JPH037729B2 - - Google Patents
Info
- Publication number
- JPH037729B2 JPH037729B2 JP16629883A JP16629883A JPH037729B2 JP H037729 B2 JPH037729 B2 JP H037729B2 JP 16629883 A JP16629883 A JP 16629883A JP 16629883 A JP16629883 A JP 16629883A JP H037729 B2 JPH037729 B2 JP H037729B2
- Authority
- JP
- Japan
- Prior art keywords
- hot
- rolling
- cold
- steel strip
- rolled
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 229910000831 Steel Inorganic materials 0.000 claims description 30
- 239000010959 steel Substances 0.000 claims description 30
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims description 28
- 238000005096 rolling process Methods 0.000 claims description 20
- 238000000034 method Methods 0.000 claims description 19
- 238000005097 cold rolling Methods 0.000 claims description 18
- 238000005098 hot rolling Methods 0.000 claims description 17
- 238000005868 electrolysis reaction Methods 0.000 claims description 14
- 238000005554 pickling Methods 0.000 claims description 14
- 238000011282 treatment Methods 0.000 claims description 14
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 claims description 10
- 229910017604 nitric acid Inorganic materials 0.000 claims description 10
- 230000001186 cumulative effect Effects 0.000 claims description 7
- 229910000963 austenitic stainless steel Inorganic materials 0.000 claims description 6
- 238000004519 manufacturing process Methods 0.000 claims description 6
- 238000001816 cooling Methods 0.000 description 16
- 238000010438 heat treatment Methods 0.000 description 12
- 230000000694 effects Effects 0.000 description 6
- 238000004804 winding Methods 0.000 description 5
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 4
- 239000010960 cold rolled steel Substances 0.000 description 4
- 238000010583 slow cooling Methods 0.000 description 4
- 238000005260 corrosion Methods 0.000 description 3
- 230000007797 corrosion Effects 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000004090 dissolution Methods 0.000 description 3
- 229960002050 hydrofluoric acid Drugs 0.000 description 3
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 238000000137 annealing Methods 0.000 description 2
- 238000007654 immersion Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 238000007664 blowing Methods 0.000 description 1
- 238000009749 continuous casting Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 238000002161 passivation Methods 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0205—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Heat Treatment Of Steel (AREA)
- Heat Treatment Of Sheet Steel (AREA)
Description
この発明は18Cr−8Ni鋼を中心とするオーステ
ナイト系ステンレス鋼の冷延鋼帯を製造する方法
に関するものである。
一般に18Cr−8Ni鋼、すなわちSUS304鋼種を
中心とするオーステナイト系ステンレス冷延鋼帯
は、1200〜1300℃付近でスラブ加熱を行つて熱間
圧延した後、溶体化処理として約1010〜1150℃に
加熱して急冷する熱処理を施し、酸洗後、冷間圧
延、仕上げ焼鈍、酸洗を経て製造されるのが通常
である。しかしながら従来のこのような製造方法
では溶体化処理のために相当な熱エネルギーを消
費しているところから、最近に至り、熱間圧延に
おいてステンレス熱延鋼帯の軟質化を図ることに
よつて、その後の溶体化熱処理を省略し、省エネ
ルギーを図つた製造方法がいくつか提案されてい
る。これらの提案で共通していることは、熱延時
における圧下率および仕上げ圧延温度をある範囲
に規制することにより熱延鋼帯を軟質にし、引続
く冷却過程において、Cr炭化物の析出による粒
界腐食を抑制するため、急冷する操作を行なつて
いる点である。このように熱延後急冷する理由
は、徐冷により鋭敏化した熱延鋼帯に対して、従
来の通常の酸洗法である硝弗酸等による酸洗を行
つた場合、結晶粒界選択溶解が生じて、後工程の
冷延工程で粒界剥離が生じ、表面性状を著しく劣
化させるからである。
しかしながら上述のように熱延時に熱延鋼帯の
軟質化を図り、溶体化熱処理を行なわない方法で
は、冷延板の面内異方性が大きくなり、深絞りな
どの加工を受けると、イヤリングが大きくなると
いう問題があり、そのため加工業者の板取等で歩
留りが著しく低下するという難点があつた。
そこで本発明者等は省エネルギーの観点から熱
延鋼帯の溶体化処理を省略すると同時に、冷延板
の面内異方性を改善してイアリングの発生を可及
的に防止し得る方法を開発するべく鋭意検討を重
ねたところ、熱延時において、粗圧延および仕上
げ圧延の累計圧下率を50%以上とし、かつ仕上げ
圧延終了温度を870℃以上として熱間圧延を行な
い、650℃以上の温度で巻取り、さらにその巻取
温度から少くとも550℃までの温度間を1℃/秒
以下の冷却速度で徐冷することにより、熱延鋼帯
が軟質となつて熱延鋼帯の溶体化熱処理が省略で
き、しかも引続く酸洗、冷延、仕上げ焼鈍を経て
得られる冷延板の面内異方性が著しく小さくなる
ことを見出した。しかしながら上述の如く熱延鋼
帯巻取後に徐冷を行えば、従来汎用されている硝
弗酸あるいは硫酸等による酸洗では前述の如く粒
界が選択的に溶解し、表面性状を著しく劣化させ
る。この点を解決するべく本発明者等がさら検討
を重ねた結果、酸洗手段を従来の汎用法とは変え
て、塩酸酸洗あるいは塩酸電解もしくは硝酸電解
によりスケール除去処理(デスケーリング)を施
せば、結晶粒界の選択腐食が生ぜず、その結果冷
延工程での粒界剥離が生ぜず、表面性状が良好な
冷延板が得られることを見出し、この発明を完成
させるに至つたのである。
したがつてこの発明は、溶体化熱処理の省略に
よる省エネルギーを図ると同時に、面内異方性が
少く、しかも表面性状の良好なオーステナイト系
ステンレス冷延鋼帯を製造する方法を提供するこ
とを目的とするものであり、またその要旨は、オ
ーステナイト系ステンレス鋼スラブを熱間圧延す
るに際して、その粗圧延および仕上げ圧延の累計
圧下率を50%以上とし、かつ仕上げ圧延終了温度
を870℃以上として熱間圧延を行ない、
650℃以上の温度で巻取り、続いてその巻取温
度から550℃以下の温度まで冷却速度を1℃/秒
以下の徐冷として冷却し、得られた熱延鋼帯に対
し溶体化処理を行うことなく、塩酸酸洗または塩
酸電解もしくは硝酸電解の1種以上によりスケー
ル除去を行ない、続いて冷間圧延することを特徴
とするものである。
以下この発明の方法についてさらに詳細に説明
する。
この発明の製造方法においては、公知の連続鋳
造法あるいは造塊−分塊圧延法によつて得られた
オーステナイト系ステンレス鋼のスラブを1200〜
1300℃程度に加熱した後熱間圧延するに際して、
粗圧延および仕上げ圧延での累計圧下率を50%以
上とし、かつ仕上げ圧延終了温度を870℃として
熱間圧延を行う。このような熱延条件は、熱延鋼
帯の軟質化を図つて溶体化熱処理を省く上におい
て必須の条件である。すなわち、熱間圧延におけ
る累計圧下率が50%未満では、熱延鋼帯のミクロ
組織が混粒組織となるのみならず、硬質となつ
て、後工程の冷間圧延で耳割れが発生し易くな
り、また仕上げ圧延終了温度が870℃未満では、
熱延組織が未再結晶組織となつて硬質となり、前
記同様に冷延工程での難点が生じる。したがつて
この発明では熱間圧延における累計圧下率および
仕上げ圧延終了温度を上述のように定めることと
した。なおこれらの条件のうち、一方でも欠けれ
ば熱延鋼帯が硬質となり、冷延工程で耳割れが発
生して歩留りが著しく低下するから、実際上溶体
化熱処理を省くことができなくなつてしまう。
上述のような条件で仕上げ圧延を終了した後に
は、ホツトランテーブルにおいて通常3〜15秒程
度空冷あるいは強制空冷されるが、この際の条件
は熱延コイルの硬質化にほとんど影響を与えな
い。
熱延後の鋼帯は650℃以上の温度で巻取り、引
続く冷却過程において、その巻取温度から550℃
以下の温度まで1℃/秒以下の冷却速度で徐冷す
る。このような熱延鋼帯巻取温度条件および冷却
条件は冷延板の面内異方性の低減のために必要で
あり、これらの条件は本発明者等の詳細は実験に
よつて見出されたことである。すなわち本発明者
等はSUS304鋼について熱延鋼帯の巻取温度と、
巻取温度から550℃までの冷却速度とを種々変化
させ、その後は溶体化熱処理を行なわずに酸洗、
冷延によつて仕上げられた冷延板について、面内
異方性を円筒絞りカツプ試験によるイヤリング率
で調べた。そのイヤリング率で表わされる面内異
方性に対する熱延鋼帯における巻取温度およびそ
の巻取温度から550℃までの冷却速度が及ぼす影
響を第1図に示す。なおここでイヤリング率と
は、円筒絞りカツプ試験によるフランジ部の山
(耳部)の高さをHmax、谷の高さをHminとし、
イヤリング率
=(Hmax−Hmin)/(Hmax+Hmin)×1/2×100(
%)
で表わす。
第1図から、熱延鋼帯の巻取温度が低いほど、
また巻取後の550℃までの冷却速度が大きいほど
冷延板の面内異方性が強くなつてイヤリング率が
大きくなり、実用上支障のない程度のイヤリング
率である5%以下を確保するためには、巻取温度
を650℃以上、巻取後の冷却速度を1℃/秒以下
とする必要があることが明らかである。なお熱延
鋼帯の巻取後の1℃/秒以下での徐冷は、少くと
も550℃まで必要であり、それ以下の温度では冷
却速度の大小によつて冷延板の面内異方性は影響
を受けない。また熱延鋼帯の巻取温度は前述のよ
うに650℃以上とする必要があるが、巻取温度が
高ければ高い程熱延鋼帯は軟質となり、また冷却
板の面内異方性も小さくなるから、特に巻取温度
の上限は定めない。
上述のようにして熱間圧延後冷却した熱延鋼帯
に対してはスケール除去処理を施す。このスケー
ル除去処理としては、塩酸酸洗、塩酸電解、もし
くは硝酸電解を採用する。前述のように徐冷を受
けた熱延鋼帯は鋭敏化しているため、従来通常使
用されている硝弗酸、または硫酸等による酸洗で
は粒界選択溶解が生じて冷延後の表面性状が劣化
するが、塩酸酸洗または塩酸電解もしくは硝酸電
解では、粒界選択溶解を防止して、表面性状の優
れた冷延板を得ることができる。もちろんこれら
の処理を2種以上組合せてスケール除去を行つて
も良い。なおスケール除去処理の条件としては、
塩酸酸洗もしくは塩酸電解の場合5〜30%濃度の
塩酸を用い、液温30〜90℃で実施することが望ま
しく、また硝酸電解の場合5〜70%濃度の硝酸を
用い、液温30〜90℃で実施することが望ましい。
これらの酸液濃度条件、液温条件を外れれば、過
酸洗あるいはスケール残りを生じ、製品表面性状
を損うため好ましくない。なおまた、各酸液は別
に若干の酸化剤を添加したものでも良いことはも
ちろんである。また塩酸電解もしくは硝酸電解に
おける電解条件は、150クーロン/100cm2以上が望
ましい。150クーロン/100cm2未満では熱延鋼帯に
対する充分なスケール除去効果が得られない。
また、スケール除去処理後、冷間圧延前に必要
に応じて不働態化処理、例えば硝酸浸漬処理を行
つても良い。このようなスケール除去処理後の硝
酸浸漬によつてもはや粒界腐食はほとんど生じな
い。冷間圧延の条件は、冷延板の面内異方性に対
して若干の影響を与えるが、熱延鋼帯の巻取温度
や巻取後の冷却条件による影響と比較すればその
影響は格段に小さい。したがつて冷間圧延は、常
法に従つて1回冷延あるいは2回冷延もしくは温
間冷延を適用すれば良く、いずれの手段でも面内
異方性の小さい冷延板を得ることができる。
次にこの本発明の実施例について説明する。
SUS304鋼種の200mm厚の10トン連鋳スラブを
1280℃に加熱した後、通常のホツトストリツプミ
ルを用いて粗圧延で23mm厚とし、かつ粗圧延終了
温度は1060℃とし、さらに仕上げ圧延で3mm厚の
熱延鋼帯として巻取り、スケール除去処理、冷間
圧延を経て2B仕上げの冷延板とした。第1表に
熱間圧延の仕上げ圧延以降の工程条件を示す。な
お熱延での累計圧下率はいずれも50%以上であ
る。さらに第2表に熱延板の硬度、冷延板の機械
的性質、および冷延板の表面性状を示す。
The present invention relates to a method for manufacturing a cold rolled steel strip of austenitic stainless steel, mainly 18Cr-8Ni steel. In general, 18Cr-8Ni steel, i.e., austenitic stainless cold-rolled steel strip mainly made of SUS304 steel, is hot-rolled by slab heating at around 1200 to 1300℃, and then heated to about 1010 to 1150℃ as a solution treatment. It is usually manufactured by subjecting it to a heat treatment of quenching and pickling, followed by cold rolling, final annealing, and pickling. However, in this conventional manufacturing method, a considerable amount of thermal energy is consumed for solution treatment, so recently, by softening the hot-rolled stainless steel strip during hot rolling, Several manufacturing methods have been proposed that save energy by omitting the subsequent solution heat treatment. What these proposals have in common is that by regulating the rolling reduction rate and finish rolling temperature during hot rolling within a certain range, the hot rolled steel strip is made soft, and in the subsequent cooling process, intergranular corrosion due to the precipitation of Cr carbides is prevented. In order to suppress this, rapid cooling is performed. The reason for rapid cooling after hot rolling is that when hot-rolled steel strips that have been sensitized by slow cooling are pickled with nitric-fluoric acid, which is the conventional pickling method, grain boundaries are This is because dissolution occurs and grain boundary peeling occurs in the subsequent cold rolling process, which significantly deteriorates the surface properties. However, as mentioned above, in the method of softening the hot-rolled steel strip during hot rolling without performing solution heat treatment, the in-plane anisotropy of the cold-rolled steel strip becomes large, and when it is subjected to processing such as deep drawing, it becomes difficult to make earrings. There is a problem in that the amount of paper becomes large, and as a result, there is a problem in that the yield rate decreases significantly when processing companies perform board cutting. Therefore, from the perspective of energy saving, the present inventors have developed a method that can omit the solution treatment of hot-rolled steel strips and at the same time improve the in-plane anisotropy of cold-rolled sheets to prevent the occurrence of earrings as much as possible. After careful consideration, we found that during hot rolling, the cumulative reduction ratio of rough rolling and finish rolling is 50% or more, and the finish rolling end temperature is 870℃ or higher, and hot rolling is carried out at a temperature of 650℃ or higher. By coiling and slow cooling from the coiling temperature to at least 550℃ at a cooling rate of 1℃/second or less, the hot-rolled steel strip becomes soft and solution heat treatment of the hot-rolled steel strip is performed. It has been found that the in-plane anisotropy of the cold-rolled sheet obtained through the subsequent pickling, cold rolling, and final annealing is significantly reduced. However, as mentioned above, if slow cooling is performed after winding the hot rolled steel strip, the conventional pickling with nitric hydrofluoric acid or sulfuric acid will selectively dissolve the grain boundaries and significantly deteriorate the surface quality. . In order to solve this problem, the inventors conducted further studies and found that instead of the conventional general-purpose pickling method, descaling was performed using hydrochloric acid pickling, hydrochloric acid electrolysis, or nitric acid electrolysis. For example, selective corrosion of grain boundaries does not occur, and as a result, grain boundary peeling does not occur during the cold rolling process, and a cold rolled sheet with good surface properties can be obtained, and this invention has been completed. be. Therefore, an object of the present invention is to provide a method for manufacturing an austenitic stainless steel cold-rolled steel strip that has less in-plane anisotropy and good surface properties while saving energy by omitting solution heat treatment. The gist is that when hot rolling an austenitic stainless steel slab, the cumulative reduction in rough rolling and finish rolling should be 50% or more, and the finish rolling end temperature should be 870°C or more. The hot-rolled steel strip is rolled at a temperature of 650°C or higher, and then slowly cooled from the coiling temperature to a temperature of 550°C or lower at a cooling rate of 1°C/second or lower. On the other hand, it is characterized in that scale is removed by one or more of hydrochloric acid pickling, hydrochloric acid electrolysis, or nitric acid electrolysis without performing solution treatment, followed by cold rolling. The method of the present invention will be explained in more detail below. In the manufacturing method of the present invention, a slab of austenitic stainless steel obtained by a known continuous casting method or an ingot-blowing rolling method is
When hot rolling after heating to about 1300℃,
Hot rolling is performed with a cumulative reduction ratio of 50% or more in rough rolling and finish rolling, and a finish rolling end temperature of 870°C. Such hot rolling conditions are essential for softening the hot rolled steel strip and omitting solution heat treatment. In other words, if the cumulative reduction ratio in hot rolling is less than 50%, the microstructure of the hot rolled steel strip not only becomes a mixed grain structure, but also becomes hard, making it easy for edge cracks to occur in the subsequent cold rolling process. Also, if the finish rolling end temperature is less than 870℃,
The hot-rolled structure becomes an unrecrystallized structure and becomes hard, causing difficulties in the cold rolling process as described above. Therefore, in the present invention, the cumulative reduction rate in hot rolling and the finish rolling temperature are determined as described above. If any one of these conditions is missing, the hot-rolled steel strip will become hard, and edge cracks will occur during the cold rolling process, resulting in a significant decrease in yield, so in practice, solution heat treatment cannot be omitted. Put it away. After finish rolling under the above-mentioned conditions, the hot-rolled coil is generally air-cooled or forced-air cooled for about 3 to 15 seconds on a hot run table, but the conditions at this time have little effect on the hardening of the hot-rolled coil. The hot-rolled steel strip is coiled at a temperature of 650℃ or higher, and in the subsequent cooling process, the coiling temperature is reduced to 550℃.
Slowly cool to the following temperature at a cooling rate of 1° C./second or less. Such hot-rolled steel strip coiling temperature conditions and cooling conditions are necessary to reduce in-plane anisotropy of cold-rolled sheets, and the details of these conditions were found by the inventors through experiments. This is what happened. In other words, the present inventors determined the coiling temperature of hot-rolled steel strip for SUS304 steel,
The cooling rate from the coiling temperature to 550°C was varied, and then pickling was performed without solution heat treatment.
The in-plane anisotropy of cold-rolled sheets finished by cold rolling was investigated using the earring ratio using a cylindrical drawing cup test. Figure 1 shows the effects of the coiling temperature of a hot rolled steel strip and the cooling rate from the coiling temperature to 550°C on the in-plane anisotropy expressed by the earring ratio. Here, the earring ratio is defined as Hmax, the height of the peak (ear) of the flange part, and Hmin, the height of the valley, in the cylindrical draw cup test, and earring ratio = (Hmax - Hmin) / (Hmax + Hmin) x 1 / 2×100(
%). From Fig. 1, the lower the coiling temperature of the hot rolled steel strip, the
In addition, the faster the cooling rate to 550°C after coiling, the stronger the in-plane anisotropy of the cold-rolled sheet, and the larger the earring ratio, ensuring a practically acceptable earring ratio of 5% or less. In order to achieve this, it is clear that the winding temperature must be 650° C. or higher and the cooling rate after winding must be 1° C./second or lower. Note that slow cooling of the hot rolled steel strip at a rate of 1°C/sec or less after coiling is required to at least 550°C, and at lower temperatures, the in-plane anisotropy of the cold rolled sheet will change depending on the cooling rate. Gender is not affected. In addition, the coiling temperature of the hot-rolled steel strip needs to be 650℃ or higher as mentioned above, but the higher the coiling temperature, the softer the hot-rolled steel strip becomes, and the in-plane anisotropy of the cooling plate also decreases. Since the winding temperature is small, there is no particular upper limit for the winding temperature. The hot rolled steel strip cooled after hot rolling as described above is subjected to a scale removal treatment. As this scale removal treatment, hydrochloric acid pickling, hydrochloric acid electrolysis, or nitric acid electrolysis is employed. As mentioned above, hot-rolled steel strips that have been slowly cooled have become sensitized, so pickling with nitric-fluoric acid or sulfuric acid, which is commonly used in the past, causes selective dissolution of grain boundaries, which affects the surface quality after cold rolling. However, in hydrochloric acid pickling, hydrochloric acid electrolysis, or nitric acid electrolysis, selective dissolution of grain boundaries can be prevented and a cold-rolled sheet with excellent surface properties can be obtained. Of course, scale removal may be performed by combining two or more of these treatments. The conditions for scale removal treatment are as follows:
In the case of hydrochloric acid pickling or hydrochloric acid electrolysis, it is desirable to use 5-30% hydrochloric acid at a liquid temperature of 30-90°C, and in the case of nitric acid electrolysis, it is preferable to use 5-70% nitric acid and carry out at a liquid temperature of 30-90°C. It is desirable to carry out at 90℃.
If these acid solution concentration conditions and solution temperature conditions are not met, overaciding or scale residue will occur, which will impair the surface properties of the product, which is not preferable. Furthermore, it goes without saying that each acid solution may contain a small amount of an oxidizing agent. Further, the electrolytic conditions for hydrochloric acid electrolysis or nitric acid electrolysis are preferably 150 coulombs/100 cm 2 or more. If it is less than 150 coulombs/100 cm 2 , a sufficient scale removal effect on the hot rolled steel strip cannot be obtained. Further, after the scale removal treatment and before the cold rolling, a passivation treatment such as a nitric acid immersion treatment may be performed as necessary. By immersion in nitric acid after such scale removal treatment, almost no intergranular corrosion occurs. Cold rolling conditions have a slight effect on the in-plane anisotropy of cold-rolled sheets, but compared to the effects of the coiling temperature of hot-rolled steel strips and the cooling conditions after coiling, this effect is small. much smaller. Therefore, for cold rolling, it is sufficient to apply one-time cold rolling, two-time cold rolling, or warm cold rolling according to the conventional method, and by any method, a cold-rolled sheet with small in-plane anisotropy can be obtained. Can be done. Next, an embodiment of the present invention will be described. Continuously cast 10 ton slab of 200mm thick SUS304 steel.
After heating to 1280℃, it is roughly rolled to a thickness of 23mm using an ordinary hot strip mill, and the rough rolling finish temperature is 1060℃, and then final rolled to a 3mm thick hot rolled steel strip and scaled. After removal treatment and cold rolling, it was made into a cold rolled sheet with a 2B finish. Table 1 shows the process conditions after finishing hot rolling. The cumulative reduction ratio in hot rolling is 50% or more in all cases. Furthermore, Table 2 shows the hardness of the hot-rolled sheets, the mechanical properties of the cold-rolled sheets, and the surface properties of the cold-rolled sheets.
【表】【table】
【表】
* 仕上げ圧延後水冷し巻取温度を低下
[Table] *Water cooling after finish rolling to reduce coiling temperature
【表】
* 溶体化熱処理前
(Hmax−H〓)
** イヤリング率=[Table] * Before solution heat treatment
(Hmax−H〓)
**Earring rate=
Claims (1)
圧延するに際して、その粗圧延および仕上げ圧延
の累計圧下率を50%以上とするとともに仕上げ圧
延終了温度を870℃以上として熱間圧延し、引続
いて650℃以上の温度で熱延鋼帯を巻取り、その
巻取温度から550℃以下の温度までを1℃/秒以
下の平均冷却速度で徐冷し、得られた熱延鋼帯に
対して溶体化処理を行うことなく、塩酸酸洗また
は塩酸電解もしくは硝酸電解の1種以上によりス
ケール除去処理を施し、続いて冷間圧延すること
を特徴とするオーステナイト系ステンレス鋼帯の
製造方法。1 When hot rolling an austenitic stainless steel slab, the cumulative reduction ratio of rough rolling and finishing rolling is 50% or more, and the finish rolling end temperature is 870°C or higher, and then hot rolling is carried out at 650°C or higher. The hot-rolled steel strip is coiled at a temperature of 1. A method for producing an austenitic stainless steel strip, which comprises performing a scale removal treatment by one or more of hydrochloric acid pickling, hydrochloric acid electrolysis, or nitric acid electrolysis without carrying out any process, followed by cold rolling.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16629883A JPS6059022A (en) | 1983-09-09 | 1983-09-09 | Production of austenitic stainless steel strip |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16629883A JPS6059022A (en) | 1983-09-09 | 1983-09-09 | Production of austenitic stainless steel strip |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6059022A JPS6059022A (en) | 1985-04-05 |
JPH037729B2 true JPH037729B2 (en) | 1991-02-04 |
Family
ID=15828747
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP16629883A Granted JPS6059022A (en) | 1983-09-09 | 1983-09-09 | Production of austenitic stainless steel strip |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6059022A (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5092393A (en) * | 1989-03-14 | 1992-03-03 | Nippon Steel Corporation | Process for producing cold-rolled strips and sheets of austenitic stainless steel |
DE4445716C2 (en) * | 1994-12-22 | 1997-10-02 | Sundwiger Eisen Maschinen | Process and production line for producing cold-rolled, stainless steel strip |
DE19532278B4 (en) * | 1995-09-01 | 2006-07-27 | Bwg Bergwerk- Und Walzwerk-Maschinenbau Gmbh | Method for producing a cold-rolled strip in one pass |
CN102943165A (en) * | 2012-11-14 | 2013-02-27 | 无锡市光源不锈钢制品有限公司 | Method for obtaining flat stainless steel belt |
-
1983
- 1983-09-09 JP JP16629883A patent/JPS6059022A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS6059022A (en) | 1985-04-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4813123B2 (en) | Method for producing austenitic stainless steel sheet with excellent surface quality | |
JPH037729B2 (en) | ||
JPH0325487B2 (en) | ||
JPS60255921A (en) | Manufacture of hot rolled austenitic stainless steel strip | |
JPS6216251B2 (en) | ||
JP3222057B2 (en) | Method for producing Cr-Ni stainless steel hot-rolled steel sheet and cold-rolled steel sheet excellent in surface quality and workability | |
JP3133870B2 (en) | Method for producing austenitic stainless steel sheet having good surface gloss | |
JPS586938A (en) | Production of cold rolled mild steel plate of superior deep drawability by continuous annealing | |
JPH0375317A (en) | Production of ba product of cr stainless steel sheet excellent in surface characteristic | |
JPH0841546A (en) | Production of high chromium cold rolled steel strip excellent in ridging resistance and workability and production of hot rolled steel strip for the same stock | |
JPH0348250B2 (en) | ||
JPH02419B2 (en) | ||
JPS61199084A (en) | Manufacture of cr stainless steel sheet | |
JP2001121205A (en) | Scale removing method of steel | |
JP3857817B2 (en) | Manufacturing method of stainless steel strip with excellent pickling performance by twin roll type continuous casting machine | |
JPS61127816A (en) | Hot rolling method of austenitic stainless steel | |
JPS60103131A (en) | Manufacture of medium plate and thick plate of low thermal expansion fe-ni alloy | |
JPS59163003A (en) | Manufacture of stainless steel strip excellent in surface property | |
JPH0450395B2 (en) | ||
JP2730802B2 (en) | Method for producing thin Cr-Ni stainless steel sheet with excellent workability | |
JPH05271781A (en) | Manufacture of stainless pretreated steel strip for cold rolling and apparatus therefor | |
JPS58104124A (en) | Production of cold-rolled steel plate for working by continuous annealing | |
JPS6263619A (en) | Manufacture of soft nonaging steel sheet | |
JPH0617515B2 (en) | Method for producing cold rolled steel sheet or strip of austenitic stainless steel | |
JPS6075519A (en) | Manufacture of cold rolled steel sheet for continuous annealing |