JP2601585B2 - Manufacturing method of controlled cooling steel sheet - Google Patents

Manufacturing method of controlled cooling steel sheet

Info

Publication number
JP2601585B2
JP2601585B2 JP3248251A JP24825191A JP2601585B2 JP 2601585 B2 JP2601585 B2 JP 2601585B2 JP 3248251 A JP3248251 A JP 3248251A JP 24825191 A JP24825191 A JP 24825191A JP 2601585 B2 JP2601585 B2 JP 2601585B2
Authority
JP
Japan
Prior art keywords
cooling
temperature
steel sheet
controlled
controlled cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3248251A
Other languages
Japanese (ja)
Other versions
JPH0559458A (en
Inventor
水田篤男
大江憲一
淳 宮脇
須藤正樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP3248251A priority Critical patent/JP2601585B2/en
Publication of JPH0559458A publication Critical patent/JPH0559458A/en
Application granted granted Critical
Publication of JP2601585B2 publication Critical patent/JP2601585B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は制御冷却鋼板の製造に係
り、特に厚板加速冷却において、冷却後の板面内或いは
板間の温度ばらつきを低減する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a controlled cooling steel sheet, and more particularly to a method for reducing a temperature variation within a sheet surface or between sheets after accelerated cooling of a thick plate.

【0002】[0002]

【従来の技術】熱間圧延においては、圧延後に鋼板が冷
却されるが、制御冷却を適用して製造する制御冷却型鋼
板においては、冷却停止後の鋼板温度を均一に制御する
ことが重要な問題である。
2. Description of the Related Art In hot rolling, a steel sheet is cooled after rolling. In a controlled cooling type steel sheet manufactured by applying controlled cooling, it is important to uniformly control the temperature of the steel sheet after cooling is stopped. It is a problem.

【0003】すなわち、目標冷却停止温度に対して板面
内での温度偏差により材質のばらつきが生じ、その偏差
が許容範囲を超えて大きくなると材質不良になる。この
ため、オフラインで再度熱処理が施される場合もある。
しかし、再度熱処理を施すことは、制御冷却型鋼板の有
する低コストで、かつ、オンラインで高品質な鋼板を造
り込むというメリットがなくなってしまう。また、冷却
停止時の鋼板温度のばらつきは、形状不良の発生の原因
にもなる。
That is, a material deviation occurs due to a temperature deviation in the plate surface with respect to the target cooling stop temperature, and if the deviation exceeds an allowable range, the material becomes defective. Therefore, the heat treatment may be performed again offline.
However, performing the heat treatment again eliminates the merit of producing a high-quality steel plate at low cost and online, which the controlled cooling steel plate has. In addition, the variation in the temperature of the steel sheet when the cooling is stopped also causes a shape defect.

【0004】[0004]

【発明が解決しようとする課題】従来、冷却停止後の鋼
板温度を均一にする方法としては、幅方向に水量クラウ
ンを付与した冷却制御法や、鋼板端部の遮蔽装置や斜方
ノズルの採用によって、鋼板温度分布の均一化を図る方
法が採られてきた。
Conventionally, as a method for equalizing the temperature of a steel sheet after cooling is stopped, a cooling control method in which a water amount crown is provided in a width direction, a shielding device for a steel sheet end, and an oblique nozzle are employed. Therefore, a method for achieving a uniform steel plate temperature distribution has been adopted.

【0005】しかしながら、制御冷却時の冷却速度が大
きくなると、前述のような冷却装置自体の改良、開発に
よる均一冷却技術では、解決できないような大きな温度
ばらつきが発生する場合がある。
[0005] However, when the cooling rate at the time of controlled cooling increases, a large temperature variation that cannot be solved by the uniform cooling technology developed and developed by the above-described cooling device itself may occur.

【0006】例えば、同一サイズの鋼板を同じ加熱・圧
延・冷却条件で数十枚製造しても、その内の数枚の鋼板
については、板面内で冷却停止温度が目標温度に対して
大きくばらついて許容範囲を超えるため、材質不良や形
状不良が発生するという問題があった。
For example, even if dozens of steel sheets of the same size are manufactured under the same heating, rolling, and cooling conditions, the cooling stop temperature in the sheet surface of some of the steel sheets is higher than the target temperature. Since the variation exceeds the allowable range, there is a problem that a material defect or a shape defect occurs.

【0007】本発明は、上記従来技術の問題点を解決す
るためになされたものであって、その目的は、制御冷却
鋼板の冷却停止後の板面内の温度ばらつきを低減し、材
質及び形状の安定化を図り得る方法を提供することにあ
る。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems of the prior art, and an object of the present invention is to reduce the temperature variation within the control cooling steel sheet after the cooling of the steel sheet is stopped. It is an object of the present invention to provide a method capable of stabilizing the above.

【0008】[0008]

【課題を解決するための手段】本発明者らは、前記課題
を解決するために制御冷却型鋼板の製造条件について種
々の研究調査を行った結果、冷却停止温度のばらつき発
生の原因については、鋼板温度がAc3点以上である部分
に生成しているスケール層と、Ac1〜Ac3点の温度範
囲にある部分に生成しているスケール層とで、冷却中の
スケール剥離挙動が大きく異なるため、板面内でスケー
ル厚のばらつきが生じて、冷却むらが発生することを見
い出し、かゝる知見に基づいて本発明を完成したもので
ある。
Means for Solving the Problems The present inventors have conducted various research and investigations on the manufacturing conditions of the controlled cooling steel sheet in order to solve the above-mentioned problems. The scale peeling behavior during cooling is significantly different between the scale layer generated in the portion where the steel sheet temperature is higher than the Ac 3 point and the scale layer generated in the portion in the temperature range of Ac 1 to Ac 3 points. Therefore, it has been found that the scale thickness varies in the plane of the plate and that uneven cooling occurs, and the present invention has been completed based on such findings.

【0009】すなわち、本発明は、熱間圧延完了後に制
御冷却を適用して鋼板を製造するに際し、仕上圧延後の
圧延板における制御冷却開始温度を、熱間圧延前の加熱
時のスキッド部に相当する位置の温度c3点以上
されるように制御した後に、制御冷却を開始すること
を特徴とする制御冷却鋼板の製造方法を要旨とするもの
である。
Accordingly, the present invention is, when manufacturing a steel sheet by applying controlled cooling after hot rolling finished, your Keru controlled cooling start temperature to a rolled sheet after finish rolling, skid during the heating before hot rolling after the temperature of the position corresponding to the section was controlled so as to be sure <br/> coercive than c3 point a, it is an gist manufacturing method of controlled cooling the steel sheet, characterized in that initiating the controlled cooling .

【0010】以下に本発明を更に詳述する。Hereinafter, the present invention will be described in more detail.

【作用】まず、本発明をなすに至った知見について説明
する。
First, the findings that led to the present invention will be described.

【0011】冷却停止後の温度ばらつきの発生した加
速冷却鋼板について、正常部(停止温度430〜470
℃)と高温部(停止温度600〜620℃)を比較調査し
た結果、
For the accelerated cooling steel sheet in which the temperature variation has occurred after the cooling stop, the normal portion (stop temperature 430 to 470)
℃) and high temperature part (stop temperature 600-620 ℃)

【表1】 に示すように、高温部のスケール厚は、正常部のスケー
ル厚(20〜30μm)に比べて非常に薄くなっている。
したがって、冷却むらの発生原因として、スケールの影
響が極めて大きいことがわかった。
[Table 1] As shown in the figure, the scale thickness in the high temperature part is much smaller than the scale thickness in the normal part (20 to 30 μm).
Therefore, it was found that the influence of scale was extremely large as a cause of the occurrence of uneven cooling.

【0012】更に、スケールと冷却挙動の関係につい
て詳細に調査した。実験は、中心に熱電対を取り付けた
丸棒の試験片を大気雰囲気中で加熱保持後、水槽に浸漬
し冷却挙動を調べた。この実験結果を図3及び図4に示
す。図3において、ステンレス鋼と炭素鋼とを1000
℃及び700℃に加熱保持し、水槽に浸漬して冷却挙動
を調べた。加熱保持時間と、冷却開始から試験片の中心
部における実際の温度低下開始までの時間、すなわち、
冷却応答時間(τ)を調べたところ、加熱保持時間が長時
間となれば、換言すれば、試験片の表面スケール厚みが
厚くなれば、前記冷却応答時間は短くなる。また、スケ
ール厚みと冷却効果との関係は、図4に炭素鋼を加熱保
持時間1分及び30分で700℃に加熱保持後、冷却を
施す場合について示すように、加熱保持時間1分(冷却
応答時間(τ2)で示される。)の場合においては、緩やか
な冷却カーブを示し、また、冷却保持時間30分(冷却
応答時間(τ1)で示される。)の場合においては、スムー
スな冷却が行われ、冷却開始8分後における温度におい
て両者の温度差(△T)は約100℃となり、スケール厚
みが冷却効果に大きく寄与すること、換言すれば、スケ
ール厚みが冷却むらの原因となることが理解される。
Further, the relationship between the scale and the cooling behavior was investigated in detail. In the experiment, a test piece of a round bar having a thermocouple attached at the center was heated and held in an air atmosphere, and then immersed in a water tank to examine a cooling behavior. The results of this experiment are shown in FIGS. In FIG. 3, stainless steel and carbon steel
C. and 700.degree. C., and immersed in a water bath to examine the cooling behavior. Heat holding time, the time from the start of cooling to the start of the actual temperature drop at the center of the test piece, that is,
When the cooling response time (τ) was examined, if the heating holding time was long, in other words, if the surface scale thickness of the test piece was large, the cooling response time was short. The relationship between the scale thickness and the cooling effect is shown in FIG. 4 in which the carbon steel is heated and held at 700 ° C. for 1 minute and 30 minutes, and then cooled. In the case of the response time (τ 2 )), a gentle cooling curve is shown. In the case of the cooling holding time of 30 minutes (indicated by the cooling response time (τ 1 )), a smooth cooling curve is obtained. Cooling is performed, and at a temperature 8 minutes after the start of cooling, the temperature difference (ΔT) between the two is about 100 ° C., and the scale thickness greatly contributes to the cooling effect, in other words, the scale thickness is a cause of uneven cooling. It will be understood that

【0013】また、熱間加工シミュレータにより丸棒
試験片を一定温度に種々の加熱保持時間で加熱保持後、
圧下率10%で加圧し(図5参照)、側面のスケールの剥
離状態を図6に示す要領で観察し、スケールの剥離性を
調べた。その結果、図7に示すように、保持時間が3分
の場合(図7(b)参照)に、相変態域(Ac1〜Ac3点)で部
分的にむらのある剥離状態となっている。
Further, after the round bar test piece is heated and held at a constant temperature for various heating holding times by a hot working simulator,
Pressure was applied at a rolling reduction of 10% (see FIG. 5), and the scale peeling state on the side surface was observed in the manner shown in FIG. 6 to examine the scale peelability. As a result, as shown in FIG. 7, when the holding time is 3 minutes (see FIG. 7B), the peeling state is partially uneven in the phase transformation region (Ac 1 to Ac 3 points). I have.

【0014】以上の、、の知見をまとめると、相
変態域から制御冷却した場合、スケールが部分的に剥離
し、板面内でスケール厚に差が生じる。その結果、板面
内でスケール厚が薄い領域は、厚い領域に比べて、前述
の冷却挙動のため、冷却停止温度は高くなる。つまり、
スケール厚のばらつきから、冷却停止温度のばらつきが
発生すると考えられる。
Summarizing the above findings, when controlled cooling is performed from the phase transformation region, the scale is partially peeled off, resulting in a difference in scale thickness within the plate surface. As a result, the region where the scale thickness is small in the plate surface has a higher cooling stop temperature than the region where the scale thickness is thicker due to the cooling behavior described above. That is,
It is considered that the cooling stop temperature varies from the scale thickness variation.

【0015】以上の知見により、本発明では、仕上圧延
後の圧延板における制御冷却開始温度を、熱間圧延前の
加熱時のスキッド部に相当する位置の温度c3点以上
確保されるように制御した後に、制御冷却を開始する
ものであり、これにより、制御冷却における冷却停止後
の冷却むらを防止することが可能となる。
[0015] With the above findings, the present invention, finish your Keru controlled cooling start temperature on the rolled sheet after rolling, the temperature of the position corresponding to the skid part during the heating before hot rolling A c3 or more points
The control cooling is started after the control is performed so as to ensure the above-mentioned condition, whereby it is possible to prevent the cooling unevenness after the stop of the cooling in the control cooling.

【0016】すなわち、仕上圧延後の圧延板には最高温
度を示す位置と最小温度を示す位置とがあるが、最小温
度を示す位置を相変態域(Ac1〜Ac3点)より高い温度と
すれば、前述の理由から、スケール厚のばらつきに起因
する冷却停止温度のばらつきの発生を防止することがで
きる。そのためには、最小温度を示す位置は、熱間圧延
前の加熱時のスキッド部に相当する位置であるので、こ
の位置の温度をAc3点以上とすることである。
That is, the rolled sheet after finish rolling has a position indicating the highest temperature and a position indicating the minimum temperature, and the position indicating the minimum temperature is set to a temperature higher than the phase transformation region (Ac 1 to Ac 3 points). Then, for the above-described reason, it is possible to prevent the occurrence of the variation in the cooling stop temperature due to the variation in the scale thickness. For this purpose, since the position showing the minimum temperature is a position corresponding to the skid portion at the time of heating before hot rolling, the temperature at this position is set to three or more Ac.

【0017】なお、このスキッド部に相当する位置の温
度をAc3点以上を確保する方法としては種々の方法が可
能であり、例えば、圧延サイクル(ピッチ)を短縮する方
法などが挙げられる。
Various methods can be used to secure the temperature at the position corresponding to the skid portion at three points of Ac or more. For example, a method of shortening the rolling cycle (pitch) can be mentioned.

【0018】次に本発明の実施例を示す。Next, an embodiment of the present invention will be described.

【0019】[0019]

【実施例1】50t×1900w×7000l(mm)のサ
イズに熱間圧延して得られた鋼板について、加速冷却装
置にて水量密度0.8m3/min・m2で、冷却開始温度を7
00〜900℃に変化させて、目標冷却停止温度450
℃になるように水冷した。
EXAMPLE 1 A steel sheet obtained by hot rolling to a size of 50 t × 1900 w × 7000 l (mm) was subjected to a cooling density of 0.8 m 3 / min · m 2 and a cooling start temperature of 7 with an accelerated cooling device.
00 to 900 ° C, and the target cooling stop temperature 450
The mixture was water-cooled to ℃.

【0020】冷却むらと板厚方向最小冷却開始温度(ス
キッド相当位置の冷却開始温度)の関係を調べた。冷却
むらは平均冷却停止温度に対する最大温度偏差にて判定
した。その結果を図8に示すように、相変態域(Ac1
Ac3点)から冷却開始した場合に比べて、Ac3点以上か
ら冷却開始した場合の方が冷却むらの程度が小さくなっ
ていることがわかる。
The relationship between the uneven cooling and the minimum cooling start temperature in the sheet thickness direction (the cooling start temperature at the position corresponding to the skid) was examined. The cooling unevenness was determined based on the maximum temperature deviation from the average cooling stop temperature. As shown in FIG. 8, the results show that the phase transformation region (Ac 1 to
It can be seen that the degree of unevenness in cooling is smaller when cooling is started from three points or more than when the cooling is started from three points (Ac).

【0021】[0021]

【実施例2】50t×2700w×6500l(mm)のサ
イズに熱間圧延して得られた建築用厚鋼板について、加
速冷却装置にて水量密度0.8m3/min・m2で、圧延板に
おいて加熱時のスキッド部に相当する位置の冷却開始温
度をAc3点以上の場合とAc3点以下の場合の2通りと
し、目標冷却停止温度450℃になるように水冷した。
得られた鋼板の加熱時スキッド相当位置から引張試験片
を採取して強度を調べた。その結果を
Example 2 A steel plate for building obtained by hot rolling to a size of 50 t × 2700 w × 6500 l (mm) was rolled at a water density of 0.8 m 3 / min · m 2 by an accelerated cooling device. In Example 2, the cooling start temperature at the position corresponding to the skid portion at the time of heating was set to two cases: a case where the temperature was higher than Ac 3 points and a case where the temperature was lower than Ac 3 points.
Tensile test specimens were taken from a position corresponding to the skid at the time of heating of the obtained steel sheet, and the strength was examined. The result

【表2】 に示す。[Table 2] Shown in

【0022】表2からわかるように、Ac3点以下から冷
却開始した場合に比べて、Ac3点以上から冷却開始した
本発明例では、冷却停止後の最大温度偏差は、98℃か
ら24℃へと大きく低減し、かつ、引張強度も建築用鋼
板の規格値を満足している。
[0022] As can be seen from Table 2, as compared with the case where the cooling start from the following Ac 3 point, in the present invention example was started cooled from above 3 points Ac, the maximum temperature deviation after cooling stopped, 24 ° C. from 98 ° C. And the tensile strength satisfies the standard value for steel plates for construction.

【0023】[0023]

【発明の効果】以上説明したように、本発明によれば、
制御冷却鋼板の製造において、特に厚板加速冷却におい
て、冷却後の板面内或いは板間の温度ばらつきを低減す
ることができるので、安定した材質及び形状の制御冷却
鋼板が得られる。またオフラインで再度熱処理を施す等
の必要がないので、経済的である。
As described above, according to the present invention,
In the production of the controlled cooling steel sheet, particularly in the accelerated cooling of the thick plate, it is possible to reduce the temperature variation within the sheet surface or between the sheets after cooling, so that a controlled cooling steel sheet having a stable material and shape can be obtained. Further, it is economical because there is no need to perform heat treatment again off-line.

【図面の簡単な説明】[Brief description of the drawings]

【図1】加速冷却鋼板の正常部における表層部のミクロ
組織(金属組織)を示す写真であり、(a)は上面、
(b)は下面の場合である。
FIG. 1 is a photograph showing a microstructure (metal structure) of a surface layer portion in a normal portion of an accelerated cooling steel sheet, (a) is an upper surface,
(B) shows the case of the lower surface.

【図2】加速冷却鋼板の高温部における表層部のミクロ
組織(金属組織)を示す写真であり、(a)は上面、
(b)は下面の場合である。
FIG. 2 is a photograph showing a microstructure (metal structure) of a surface layer portion in a high temperature portion of an accelerated cooling steel sheet, (a) is an upper surface,
(B) shows the case of the lower surface.

【図3】冷却挙動(応答時間:浸漬開始してから冷却開
始するまでの時間)に及ぼす加熱保持時間の影響を示す
図である。
FIG. 3 is a diagram showing the effect of heating and holding time on cooling behavior (response time: time from the start of immersion to the start of cooling).

【図4】冷却挙動(浸漬開始してから冷却停止までの時
間)に及ぼす加熱保持時間の影響を示す図である。
FIG. 4 is a diagram showing the influence of the heating and holding time on the cooling behavior (time from the start of immersion to the stop of cooling).

【図5】熱間加工シミュレータでの加熱温度及び保持時
間を示す図である。
FIG. 5 is a diagram showing a heating temperature and a holding time in a hot working simulator.

【図6】側面のスケールの剥離性の判定要領を説明する
図である。
FIG. 6 is a diagram for explaining a procedure for determining the releasability of the scale on the side surface.

【図7】スケール剥離性に及ぼす加熱温度、保持時間の
影響を示す図で、(a)は加熱保持時間が0.5分の場
合、(b)は加熱保持時間が3分の場合である。
7A and 7B are diagrams showing the influence of the heating temperature and the holding time on the scale peelability. FIG. 7A shows the case where the heating holding time is 0.5 minutes, and FIG. 7B shows the case where the heating holding time is 3 minutes. .

【図8】長手方向最小冷却開始温度と冷却むらの関係を
示す図である。
FIG. 8 is a diagram showing a relationship between a minimum longitudinal cooling start temperature and uneven cooling.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭57−152430(JP,A) 特開 昭58−61224(JP,A) 特公 昭47−30809(JP,B2) ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-57-152430 (JP, A) JP-A-58-61224 (JP, A) JP-B-47-30809 (JP, B2)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 熱間圧延完了後に制御冷却を適用して鋼
板を製造するに際し、仕上圧延後の圧延板における制御
冷却開始温度を、熱間圧延前の加熱時のスキッド部に相
当する位置の温度c3点以上確保されるように制御
した後に、制御冷却を開始することを特徴とする制御冷
却鋼板の製造方法。
Upon 1. A producing apply to steel plate controlled cooling after hot rolling completion, you Keru control the rolled sheet after finish rolling
The cooling start temperature, controlled so that the temperature of the position corresponding to the skid part during the heating before hot rolling is ensured over c3 point A
The method of manufacturing a controlled cooling steel sheet, wherein the controlled cooling is started after the cooling.
JP3248251A 1991-09-02 1991-09-02 Manufacturing method of controlled cooling steel sheet Expired - Fee Related JP2601585B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3248251A JP2601585B2 (en) 1991-09-02 1991-09-02 Manufacturing method of controlled cooling steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3248251A JP2601585B2 (en) 1991-09-02 1991-09-02 Manufacturing method of controlled cooling steel sheet

Publications (2)

Publication Number Publication Date
JPH0559458A JPH0559458A (en) 1993-03-09
JP2601585B2 true JP2601585B2 (en) 1997-04-16

Family

ID=17175395

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3248251A Expired - Fee Related JP2601585B2 (en) 1991-09-02 1991-09-02 Manufacturing method of controlled cooling steel sheet

Country Status (1)

Country Link
JP (1) JP2601585B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57152430A (en) * 1981-03-16 1982-09-20 Nippon Steel Corp Cooling method for obtaining steel plate of reduced hardness irregularity in thickness direction
JPS5861224A (en) * 1981-10-07 1983-04-12 Kobe Steel Ltd Production of strong and tough non-refined steel plate

Also Published As

Publication number Publication date
JPH0559458A (en) 1993-03-09

Similar Documents

Publication Publication Date Title
JPS6272429A (en) Hot straightening method for thick steel plate
JP2601585B2 (en) Manufacturing method of controlled cooling steel sheet
JP2635464B2 (en) Manufacturing method of controlled cooling steel sheet
JP2000042621A (en) Cooling control method of hot rolled steel plate
JP3704222B2 (en) How to prevent scale wrinkles
JPS5942122A (en) Correcting method of warping of double-layer clad steel plate
JP2843179B2 (en) Manufacturing method of controlled cooling steel sheet
JPH06254615A (en) Manufacture of thick steel plate excellent in shape and device therefor
JP2862484B2 (en) Method for producing flat articles of zirconium alloy including heating in the beta range by infrared
JP6225732B2 (en) Steel scale control method and continuous casting equipment therefor
JPH06254616A (en) Manufacture of thick steel plate excellent in shape and device therefor
JP2832100B2 (en) Manufacturing method of controlled cooling steel sheet
JPS6187824A (en) Uniform cooling method of high temperature metal pipe
JPH07115061B2 (en) Steel plate manufacturing method
JP2003326302A (en) Method and device for manufacturing thick steel plate
JPS5944367B2 (en) Water quenching continuous annealing method
CN208472191U (en) A kind of device of substrate deformation when preventing laser melting coating
JP2627083B2 (en) Method for producing low iron loss unidirectional silicon steel sheet
JPH10113713A (en) Production of steel plate of controlled cooling
JP2007283327A (en) Cooling equipment line and cooling method for thick steel plate
JPS60230933A (en) Method for heating si steel material before hot rolling
JPH1161467A (en) Removal of surface oxidized film of copper alloy and surface oxidized film removing device
JPH0557330A (en) Manufacture of steel plat under controlled cooling
JPH0557327A (en) Manufacture of steel plate under controlled cooling
JPS6237384A (en) Method for descaling coil of steel wire rod

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19961119

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080129

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090129

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100129

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees