JPS6237384A - Method for descaling coil of steel wire rod - Google Patents

Method for descaling coil of steel wire rod

Info

Publication number
JPS6237384A
JPS6237384A JP17458385A JP17458385A JPS6237384A JP S6237384 A JPS6237384 A JP S6237384A JP 17458385 A JP17458385 A JP 17458385A JP 17458385 A JP17458385 A JP 17458385A JP S6237384 A JPS6237384 A JP S6237384A
Authority
JP
Japan
Prior art keywords
coil
pickling
steel wire
scale
ultrasonic waves
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17458385A
Other languages
Japanese (ja)
Inventor
Nobuhisa Tabata
田畑 綽久
Kimio Mine
峰 公雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP17458385A priority Critical patent/JPS6237384A/en
Publication of JPS6237384A publication Critical patent/JPS6237384A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)

Abstract

PURPOSE:To improve the suitability of a coil of a steel wire rod to pickling and to shorten the time necessary for finish pickling by air-cooling the coil to a specified surface temp. after softening and by putting the coil in a cooling tank, where it is rapidly cooled under applied ultrasonic waves. CONSTITUTION:A coil 6 of a hot rolled steel wire rod is placed on a tray 4, softened in an annealing furnace 2, sent out of the furnace 2 with rollers 8 and air-cooled to <=650 deg.C surface temp. The coil 6 is then put in a cooling tank 12 contg. a refrigerant 14 with a crane 10. In the tank 12, the coil 6 is rapidly cooled under ultrasonic waves applied from magnetostriction oscillators 16, 16A. Scale on the coil 6 is innumerably cracked over the full length and part of the scale is stripped, so descaling can easily be carried out in the following finish pickling stage.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はtll線材コイルの脱スケール処理方法に係り
、特に軟化焼純時に付着する酸化スケールの効果的な脱
スケール処理方法に関し、鋼線材製造分野に広く利用さ
れる。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a method for descaling TLL wire rod coils, and in particular to an effective method for descaling oxide scale that adheres during softening and sintering. Widely used in the field.

〔従来の技術〕[Conventional technology]

熱間圧延された#1線材は、伸線、冷間鍛造等の工程を
経て製品化されるものが多いが、高炭素鋼、合金鋼、ス
テンレス鋼等の線材は熱間圧延のままでは硬く、冷間加
工が困難なため、多くの場合軟化焼鈍により軟質化し加
工性を向上させている。
Hot rolled #1 wire rods are often made into products through processes such as wire drawing and cold forging, but wire rods made of high carbon steel, alloy steel, stainless steel, etc. are hard when hot rolled. Since cold working is difficult, in many cases softening annealing is used to soften the material and improve workability.

xi材の冷間加工に際しては、加工工具との摩擦抵抗を
減じ工具寿命を延ばす目的で軟化し焼鈍時に線材表面に
付着した酸化スケールを除去した後、表面皮膜生成等の
処理が施される。上記脱スケール処理方法としては機械
的方法と酸洗方法に大別されるが、従来方法ではいずれ
も線材製造時の生産性の低下と、製造コストの上昇要因
となっているので、特に高度な表面性状が要求される場
合には、生産性向上のため通常コイル状にて酸洗するの
が一般的である。
When cold working xi material, the oxidized scale that adheres to the wire surface during softening and annealing is removed in order to reduce the frictional resistance with the processing tool and extend the tool life, and then treatments such as surface film formation are performed. The above-mentioned descaling methods can be roughly divided into mechanical methods and pickling methods, but both conventional methods reduce productivity during wire manufacturing and increase manufacturing costs. When surface quality is required, pickling is generally carried out in a coiled form to improve productivity.

鋼線材の酸洗には硫酸、塩酸、硝酸、弗酸などが単独も
しくは混酸状態で使用されているが、これらは、いずれ
もスケールおよび地鉄の酸による溶解と、発生ガスによ
る機械的な剥離作用により脱スケールされるものと解釈
されている。従って鋼線材の酸洗性はスケールの溶解と
地鉄への酸の浸透速度に大きく依存することから、酸洗
前に酸洗性を向上させる前処理の改善対策が講じられて
いる。例えば、軟化焼鈍雰囲気組成を制−することによ
り酸洗性を向上させたり、ロールベンディングラインを
通過させ、スケールにクラックを導入してスケールの溶
解と、地鉄への酸の浸透速度を大とする等の方向のほか
、ステンレス鋼線材では溶融処理にてスケール組成を変
化させるなどの方法が行われている。これらの方法によ
り多少酸洗時間の短縮や酸消費量の低減が図られたもの
の、いずれも生産性の低下をもたらし、最終的な製造コ
ストの低減対策となっていないばかりでなく、ロールベ
ンディング法などでは表面疵の発生や材質の変化など品
質上にも問題が多い。このため酸消費量の増大、酸洗時
間の延長等の犠牲を沸っても生産の向上を図るためコイ
ル状で酸洗処理する場合が多い。
Sulfuric acid, hydrochloric acid, nitric acid, hydrofluoric acid, etc. are used singly or in a mixed acid state for pickling steel wire rods, but all of these acids dissolve scale and base metal with the acid and mechanically peel off with the generated gas. It is interpreted that the scale is descaled by the action. Therefore, since the pickling properties of steel wire rods largely depend on the dissolution of scale and the rate of acid penetration into the steel base, measures have been taken to improve pretreatment to improve the pickling properties before pickling. For example, by controlling the composition of the softening annealing atmosphere, pickling properties can be improved, and by passing through a roll bending line and introducing cracks into the scale, the dissolution of scale and the rate of acid penetration into the base iron can be increased. In addition to methods such as changing the scale composition of stainless steel wire rods, methods such as changing the scale composition through melting treatment are also used. Although these methods have somewhat shortened the pickling time and reduced the amount of acid consumed, they not only result in a decrease in productivity and do not serve as a measure to reduce the final manufacturing cost, but also the roll bending method. There are many quality problems such as occurrence of surface flaws and changes in material quality. For this reason, in order to improve production even at the expense of increasing acid consumption and lengthening the pickling time, pickling is often performed in a coiled form.

上記コイル状での酸洗処理を有効に行うため使用する酸
の種類、温度の適性化や、酸洗装置に振動の付加等の種
々の改良が提案されているが、これらの従来技術はいず
れも酸洗装置の改善にかかるもので、鋼線材自体に関す
るものは全くなく鋼種および処理条件等により効果が必
ずしも一定でなく、安定した脱スケール処理方法てして
はなお極めて不満足なものであった。また溶融塩処理等
においては、処理槽もしくは洗浄槽への有害物質の混入
など環境保全の点でも問題が多い。
In order to effectively carry out the above-mentioned coiled pickling treatment, various improvements have been proposed, such as optimizing the type and temperature of the acid used, and adding vibration to the pickling equipment, but none of these conventional techniques This method was concerned with improving the pickling equipment, but there was nothing related to the steel wire itself, and the effectiveness was not necessarily constant depending on the steel type and processing conditions, and it was still extremely unsatisfactory as a stable descaling method. . Furthermore, in molten salt processing, etc., there are many problems in terms of environmental protection, such as the mixing of harmful substances into the processing tank or cleaning tank.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明の目的は、鋼線材コイルの軟化焼鈍時に付着する
酸化スケールの脱スケール処理におけろ上記従来技術の
問題点を解決し、酸化スケールの剥離性を著しく向上さ
せ、その後の脱スケール処理を大幅に簡易化することが
可能な鋼線材コイルの脱スケール処理方法を提供するに
ある。
The purpose of the present invention is to solve the problems of the prior art described above in the descaling treatment of oxide scale that adheres during softening annealing of steel wire coils, to significantly improve the peelability of the oxide scale, and to improve the subsequent descaling treatment. An object of the present invention is to provide a method for descaling a steel wire coil, which can be greatly simplified.

〔問題点を解決するための手段および作用〕本発明の要
旨とするところは次の如くである。
[Means and operations for solving the problems] The gist of the present invention is as follows.

すなわち、熱間圧延されたfl!1線材コイルの軟化焼
鈍時に付着する酸化スケールの脱スケール処理方法にお
いて、前記鋼線材コイルの軟化焼鈍温度コイルの表面温
度が650′c、lu下に達した時点で超音波を印加し
た冷却槽に浸漬して急冷する工程と、前記急冷工程後前
記コイルを仕上酸洗する工程と、を有して成ることを特
徴とする鋼線材コイルの脱スケール処理方法である。
That is, hot rolled fl! 1. In a method for descaling oxide scale that adheres during softening annealing of a steel wire coil, when the surface temperature of the softening annealing temperature coil of the steel wire coil reaches 650'c, lu or less, ultrasonic waves are applied to the cooling bath. A method for descaling a steel wire coil, comprising the steps of immersing and quenching the coil, and finishing pickling the coil after the quenching step.

本発明の詳細について以下説明する。先ず本発明では軟
化焼鈍時の冷却に際して、鋼線材コイルの表面温度が6
50℃以下になった時にコイルを急冷する。一般に鋼線
材の軟化焼鈍後の冷却は徐冷もしくは空冷である。しか
しかかる従来方法による場合は、製造された鋼線材コイ
ルの表面に熱処理中およびその冷却過程において強固な
スケールが生成され、その後の酸洗工程においても剥離
せず脱スケールが極めて困難である。これは冷却速度が
遅い場合には付着スケールと地鉄との熱膨張率の相違に
よる応力の発生が少く、スケールの密着性が高い。また
たとえスケールにクラックが発生し地鉄が露出しても再
酸化されて再びスケールとなる。
The details of the present invention will be explained below. First, in the present invention, during cooling during softening annealing, the surface temperature of the steel wire coil is 6.
The coil is rapidly cooled when the temperature drops below 50℃. Generally, cooling of steel wire rod after softening annealing is performed by gradual cooling or air cooling. However, in the case of such conventional methods, a strong scale is generated on the surface of the manufactured steel wire coil during the heat treatment and the cooling process, and it does not peel off even in the subsequent pickling process, making descaling extremely difficult. This is because when the cooling rate is slow, less stress is generated due to the difference in coefficient of thermal expansion between the adhered scale and the base steel, and the adhesion of the scale is high. Furthermore, even if cracks occur in the scale and the base metal is exposed, it will be reoxidized and become scale again.

本発明では軟化焼!4I後の冷却時に、コイルの表面温
度が650℃以下に達した時点で急冷する。急冷時点を
コイルの表面温度が650℃以下になった時点に限定し
た理由は次の如くである。すなわち、鋼線材の材質は軟
化焼鈍温度、保持時間および冷却時の650℃までの冷
却パターンに依存し、650℃以下での冷却過程は軟化
に対してほとんど影響しない。むしろ650℃以下を徐
冷すると、ステンレス鋼の475℃脆性の如く材質を劣
化させる場合がある。
In the present invention, it is softened and baked! During cooling after 4I, when the surface temperature of the coil reaches 650° C. or lower, the coil is rapidly cooled. The reason why the quenching point was limited to the point when the surface temperature of the coil became 650° C. or less is as follows. That is, the material of the steel wire depends on the softening annealing temperature, holding time, and cooling pattern up to 650°C during cooling, and the cooling process below 650°C has little effect on softening. On the contrary, slow cooling below 650°C may cause the material to deteriorate, such as the 475°C brittleness of stainless steel.

従って!線材の軟化に対して影響のない上限を650℃
とし、650℃以下に達した時点で急冷する。
Therefore! The upper limit that does not affect the softening of the wire is 650℃
When the temperature reaches 650°C or lower, it is rapidly cooled.

コイルが急冷されると、表面に付着したスケールと地鉄
との間に大きな温度差を生じ、熱膨張率の差により大き
な応力が発生し、その結果スケールに多数のクラックが
導入される。この際、冷媒の沸騰や対流作用が起こるが
、これらの冷媒の機械的攪拌作用によりスケールへのク
ラックの導入およびスケールの剥離が助長されると共に
、剥離した地鉄の再酸化が冷媒によって防止される副次
的効果がある。
When the coil is rapidly cooled, a large temperature difference is generated between the scale attached to the surface and the steel base, and the difference in thermal expansion coefficients generates large stress, resulting in the introduction of many cracks in the scale. At this time, boiling and convection effects of the refrigerant occur, but the mechanical stirring action of these refrigerants promotes the introduction of cracks into the scale and peeling off of the scale, and the reoxidation of the exfoliated base metal is prevented by the refrigerant. There are secondary effects.

次に本発明ではコイルを急冷する冷媒に超音波を印加し
た冷却槽を使用する。超音波はコイルを急冷中に起る冷
媒の沸騰や対流によるクラックの導入、スケールの剥離
等の機械的作用を著しく増大する効果があり、特にクラ
ックの入ったスケールの剥離作用に対して極めて有効で
あることを見出した。超音波は従来も超音波洗浄に利用
される如く、溶液のいわゆるキャビテーション現象を起
し微細部の異物を除去する効果があることは公知である
。本発明L9よりコイルを急冷する冷媒に超音波を同時
に印加することにより、それぞれを別個に処理する場合
に比しスケールのクラック発生および剥離の頻度が相乗
的に著しく増大することを見出した。
Next, the present invention uses a cooling tank in which ultrasonic waves are applied to a refrigerant that rapidly cools the coil. Ultrasonic waves have the effect of significantly increasing mechanical effects such as boiling of the refrigerant that occurs during rapid cooling of the coil, introduction of cracks due to convection, and exfoliation of scale, and is particularly effective against exfoliation of cracked scale. I found that. Ultrasonic waves have been conventionally used for ultrasonic cleaning, and it is well known that they are effective in causing so-called cavitation of a solution and removing foreign matter from minute parts. It has been found from the present invention L9 that by simultaneously applying ultrasonic waves to the refrigerant that rapidly cools the coil, the frequency of scale cracking and peeling increases significantly synergistically compared to when each is treated separately.

この現象の詳細な理由は明らかではないが、通常気泡が
存在する液体に超音波が印加されると超音波が気泡に散
乱吸収されて効果が減殺されるとされている。本発明に
おける効果も冷媒の沸騰中は比較的少く、高温での膜沸
騰から核SSへの遷移を早めることにより熱応力の増大
に起因するクラックの導入数の増加と、これを核とした
対流冷却域でのクラックの伸展、増加に基づくものど考
えられる。本発明におけろ上記超音波による効果は、超
音波の特性上コイル内部の線材が相互に密に接触する部
分においても有効である。
Although the detailed reason for this phenomenon is not clear, it is generally believed that when ultrasonic waves are applied to a liquid in which bubbles are present, the ultrasonic waves are scattered and absorbed by the bubbles, reducing the effect. The effect of the present invention is also relatively small during boiling of the refrigerant, and by accelerating the transition from film boiling to nuclear SS at high temperatures, the number of cracks introduced due to an increase in thermal stress increases, and convection with these cracks as the nucleus increases. This is thought to be due to crack extension and increase in the cooling region. In the present invention, the effect of the ultrasonic waves described above is also effective in a portion where the wires inside the coil are in close contact with each other due to the characteristics of ultrasonic waves.

かくの如き超音波を印加した冷媒中にコイルを浸漬して
急冷した後、核コイルに仕上酸洗を実施する。すなわち
、本発明によりコイル全長にわたってスケールに多数の
クラックが発生し、一部のスケールに剥離が起っている
状態のコイルが酸洗されると、酸洗浸透が極めて速やか
に進行するため、仕上酸洗時間は大幅に短縮される。
After the coil is immersed in a refrigerant to which such ultrasonic waves have been applied and rapidly cooled, the core coil is subjected to finishing pickling. In other words, when a coil is pickled according to the present invention with many cracks occurring in the scale along the entire length of the coil and some of the scale has peeled off, the penetration of the pickling progresses extremely quickly, resulting in poor finish. Pickling time is significantly reduced.

〔実施例〕〔Example〕

実施例1 供試材としてフェライト系ステンレスn4線材S U 
S 430を用い、これを熱間圧延にて55關φの10
00kgコイルとした後780℃で6時間大気中にて軟
化焼鈍を施した。
Example 1 Ferritic stainless steel N4 wire S U as a test material
Using S430, it was hot rolled into a 10 mm diameter of 55 mm.
After forming the coil into a 00 kg coil, it was subjected to softening annealing at 780° C. for 6 hours in the air.

軟化焼鈍工程を終了したコイルを第1表にて示す如く本
発明法による冷却のほか、本発明法以外の種々の条件で
冷却した後、液温7o℃の10%硫酸槽に浸漬し脱スケ
ールを行い、その後10%硝酸+1%沸酸の混酸中に5
分1[浸漬し仕上酸洗を行った。酸洗性については硫酸
槽での浸漬時間を変化させ、目視にてほぼ完全に脱スケ
ールできるまでの処要時間で評価した。結果は第1表に
示すとおりである。超音波を印加する本発明法において
は、超音波として50 KHzinH振動子にて印加し
たが、本発明法の実施に当って使用した超音波装置およ
びこれを使用する作業手順を第1図を参照して説明する
As shown in Table 1, the coils that have undergone the softening annealing process are cooled by the method of the present invention as well as by various conditions other than the method of the present invention, and then immersed in a 10% sulfuric acid bath at a liquid temperature of 7oC to descale. After that, 5% of
Minute 1 [immersion and final pickling were performed. The pickling property was evaluated by changing the immersion time in a sulfuric acid bath and measuring the time required until almost complete descaling was achieved visually. The results are shown in Table 1. In the present invention method of applying ultrasonic waves, ultrasonic waves were applied using a 50 KHz oscillator, but please refer to Fig. 1 for the ultrasonic device used in carrying out the present invention method and the work procedure using the same. and explain.

焼鈍炉2内でトレー4に積載されたまま780℃6時間
加熱された供試材S IJ S 430.%@材6は、
ローラ8によって炉外に送り出され、本発明法で規定す
る表面温度が650℃以下になるまで空冷された後、コ
イル搬送用クレーン10で冷却槽12中に入れられ急冷
される。冷却槽12には水等の冷媒14が入れられてお
り、冷却槽12の底部および側部に取付けられた超音波
印加用磁歪振動子16にて超音波が付与される。なお、
本実験では冷却槽12中に入れられたコイル6の内側に
も十分超音波が印加されるようシζ昇降装置付き振動子
16Aをコイル6の内側に挿入した。
The sample material S IJ S 430 was heated at 780°C for 6 hours while being loaded on the tray 4 in the annealing furnace 2. %@material 6 is
After being sent out of the furnace by rollers 8 and air-cooled until the surface temperature defined by the method of the present invention becomes 650° C. or lower, the coil is placed in a cooling tank 12 by a coil conveying crane 10 and rapidly cooled. The cooling tank 12 contains a refrigerant 14 such as water, and ultrasonic waves are applied by magnetostrictive vibrators 16 for applying ultrasound waves attached to the bottom and sides of the cooling tank 12 . In addition,
In this experiment, a vibrator 16A with a lifting device was inserted inside the coil 6 placed in the cooling tank 12 so that sufficient ultrasonic waves were applied to the inside of the coil 6.

超音波発生の振動子としてこの実験では50 Kl(z
ai歪振動子を使用したが、本発明において使用する超
音波用振動子の形式は特に規制の要がないが、実用性、
経済性の観点から10〜1000KHz程度のものが好
ましい。
In this experiment, 50 Kl (z
Although an AI strain transducer was used, there are no particular restrictions on the type of ultrasonic transducer used in the present invention;
From the viewpoint of economy, a frequency of about 10 to 1000 KHz is preferable.

上記比較試験の内容は第1表に示す如く、供試材No、
1〜4は軟化焼鈍工程温まで空冷した場合の比較例であ
り、これらのうちNo、2およびN o、 3は室温に
冷却後、本発明法と同一の冷却槽12に入れ超音波の印
加時間のみを10分、30分と異ならしめた例である。
The contents of the above comparative test are as shown in Table 1.
1 to 4 are comparative examples in which the samples were air cooled to the softening annealing process temperature, and among these, No. 2 and No. 3 were cooled to room temperature and then placed in the same cooling bath 12 as in the method of the present invention and ultrasonic waves were applied. This is an example in which only the time is changed to 10 minutes and 30 minutes.

また、供試材No、4はステンレス鋼線材コイルの酸洗
に先立って一段的には行われないが、溶融塩処理を施し
た例であって、この場合は450℃の(NaOH+ N
aN0 )のソルトパスを使用した。この場合には仕上
げ酸洗時間は10分と著しく短いのに対し、供試材No
、1では著しく長く50分を要している。供試材No、
2.3では超音波印加の効果が認められるものの、特殊
な従来法であるNo、4には及ばない。
In addition, sample material No. 4 is an example in which the stainless steel wire coil was not subjected to pickling in one step, but was subjected to molten salt treatment, and in this case, it was treated with (NaOH + N
aN0) salt path was used. In this case, the finishing pickling time was extremely short at 10 minutes, whereas the sample material No.
, 1 takes an extremely long time, 50 minutes. Sample material No.
Although the effect of applying ultrasonic waves is recognized in No. 2.3, it is not as good as No. 4, which is a special conventional method.

次に供試材No、5〜9はいずれも冷却方法は水冷であ
って、No、5のみは超音波を印加しない比較法で、そ
の他のNo、6.7,8.9ぼ印加時間を異にするも、
いずれも本発明法にて規制する処理要件を満足する本発
明例である。
Next, the cooling method for sample materials Nos. 5 to 9 is water cooling, only No. 5 uses a comparative method in which no ultrasonic waves are applied, and the other Nos. 6.7 and 8.9 use a cooling method that does not apply ultrasonic waves. Although it is different,
All of these are examples of the present invention that satisfy the processing requirements regulated by the present invention law.

第1表にて示す仕上酸洗時間の評価から明らかな如(、
供試材No、5では水冷条件は本発明と同一であるが、
超音波印加を行わなかったために酸洗性の向上効果が少
いのに対し、本発明例のN。
As is clear from the evaluation of the finish pickling time shown in Table 1 (
For sample material No. 5, the water cooling conditions were the same as in the present invention, but
In contrast, the effect of improving pickling properties was small because no ultrasonic waves were applied, whereas N of the present invention example.

6.7,8,9.では印加時間の差に拘らず、いずれも
仕上酸洗時間は約10分とほぼ同等であす、酸洗性が著
しく向上されていることが判明した。
6.7,8,9. It was found that regardless of the difference in application time, the final pickling time was approximately the same in all cases, approximately 10 minutes, indicating that the pickling properties were significantly improved.

なお、上記本発明例のNo、6.7,8.9の結果はほ
ぼ同等であって、印加時間は5分以上、好ましくは10
分以上の印加で十分であり、溶融塩処理をしたN015
と同等の酸洗性を有していることが判明した。従って本
発明により従来の溶融塩処理工程を省略し得る可能性が
ある。
In addition, the results of Nos. 6.7 and 8.9 of the above-mentioned invention examples are almost the same, and the application time was 5 minutes or more, preferably 10 minutes.
It is sufficient to apply the voltage for more than 10 minutes, and the molten salt treated N015
It was found that it has pickling properties equivalent to that of Therefore, according to the present invention, there is a possibility that the conventional molten salt treatment step can be omitted.

上記比較試験結果より明らかな初り、本発明による脱ス
ケール処理方法によれば、その他のいずれの比較法、従
来法よりも格段に酸洗性が向上することが明らかとなっ
た。
As is clear from the above comparative test results, it has become clear that the descaling treatment method according to the present invention significantly improves the pickling properties compared to any other comparative method or conventional method.

実施例2 供試材として炭素鋼線材345Cを用い、これを熱間圧
延で911111φの1800kgのコイルとした後6
80℃にて6時間雰囲気ガス中にて軟化焼鈍を施した後
、炉外に搬出し600℃まで空冷した。
Example 2 Carbon steel wire 345C was used as a test material, and after hot rolling it into a 1800kg coil with a diameter of 911111φ,
After performing softening annealing in an atmospheric gas at 80°C for 6 hours, it was taken out of the furnace and air cooled to 600°C.

その後第1図にて示す冷却槽12に浸漬急冷した。Thereafter, it was immersed in a cooling tank 12 shown in FIG. 1 to be rapidly cooled.

その後50℃の15%塩酸槽に浸漬して脱スケールを行
った。
Thereafter, it was immersed in a 15% hydrochloric acid bath at 50°C to descale it.

この試験においても実施例1と同様に冷却槽12内で本
発明により超音波の印加を行う場合と、行わない場合の
ほか、超音波を印加する場合については更にその周波数
の効果を調査する目的で50KHzg1歪振動子を使用
する場合と、700KHzチタン酸バリウム振動子を使
用する場合とに区分した。また酸洗性の評価については
15%塩酸槽における浸漬時間を変化させ、目視によっ
てほぼ完全に脱スケールできるまでの時間で評価する比
較試験を行った。結果は第2表に示すとおりである。
In this test, as in Example 1, in addition to cases in which ultrasonic waves are applied according to the present invention in the cooling tank 12 and cases in which they are not applied, the purpose of this test is to further investigate the effect of the frequency when applying ultrasonic waves. The results were divided into cases where a 50 KHz g1 strain oscillator was used and cases where a 700 kHz barium titanate oscillator was used. Regarding the evaluation of pickling properties, a comparative test was conducted in which the immersion time in a 15% hydrochloric acid bath was varied and the evaluation was performed based on the time required for almost complete descaling by visual observation. The results are shown in Table 2.

第2表から明らかな如く、供試材No、10は水冷のみ
で超音波を印加しない比較例であって、この場合は酸洗
時間は25分と長く酸洗性向上の効果は少い。
As is clear from Table 2, sample material No. 10 is a comparative example in which only water cooling was performed and no ultrasonic waves were applied, and in this case, the pickling time was as long as 25 minutes, and the effect of improving pickling properties was small.

供試材No、 11〜14およびNo、15.16はい
ずれも本発明例であって、N o、 11〜14は50
KHzの超音波を印加し5分〜60分と印加時間を変化
させた例であり、No、15.16は700KHzの超
音波を印加し、かつ印加時間を5分、20分と変化させ
た例である。
Sample materials No. 11 to 14 and No. 15.16 are all examples of the present invention, and No. 11 to 14 are 50
This is an example in which a KHz ultrasonic wave was applied and the application time was varied from 5 minutes to 60 minutes, and No. 15.16 was an example in which a 700 KHz ultrasonic wave was applied and the application time was changed from 5 minutes to 20 minutes. This is an example.

上記比較試験の結果は酸洗時間による評価より明らかな
如く、本発明による場合はNo、10の比較例に比し著
しく酸洗時間が短縮されることが判明した。また、印加
周波数の変化によっても効果はほとんど影響されず、ま
た印加時間の延長についても効果がほぼ同一であり、5
分間以上、好適には10分間の印加にてきわめてすぐれ
た酸洗を付与できることが判明した。
As is clear from the evaluation of the pickling time, the results of the above comparative test revealed that the pickling time according to the present invention was significantly shorter than that of Comparative Example No. 10. In addition, the effect is hardly affected by changes in the applied frequency, and the effect is almost the same even when the application time is extended.
It has been found that very good pickling can be imparted by application for more than a minute, preferably 10 minutes.

〔発明の効果〕〔Effect of the invention〕

上記実施例より明らかな如く、本発明による鋼線材コイ
ルの脱スケール処理方法は、#4間圧延された鋼線材コ
イルの軟化焼鈍後空冷して、コイル表面温度が650℃
以下に達した時点で超音波を印加した冷却槽に浸漬して
急冷し、その後仕上酸洗する方法をとったので次の如き
効果は敗めることができた。
As is clear from the above embodiments, the method for descaling a steel wire coil according to the present invention involves softening and annealing a #4 rolled steel wire coil and then cooling it in air so that the coil surface temperature reaches 650°C.
When the following effect was reached, the material was immersed in a cooling bath to which ultrasonic waves were applied to rapidly cool it, and then the material was finished with pickling, so that the following effects could be overcome.

(イ) 本発明によれば、w4線材コイルに対し、急冷
と超音波印加を同時に施すので、軟化焼鈍時に付着した
酸化スケールに対する応力発生によるクラック導入と冷
媒の沸騰、対流等の機械的作用に対し超音波による攪拌
洗浄作用が加ゎ9、その相乗効果により、スケールの剥
離が容易となり、その後の仕上酸洗工程において酸洗性
を著しく向上させることが可能となった。
(a) According to the present invention, since rapid cooling and ultrasonic wave application are simultaneously applied to the W4 wire coil, it is possible to prevent the introduction of cracks due to stress generation against oxide scale attached during softening annealing, boiling of the refrigerant, mechanical effects such as convection, etc. On the other hand, the agitation cleaning action by ultrasonic waves was added9, and its synergistic effect made it easier to remove the scale, making it possible to significantly improve the pickling performance in the subsequent finishing pickling process.

(ロ) 本発明において印加する超音波の特性から、鋼
線材コイルが相互に密に接触する部分においても均等に
効果を挙げ得るので、11線材コイルの生産性を著しく
向上することができるようになり、製造コストの低減に
大きく寄与できた。
(b) Due to the characteristics of the ultrasonic waves applied in the present invention, the effect can be achieved evenly even in the parts where the steel wire coils are in close contact with each other, so that the productivity of the 11-wire coil can be significantly improved. This greatly contributed to reducing manufacturing costs.

(ハ) 酸洗性の著しい向上により鋼線材の品質向上が
可能となったほか、650℃以下での急冷処理であるの
で軟化焼純の目的を阻害しない。
(c) In addition to making it possible to improve the quality of steel wire rods due to the remarkable improvement in pickling properties, the purpose of softening and sintering is not obstructed because the process is rapidly cooled at a temperature of 650° C. or lower.

(ニ)本発明法は鋼線・材の鋼種の如何を問わず有効に
適用され、特に高炭素鋼、合金鋼およびステンレス鋼等
の高級ms材に有効に適用できる。
(d) The method of the present invention can be effectively applied to any type of steel wire or material, and is particularly applicable to high-grade MS materials such as high carbon steel, alloy steel, and stainless steel.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による#l線材コイルを超音波を印加し
た冷却槽憾浸漬急冷する工程を示す模式断面図である。
FIG. 1 is a schematic cross-sectional view showing the process of quenching a #l wire coil according to the present invention by immersing it in a cooling tank to which ultrasonic waves are applied.

Claims (1)

【特許請求の範囲】[Claims] (1)熱間圧延された鋼線材コイルの軟化焼鈍時に付着
する酸化スケールの鋭スケール処理方法において、前記
鋼線材コイルの軟化焼鈍後該コイルの表面温度が650
℃以下に達した時点で超音波を印加した冷却槽に浸漬し
て急冷する工程と、前記急冷工程後前記コイルを仕上酸
洗する工程と、を有して成ることを特徴とする鋼線材コ
イルの脱スケール処理方法。
(1) In a sharp scale treatment method for oxide scale that adheres during softening annealing of a hot rolled steel wire coil, the surface temperature of the steel wire coil after softening annealing is 650°C.
A steel wire coil characterized by comprising the steps of immersing the coil in a cooling bath to which ultrasonic waves have been applied to rapidly cool the coil when the temperature reaches ℃ or below, and finishing pickling the coil after the rapid cooling step. Descaling method.
JP17458385A 1985-08-08 1985-08-08 Method for descaling coil of steel wire rod Pending JPS6237384A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17458385A JPS6237384A (en) 1985-08-08 1985-08-08 Method for descaling coil of steel wire rod

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17458385A JPS6237384A (en) 1985-08-08 1985-08-08 Method for descaling coil of steel wire rod

Publications (1)

Publication Number Publication Date
JPS6237384A true JPS6237384A (en) 1987-02-18

Family

ID=15981093

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17458385A Pending JPS6237384A (en) 1985-08-08 1985-08-08 Method for descaling coil of steel wire rod

Country Status (1)

Country Link
JP (1) JPS6237384A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6447887A (en) * 1987-08-13 1989-02-22 Mitsubishi Metal Corp Method for removing oxide scale in wire rod producing stage
WO2000044964A1 (en) * 1999-01-26 2000-08-03 Nippon Steel Corporation Method and device for removing and suppressing scale of metal material
US6503669B2 (en) 2000-02-16 2003-01-07 Shin-Etsu Chemical Co., Ltd. Photomask blank, photomask and method of manufacture

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6447887A (en) * 1987-08-13 1989-02-22 Mitsubishi Metal Corp Method for removing oxide scale in wire rod producing stage
WO2000044964A1 (en) * 1999-01-26 2000-08-03 Nippon Steel Corporation Method and device for removing and suppressing scale of metal material
US6503669B2 (en) 2000-02-16 2003-01-07 Shin-Etsu Chemical Co., Ltd. Photomask blank, photomask and method of manufacture

Similar Documents

Publication Publication Date Title
US3066084A (en) Ultrasonic pickling
CN109290371B (en) Cold rolling manufacturing method of copper-aluminum composite plate strip
JPS6237384A (en) Method for descaling coil of steel wire rod
JP2007046118A (en) Method for producing austenitic stainless steel sheet having excellent surface quality
JP2003286592A (en) Pickling process for stainless steel strip
US2389838A (en) Method of scaling stainless steel
JP6173514B1 (en) Manufacturing method of ferritic stainless steel sheet
JP2001026826A (en) Production of stainless hot rolled steel strip
JPS61195707A (en) Production of hot rolled steel sheet having excellent descalability
JPH0375317A (en) Production of ba product of cr stainless steel sheet excellent in surface characteristic
JP2020069507A (en) Method for descaling steel strip provided to cold rolling
JPH07102315A (en) Descaling method of stainless steel strip
JP4319808B2 (en) Manufacturing method of steel wire for valve spring
US1974571A (en) Descaling process
JP3046901B2 (en) Pretreatment for pickling electrical steel sheets
JP3572800B2 (en) Method for producing austenitic stainless steel hot-rolled steel sheet and cold-rolled steel sheet
JP2003226990A (en) Ferritic stainless steel sheet and production method therefor
JPS61199084A (en) Manufacture of cr stainless steel sheet
JP6938342B2 (en) Manufacturing method of stainless steel plate
JP2004115900A (en) Method for manufacturing steel bar
JPH037729B2 (en)
JP3949846B2 (en) Stainless steel descaling method
JPS6169989A (en) Pickling method of hot-rolled ferritic stainless steel plate
JPH0949092A (en) High efficient pickling process of austenitic stainless steel plate
JPH07216522A (en) Production of titanium sheet excellent in surface characteristic