregnated into the copolymer particles during or after the polymerization. A method for producing expandable vinyl resin particles. 2. The organosilicon compound (B) is selected from the group consisting of (meth)acryloxyalkyltristrylkylsiloxysilane, (meth)acryloxyalkyltristriphenylsiloxysilane, silicone acrylate oligomer, and vinyl-modified silicone oligomer.
The manufacturing method according to claim 1, wherein the compound is more than one species. 3. The manufacturing method according to claim 2, wherein the organosilicon compound (B) is a compound having a trialkylsiloxy group. 4. The manufacturing method according to claim 1, wherein the organosilicon compound (B) is γ-methacryloxypropyltristrimethylsiloxysilane. 5. Claim 1, 2 or 3, wherein the vinyl monomer (A) is a styrenic monomer containing 50% by weight or more of styrene.
Manufacturing method described. 6. Claim 1, wherein the vinyl monopolymer (A) is styrene.
, 2 or 3.
JP33442790A 1990-11-30 1990-11-30 Production of expandable vinyl resin particle Pending JPH04202443A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33442790A JPH04202443A (en) 1990-11-30 1990-11-30 Production of expandable vinyl resin particle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33442790A JPH04202443A (en) 1990-11-30 1990-11-30 Production of expandable vinyl resin particle

Publications (1)

Publication Number Publication Date
JPH04202443A true JPH04202443A (en) 1992-07-23

Family

ID=18277257

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33442790A Pending JPH04202443A (en) 1990-11-30 1990-11-30 Production of expandable vinyl resin particle

Country Status (1)

Country Link
JP (1) JPH04202443A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002363537A (en) * 2001-06-11 2002-12-18 Kureha Chem Ind Co Ltd Thermally foamed microsphere and method for manufacturing the same
KR100397529B1 (en) * 2000-12-18 2003-09-13 제일모직주식회사 Method of Preparing Expandable Styrene Resin Bead Having Good Demolding Effect in the Molding Process
JP2016183255A (en) * 2015-03-26 2016-10-20 株式会社カネカ Expandable polystyrene-based resin particle, polystyrene-based resin pre-expanded particle and expansion-molded article
WO2019026972A1 (en) * 2017-08-04 2019-02-07 株式会社カネカ Expandable polystyrene resin particles, polystyrene pre-expanded particles, and foam molded body

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100397529B1 (en) * 2000-12-18 2003-09-13 제일모직주식회사 Method of Preparing Expandable Styrene Resin Bead Having Good Demolding Effect in the Molding Process
JP2002363537A (en) * 2001-06-11 2002-12-18 Kureha Chem Ind Co Ltd Thermally foamed microsphere and method for manufacturing the same
WO2002100971A1 (en) * 2001-06-11 2002-12-19 Kureha Chemical Industry Company, Limited Heat-expandable microsphere and process for producing the same
US7931967B2 (en) 2001-06-11 2011-04-26 Kureha Corporation Thermally foamable microsphere and production process thereof
JP2016183255A (en) * 2015-03-26 2016-10-20 株式会社カネカ Expandable polystyrene-based resin particle, polystyrene-based resin pre-expanded particle and expansion-molded article
WO2019026972A1 (en) * 2017-08-04 2019-02-07 株式会社カネカ Expandable polystyrene resin particles, polystyrene pre-expanded particles, and foam molded body
US11312835B2 (en) 2017-08-04 2022-04-26 Kaneka Corporation Expandable polystyrene resin particles, polystyrene pre-expanded particles, and foam molded body

Similar Documents

Publication Publication Date Title
US4303757A (en) Process for producing expandable thermoplastic resin beads using polypropylene as nucleus
US6362242B1 (en) Method for producing expandable styrene polymers
JP2753039B2 (en) Method for producing carbon-containing styrene-modified foamable olefin-based resin particles
JP2004529215A5 (en)
US3192169A (en) Method of making expandable polymeric styrene particles
US3503908A (en) Method of making expandable polymers
JP2659506B2 (en) Method for discontinuous production of pearl expandable styrene homo- or copolymer
US4980381A (en) Preparation of bead-form expandable styrene polymers
US4459373A (en) Pre-expanded plastic beads based on poly-para-methylstyrene
JP3474995B2 (en) Method for producing expandable styrene polymer particles
JPH04202443A (en) Production of expandable vinyl resin particle
JPH0471418B2 (en)
JPH0554854B2 (en)
JPS5846251B2 (en) Method for manufacturing expandable vinyl polymer particles
JPS633039A (en) Foaming agent-containing styrene polymer
JPS6338063B2 (en)
JPS6310181B2 (en)
US3553112A (en) Expandable alkenyl aromatic polymers containing incorporated expandable alkenyl aromatic polymers
JPH0513174B2 (en)
JPH09278924A (en) Expanded material based copolymer of styrene and 1,1-diphenylethene
JPH04300927A (en) Production of fomable styrenic resin particles
JPS5841302B2 (en) Expandable polystyrene resin composition with flame retardancy
JPS6129615B2 (en)
JPH0367537B2 (en)
JPH05148382A (en) Preparation of foamable vinyl resin particle