JPH0325487B2 - - Google Patents

Info

Publication number
JPH0325487B2
JPH0325487B2 JP17135886A JP17135886A JPH0325487B2 JP H0325487 B2 JPH0325487 B2 JP H0325487B2 JP 17135886 A JP17135886 A JP 17135886A JP 17135886 A JP17135886 A JP 17135886A JP H0325487 B2 JPH0325487 B2 JP H0325487B2
Authority
JP
Japan
Prior art keywords
steel strip
hot
stainless steel
rolled
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP17135886A
Other languages
Japanese (ja)
Other versions
JPS6328829A (en
Inventor
Shigeru Minamino
Shigeru Fujiwara
Masaaki Kobayashi
Masanori Ueda
Masamitsu Tsuchinaga
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP17135886A priority Critical patent/JPS6328829A/en
Publication of JPS6328829A publication Critical patent/JPS6328829A/en
Publication of JPH0325487B2 publication Critical patent/JPH0325487B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は、重量%でCrを5〜18%、Cを0.2%
以下含有するマルテンサイト系或はフエライト系
ステンレス鋼薄板の新しい製造方法に関する。 (従来の技術) 従来、13%Cr、0.08Cに代表されるマルテンサ
イト系ステンレス鋼或は11%Cr系で含Ti鋼のよ
うなフエライト系ステンレス鋼薄板の製造におい
ては、連続鋳造鋳片(CC鋳片)を熱間圧延し、
巻き取り後、熱間圧延組織やマルテンサイト組織
を焼鈍によつて軟化再結晶させた後、酸洗、デス
ケーリングし、次いで研削によつて鋼帯の表面欠
陥を除去し、然る後冷間圧延、最終焼鈍、酸洗を
行うプロセスによつて製造されて来た。就中、マ
ルテンサイト系ステンレス鋼は、熱間圧延後の冷
却時にマルテンサイト化して硬く、従つて熱延板
焼鈍においては、特開昭59−153830号公報、特開
昭59−153832号公報に開示されているように、バ
ツチ焼鈍と呼ばれる、ステンレス鋼帯をコイル状
のままで800℃以上の温度域に数時間以上保持し
冷却するという、非能率な製造方法を余儀無くさ
れて来た。このように長時間熱処理すると、酸化
スケールが厚く生成しデスケーリング性も劣化
し、デスケーリング後の鋼帯表面は、粗度が大き
く従つてコイル研削工程(鋼帯表面を研削する工
程)で表面の欠陥を除去した後に冷間圧延するこ
とが必要であつた。 このように、従来技術においては、低Cr領域
のフエライト系或はマルテンサイト系ステンレス
鋼薄板の製造にあつて、熱延板焼鈍工程やコイル
研削工程は不可欠であつた。 (発明が解決しようとする問題点) 本発明は、ステンレス鋼薄板の新しい製造方法
として普通鋼薄板と同様に、熱間圧延後の焼鈍工
程を省略し、さらに、酸洗、デスケーリングを行
つた後に遂行される、コイル研削工程を省略し、
大径のロールを用いるタンデム冷間圧延法による
高能率なステンレス鋼薄板製造方法を提供するこ
とを目的としてなされた。 (問題点を解決するための手段) 本発明の要旨とする処は、重量%で、Cr:5
〜18%を主要合金元素として含有するマルテンサ
イト系或はフエライト系ステンレス鋼薄板の製造
方法であつて、熱間圧延鋼帯の長さ方向および幅
方向中央部分の巻き取り温度を、800〜600℃とす
るとともに熱間圧延におけるランアウトテーブル
での鋼帯冷却水量を、鋼帯の長さ方向および幅方
向部位に応じて個別に制御し、鋼帯巻き取り中お
よび巻き取り後の復熱によつてコイル全体の軟化
或は焼戻しの進行を均一化することによつて、熱
延板焼鈍工程を省略し、次いで鋼帯のデスケーリ
ングにおいて、硫酸或は塩酸を主成分とする酸洗
液で、鋼帯表面層を片面当り10マイクロメートル
以上溶削し、コイル研削工程を省略若しくは簡略
化し、然る後、冷間圧延することを特徴とする
Cr系ステンレス鋼薄板の製造方法にある。 以下に、本発明を説明する。 発明者等は、重量%で、Crを5〜18%含有す
るマルテンサイト系或はフエライト系ステンレス
鋼薄板の製造プロセスにおいて、熱延板焼鈍工程
やコイル研削工程を省略するとともに、高能率下
に冷間圧延が可能なプロセスについて研究を進め
た。その結果、次の問題を解決しなければならな
いことが判明した。 即ち、現状のバツチ方式の熱延板焼鈍工程を省
略するためには、熱間圧延後の鋼帯巻き取り過程
で、後の工程の冷間圧延に支障のない程度に鋼帯
を軟化させることが必要である。 さらに、熱延板焼鈍工程を省略したとしても、
鋼帯は、熱間圧延工程での巻き取り後、メカニカ
ルデスケーリングを施しさらに酸洗してデスケー
リングを行なうが、酸洗液によつては、鋼帯表面
に粒界腐食を発生させる。かくして、粒界腐食を
生じた部分は、冷間圧延工程において、たおれ込
み鋼帯表面にかぶさりを生じて、製品表面におけ
る欠陥(ゴールドダスト)となり、光沢を劣化さ
せる。 従つて、コイル研削工程の省略を可能ならしめ
るためには、粒界腐食の防止が不可欠となる。 一方、熱間圧延後の鋼帯表面には、平均値で、
10μm程度の脱炭層が生成することがある。この
脱炭層を残したまま鋼帯を冷間圧延し、焼鈍、酸
洗すると、最終酸洗工程で、粒界腐食状の光沢不
良が発生する。 従つて、鋼帯表面における脱炭層の生成を防止
するか或はこれを溶削することが必要となる。 このように、Cr:5〜18%を含有するステン
レス鋼、就中、マルテンサイト系ステンレス鋼の
熱延板焼鈍工程を省略しかつ、コイル研削工程を
省略若しくは簡略化して、十分な冷延性ならび
に、材質および表面性状を確保するには、 熱延板焼鈍工程省略のための、熱間圧延鋼帯
の巻取り条件 鋼帯における粒界腐食を防止するための酸洗
条件や熱間圧延鋼帯の巻取り条件 熱間圧延鋼帯表面の脱炭層の生成防止および
溶削条件 が明らかにされねばならない。 発明者等は、実験を伴なう研究を重ねた結果、
先ず熱延板焼鈍工程の省略のための熱間圧延鋼帯
の巻取り条件としては、鋼帯の長さ方向、幅方向
における中央部が800〜600℃の温度域で、鋼帯を
巻取ると、巻取られたコイルの内部は復熱して、
軟化や焼戻しは十分に進行するけれども、鋼帯の
頭端部や尾端部或は幅方向側縁部は、鋼帯が巻取
られコイルとなつた後も復熱が不十分で硬化して
おり、この硬化部分は、後の冷間圧延工程で問題
となる。 従つて、本発明のプロセスにあつては、鋼帯の
頭部および尾部ならびに両側縁部を相対的に高温
の状態にして鋼帯を巻取る。 このため、本発明のプロセスにあつては、鋼帯
を熱間圧延後、ランアウトテーブル上で水冷する
に際して、鋼帯の頭部、尾部ならびに両側縁部の
冷却強度を中央部のそれよりも低くする如く、つ
まり鋼帯の頭部および尾部が中央部よりも100℃
程度高温となるように、また両側縁部が中央部よ
りも50℃程度高くなるように冷却を制御して巻取
り、その後、コイル状で冷却するようにすること
で、熱延板焼鈍工程を省略しても、後の冷間圧延
に支障のないストリツプコイルを得ることができ
る。 さらに、C含有量やN量によつて、特にマルテ
ンサイトの硬度が高い鋼帯にあつては、上記条件
で巻取つた後に、保温徐冷炉或は内部に熱源を組
込んだ保温炉に、直ちに装入し、コイルの復熱を
より均一化して徐冷することが有効である。 前記、保温炉によつてコイルの復熱をより均一
に進行せしめる場合でも、鋼帯のランアウトテー
ブル上での冷却に際して、鋼帯の頭部および尾部
ならびに両側縁部を、中央部よりも相対的に高温
となる如く冷却制御して巻取るようにすることが
有効であり、保温炉での所要時間を大幅に短縮し
得る。 このようにして得られた熱間圧延ストリツプコ
イルは、メカニカルデスケーリングを経て、酸洗
される。 フエライト系ステンレス鋼やマルテンサイト系
ステンレス鋼は、熱延板焼鈍工程を省略した場
合、粒界にCr炭化物を析出し、粒界にCrの欠乏
属を生じている。 従つて、粒界腐食を生ぜしめ易い酸の使用は避
けねばならない。この観点から、HNO3/HF酸
洗は、危険である。H2SO4やHClを主とする酸を
用いる酸洗でなければならない。 また、酸洗に伴なつて生じるスマツトの除去に
際しても、HNO3/HFやHNO3の使用は有害で
あり、ブラツシング等のメカニカル作用と水中で
のスマツト処理が望ましい。 酸洗後の鋼帯の表面性状は、極力表面粗さが小
さいことが望ましく、この点からメカニカルデス
ケーリングにおける研掃剤として、細粒の砂鉄を
使用した高圧水デスケーリングが有効であり、他
方、H2SO4やHClを主とする酸液で鋼帯表面を溶
削することも有効である。 酸洗後の熱延鋼帯の表面直下には、熱間圧延時
に生じた脱炭粒が存在することがある。熱延板に
おける脱炭層は、厚さ約10μm程度であり、酸洗
後、この脱炭粒を残したまま冷間圧延し、最終焼
鈍し、酸洗を行なうと、脱炭部は前記最終焼鈍過
程で炭化物の析出が顕著に生じ、これによつて脱
Cr部を生じ、最終のHNO3による酸洗時に;粒
界腐食状に模様が生じ、鋼帯の光沢を劣化させ
る。 従つて、熱延板の酸洗においては、鋼帯の表面
に生じた、10μm内外の脱炭粒を溶解除去するこ
とが必要であり、このため、たとえばH2SO4
HClを主とする酸洗液によつて溶削する。 勿論、熱間圧延に先立つ鋼片の加熱の温度を低
目にすることのほか、加熱雰囲気の制御や在炉時
間の制御によつて、鋼帯表面の脱炭層を極力浅く
することも有効であり、連続鋳造プロセスからの
直送圧延や、ホツトチヤージ(高温鋳片を直接、
加熱炉へ装入)によつて在炉時間を短縮すること
が有効な手段となる。 次に、本発明における成分、プロセス条件の限
定理由について述べる。 本発明は、Cr量が、重量%で5〜18%の、フ
エライト系或はマルテンサイト系ステンレス鋼を
対象としている。 Crが、5%未満では耐食性が不十分であり、
Cr:5〜18%のフエライト系或はマルテンサイ
ト系ステンレス鋼では、γ相が現われ、本発明に
なる熱間圧延後のランアウトテーブルにおける冷
却制御と、鋼帯巻取中の分解が有効に機能するか
らである。Cr含有量が18%を超えると、γ相は
殆んど現われず、この発明のプロセスは有効に機
能しない。 熱間圧延後の鋼帯の巻取温度は、鋼帯の長さ方
向、幅方向中央部で800〜600℃とする。 800℃を超えると、スケール生成量が多くなつ
て有害であり、600℃未満では、製品の伸びが低
下するからである。 熱間圧延後の鋼帯は、ランアウトテーブルで、
頭部および尾部或は両側縁を中央部よりも、頭部
および尾部は約100℃、両側縁部は約50℃高温と
なるように、適用する冷却水量を制御して冷却す
る。然る後、コイルに巻取る。 これは、コイル状での復熱で、焼戻しや軟化を
コイル全体で均一化するものである。 マルテンサイトの多い鋼種では、鋼帯をコイル
に巻取つた後、直ちに保温炉に装入し、より均一
な焼戻し、軟化を進行せしめる。 このようにして、熱延板焼鈍工程を省略した鋼
帯の酸洗を行なうに際しては、粒界腐食を防止す
るため、H2SO4やHClを主とする酸洗液で酸洗す
る。 粒界腐食を生ぜしめるHNO3/HFやHNO3は、
使用しない。 さらに、熱間圧延後の鋼帯表面に散在する脱炭
組織を除去すべく、少なくとも表面層片面10μm
の溶削が必要である。 溶削厚さが10μm未満と不足すると、脱炭組織
が残留し、製品表面の光沢を阻害する。 (実施例) 以下に、この発明になるCr系ステンレス鋼薄
板の製造方法の実施例について述べる。 第1表に、通常通り溶製した、6%Cr〜18Cr
までの合金組成を示す。 何れも、低C系のフエライト系およびマルテン
サイト系ステンレス鋼である。これらのステンレ
ス溶鋼を、それ自体公知の連続鋳造プロセスで鋳
造して鋳片とし、これを冷却した後、部分手入れ
し、再加熱したもの或は、熱間圧延工程における
加熱炉へホツトチヤージし、ホツトストリツプミ
ルによつて3〜4mm厚さのホツトストリツプへ熱
間圧延した。 熱間圧延された鋼帯は、仕上圧延機列後段のラ
ンアウトテーブルにおける冷却に際し、鋼帯の頭
部約30m、尾部約100mについて、冷却水量の適
用を、長さ方向中央部よりも少なくし、鋼帯頭部
および尾部の温度を中央部よりも約100℃高くし
て巻取つた(第2表にAパターンとして示す)。
この第2表のAパターンの鋼帯の冷却制御に加え
て、鋼帯の両側縁部への適用冷却水量を制御し
て、この部分の温度を幅方向中央部の温度よりも
約50℃高くして鋼帯を巻取つた(第2表に、Bパ
ターンとして示す)。 さらに、第2表のBパターンの冷却制御を行な
つた鋼帯を、巻取後、750℃に予熱してある保温
炉に装入し、30分間保持した後、取出し、コイル
状のまま冷却した(第2表にパターンCとして示
す)。 比較のために、従来技術における如くランアウ
トテーブルで鋼帯を冷却し、巻取るものも実施し
た。 これらの各パターンによつて得られた鋼帯の各
部位の硬度を測定した結果を第2表に示す。第2
表から明らかなように、本発明になるプロセスに
よる場合は、鋼帯の何れの部位においても、硬度
は、HVで185未満でありかつ各部位間における硬
度の差は小さく、冷間圧延用素材として十分な硬
化程度を確保している。 これに対し従来技術に依つたものは、硬度が高
く、各部位間における硬度差も大きく、そのまま
冷間圧延素材とすることは不可能で、熱延板焼鈍
を必要とした。 上記、本発明になるプロセスによつて得られた
ホツトストリツプコイルは、熱延板焼鈍すること
なく、砂鉄材を研掃材とする高圧水によるメカニ
カルデスケーリングを施し、300g/のH2SO4
を85℃とした酸洗液中で酸洗した。この酸洗過程
で、鋼帯表面の厚さ10μmの脱炭層を溶削すると
ともに、鋼帯表面の凹凸を小さくするよう、酸洗
時間を変化させた。 酸洗処理後、鋼帯を水中でブラツシングし、得
られたホツトストリツプコイルを、コイル研削す
ることなく、400mm直径のロールをもつ冷間タン
デムミルで、累積圧下率50%の冷間圧延を行なつ
た。 こうして得られた冷間圧延ストリツプコイルの
一部は、直径60mmのロールをもつゼンジミアミル
で3回の冷間リバース圧延を行なつた。然る後、
最終焼鈍、酸洗、調質圧延を行なつて2B製品と
した。2B製品の表面特性として、光沢の評価を
第3表に示す。 ホツトストリツプの酸洗時に、10μm未満の溶
削量であつたものは、表面に部分的に脱炭層が残
留し、最終製品においても光沢が不良であつた
が、10μm以上溶削したものは、光沢が良好であ
つた。
(Industrial Application Field) The present invention contains 5 to 18% Cr and 0.2% C by weight.
The present invention relates to a new method for producing martensitic or ferritic stainless steel thin plates containing the following: (Prior art) Conventionally, in the production of thin sheets of martensitic stainless steel such as 13% Cr and 0.08C, or ferritic stainless steel sheets such as 11% Cr and Ti-containing steel, continuous casting slabs ( CC slab) is hot rolled,
After winding, the hot-rolled structure and martensitic structure are softened and recrystallized by annealing, followed by pickling and descaling, followed by grinding to remove surface defects, and then cold rolling. It has been manufactured by a process that includes rolling, final annealing, and pickling. In particular, martensitic stainless steel turns into martensitic material during cooling after hot rolling and becomes hard. As disclosed, an inefficient manufacturing method called batch annealing, in which the stainless steel strip is kept in a coiled state at a temperature of 800°C or more for several hours or more, and then cooled, has been forced. When heat treated for a long time in this way, a thick oxide scale is formed and the descaling properties are deteriorated, and the surface of the steel strip after descaling has a large roughness, so the surface is roughened during the coil grinding process (process of grinding the steel strip surface). Cold rolling was necessary after removing the defects. As described above, in the prior art, hot-rolled plate annealing processes and coil grinding processes have been indispensable in the production of ferritic or martensitic stainless steel thin sheets in the low Cr range. (Problems to be Solved by the Invention) The present invention is a new method for producing stainless steel thin sheets, which, like ordinary steel thin sheets, omits the annealing process after hot rolling and further performs pickling and descaling. Omitting the coil grinding process that is carried out later,
The purpose of this work was to provide a highly efficient method for manufacturing thin stainless steel sheets using a tandem cold rolling method using large diameter rolls. (Means for solving the problems) The gist of the present invention is that Cr: 5% by weight
A method for manufacturing a thin martensitic or ferritic stainless steel sheet containing ~18% as a main alloying element, the coiling temperature of a longitudinal and widthwise central portion of a hot rolled steel strip being 800 to 600%. ℃, and the amount of cooling water for the steel strip at the runout table during hot rolling is controlled individually according to the longitudinal and widthwise parts of the steel strip, and the recuperation during and after winding of the steel strip is carried out. By uniformizing the progress of softening or tempering of the entire coil, the hot-rolled plate annealing process can be omitted, and then in the descaling of the steel strip, a pickling solution mainly composed of sulfuric acid or hydrochloric acid is used. The steel strip surface layer is melt-cut by 10 micrometers or more per side, the coil grinding process is omitted or simplified, and then cold-rolled.
It is in the manufacturing method of Cr stainless steel thin plate. The present invention will be explained below. The inventors omitted the hot-rolled plate annealing process and coil grinding process in the manufacturing process of martensitic or ferritic stainless steel thin sheets containing 5 to 18% Cr by weight, and achieved high efficiency. We conducted research on processes that allow cold rolling. As a result, it was found that the following problem had to be solved. In other words, in order to omit the current batch-type hot-rolled plate annealing process, the steel strip must be softened in the steel strip winding process after hot rolling to an extent that does not interfere with the subsequent cold rolling process. is necessary. Furthermore, even if the hot-rolled plate annealing process is omitted,
After the steel strip is wound up in a hot rolling process, it is subjected to mechanical descaling and then pickled to perform descaling, but depending on the pickling solution, intergranular corrosion may occur on the surface of the steel strip. In this way, the portions where intergranular corrosion has occurred overlap the surface of the folded steel strip during the cold rolling process, resulting in defects (gold dust) on the product surface and deteriorating the gloss. Therefore, in order to make it possible to omit the coil grinding process, prevention of intergranular corrosion is essential. On the other hand, the surface of the steel strip after hot rolling has an average value of
A decarburized layer of about 10 μm may be formed. If a steel strip is cold rolled, annealed, and pickled with this decarburized layer left in place, gloss defects in the form of intergranular corrosion occur in the final pickling step. Therefore, it is necessary to prevent the formation of a decarburized layer on the surface of the steel strip or to remove it. In this way, the hot-rolled plate annealing process of stainless steel containing 5 to 18% Cr, especially martensitic stainless steel, and the coil grinding process can be omitted or simplified to achieve sufficient cold rollability and In order to ensure the material quality and surface properties, the winding conditions for hot-rolled steel strip to omit the hot-rolled plate annealing process. Pickling conditions and hot-rolled steel strip to prevent intergranular corrosion in the steel strip. The winding conditions for preventing the formation of a decarburized layer on the surface of the hot rolled steel strip and the cutting conditions must be clarified. As a result of repeated research involving experiments, the inventors discovered that
First, the conditions for winding the hot-rolled steel strip to omit the hot-rolled plate annealing process are as follows: The steel strip is wound in a temperature range of 800 to 600°C at the central part in the length and width directions of the steel strip. The inside of the wound coil regenerates heat,
Although softening and tempering proceed sufficiently, the head end, tail end, or widthwise side edges of the steel strip remain hardened due to insufficient recuperation even after the steel strip is wound into a coil. This hardened portion becomes a problem in the subsequent cold rolling process. Therefore, in the process of the present invention, the steel strip is wound with the head and tail portions and both side edges of the steel strip kept in a relatively high temperature state. Therefore, in the process of the present invention, when the steel strip is water-cooled on a runout table after hot rolling, the cooling strength of the head, tail, and both side edges of the steel strip is lower than that of the center. In other words, the head and tail of the steel strip are 100°C lower than the center.
The hot-rolled sheet annealing process is performed by controlling the cooling so that the temperature is approximately 50°C higher than the center on both sides, and then winding the sheet in a coiled manner. Even if omitted, it is possible to obtain a strip coil that does not cause any problems in subsequent cold rolling. Furthermore, in the case of steel strips that have particularly high martensite hardness depending on the C content and N content, after being wound under the above conditions, they should be immediately placed in a thermal annealing furnace or a thermal insulation furnace with a built-in heat source. It is effective to charge the coil and gradually cool it by making the heat recovery of the coil more uniform. Even when the heat recovery of the coil is made to proceed more uniformly using the heat insulating furnace, when cooling the steel strip on the run-out table, the head, tail, and both side edges of the steel strip are relatively smaller than the center. It is effective to control the cooling so that the temperature reaches a high temperature during winding, and the time required in the insulating furnace can be significantly shortened. The hot-rolled strip coil thus obtained is mechanically descaled and then pickled. In ferritic stainless steel and martensitic stainless steel, if the hot-rolled plate annealing process is omitted, Cr carbides are precipitated at the grain boundaries, resulting in Cr-deficient metals at the grain boundaries. Therefore, the use of acids that tend to cause intergranular corrosion must be avoided. From this point of view, HNO 3 /HF pickling is dangerous. Pickling must be carried out using an acid mainly composed of H 2 SO 4 or HCl. Furthermore, when removing smuts that occur during pickling, the use of HNO 3 /HF or HNO 3 is harmful, and mechanical action such as brushing and underwater smut treatment are preferable. It is desirable that the surface roughness of the steel strip after pickling be as low as possible, and from this point of view, high-pressure water descaling using fine grained iron sand is effective as an abrasive agent in mechanical descaling. It is also effective to melt the surface of the steel strip with an acid solution containing mainly H 2 SO 4 or HCl. Decarburized grains generated during hot rolling may be present immediately below the surface of the hot-rolled steel strip after pickling. The decarburized layer in a hot-rolled sheet is approximately 10 μm thick, and after pickling, cold rolling is performed with the decarburized grains remaining, final annealing, and pickling. Significant precipitation of carbides occurs during the process, which leads to desorption.
During the final pickling with HNO3 , a pattern appears in the form of intergranular corrosion, which deteriorates the luster of the steel strip. Therefore, when pickling hot-rolled sheets, it is necessary to dissolve and remove decarburized grains of around 10 μm that have formed on the surface of the steel strip .
Machining is done using a pickling solution mainly containing HCl. Of course, in addition to lowering the heating temperature of the steel strip prior to hot rolling, it is also effective to make the decarburized layer on the surface of the steel strip as shallow as possible by controlling the heating atmosphere and furnace time. Yes, direct rolling from continuous casting process, hot charge (directly rolling high temperature cast slabs, etc.)
An effective means is to shorten the time in the furnace by charging (charging into the heating furnace). Next, the reasons for limiting the components and process conditions in the present invention will be described. The present invention is directed to ferritic or martensitic stainless steels having a Cr content of 5 to 18% by weight. If Cr is less than 5%, corrosion resistance is insufficient,
In ferritic or martensitic stainless steel with Cr: 5 to 18%, a γ phase appears, and the cooling control in the runout table after hot rolling and decomposition during steel strip winding according to the present invention function effectively. Because it does. When the Cr content exceeds 18%, the γ phase hardly appears and the process of this invention does not function effectively. The coiling temperature of the steel strip after hot rolling is 800 to 600°C in the longitudinal and widthwise central portions of the steel strip. If the temperature exceeds 800°C, the amount of scale generated increases, which is harmful, and if the temperature is lower than 600°C, the elongation of the product decreases. After hot rolling, the steel strip is placed on a run-out table.
The amount of cooling water applied is controlled to cool the head and tail or both side edges so that the head and tail are about 100°C hotter and the side edges are about 50°C hotter than the center. After that, it is wound into a coil. This is reheating in a coiled state, which makes the tempering and softening uniform throughout the coil. For steel types with a high content of martensite, after the steel strip is wound into a coil, it is immediately placed in a heat retention furnace to promote more uniform tempering and softening. When pickling a steel strip in which the hot-rolled sheet annealing process is omitted in this way, the steel strip is pickled with a pickling solution mainly containing H 2 SO 4 or HCl in order to prevent intergranular corrosion. HNO 3 /HF and HNO 3 that cause intergranular corrosion are
do not use. Furthermore, in order to remove decarburized structures scattered on the surface of the steel strip after hot rolling, at least a surface layer of 10 μm thick on one side was added.
Requires fusing. If the cutting thickness is insufficient (less than 10 μm), decarburized structures will remain and impede the gloss of the product surface. (Example) Below, an example of the method for manufacturing a Cr-based stainless steel thin plate according to the present invention will be described. Table 1 shows 6% Cr to 18 Cr produced as usual.
Shows the alloy composition up to. Both are low C ferritic and martensitic stainless steels. These molten stainless steels are cast into slabs using a known continuous casting process, which is then cooled, partially treated, and reheated, or hot-charged into a heating furnace during the hot rolling process. It was hot rolled into hot strips with a thickness of 3-4 mm in a strip mill. When cooling the hot-rolled steel strip on the run-out table at the latter stage of the finishing mill row, the amount of cooling water applied to the head of the steel strip, approximately 30 m, and the tail, approximately 100 m, is lower than that to the central portion in the longitudinal direction. The steel strip was wound at a temperature approximately 100° C. higher at the head and tail than at the center (shown as pattern A in Table 2).
In addition to controlling the cooling of the steel strip of pattern A in Table 2, the amount of cooling water applied to both side edges of the steel strip is controlled to raise the temperature of this part to about 50°C higher than the temperature of the center in the width direction. The steel strip was then wound up (shown as pattern B in Table 2). Furthermore, the steel strip subjected to cooling control according to pattern B in Table 2 was coiled and then charged into a heat insulating furnace preheated to 750°C, kept there for 30 minutes, taken out, and cooled in its coiled state. (shown as pattern C in Table 2). For comparison, the steel strip was cooled and wound on a run-out table as in the prior art. Table 2 shows the results of measuring the hardness of each part of the steel strip obtained by each of these patterns. Second
As is clear from the table, in the case of the process according to the present invention, the hardness in all parts of the steel strip is less than 185 in H V , and the difference in hardness between each part is small, and the steel strip is suitable for cold rolling. The material has a sufficient degree of hardening. On the other hand, those based on the prior art have high hardness and large differences in hardness between different parts, and cannot be used as a cold-rolled material as is, requiring hot-rolled plate annealing. The hot strip coil obtained by the above process according to the present invention was mechanically descaled using high-pressure water using iron sand as an abrasive material without annealing the hot-rolled sheet, and the hot strip coil was subjected to mechanical descaling using high - pressure water using iron sand as an abrasive. SO 4
was pickled in a pickling solution heated to 85°C. During this pickling process, the pickling time was varied to remove a 10 μm thick decarburized layer on the steel strip surface and to reduce the unevenness of the steel strip surface. After the pickling treatment, the steel strip is brushed in water, and the resulting hot strip coil is cold rolled at a cumulative reduction rate of 50% in a cold tandem mill with 400 mm diameter rolls without coil grinding. I did this. A portion of the cold rolled strip coil thus obtained was cold reverse rolled three times in a Sendzimir mill with rolls having a diameter of 60 mm. After that,
Final annealing, pickling, and temper rolling were performed to create a 2B product. Table 3 shows the evaluation of gloss as a surface characteristic of 2B products. When pickling hot strips, if the amount of abrasion was less than 10 μm, a decarburized layer remained partially on the surface and the final product had poor gloss, but if the hot strip was abraded to a depth of 10 μm or more, was good.

【表】【table】

【表】【table】

【表】 (発明の効果) 本発明によれば、フエライト系或はマルテンサ
イト系ステンレス鋼薄板の製造にあたり、熱延板
焼鈍工程を省略しかつコイル研削工程を省略ない
し簡略化することができるとともに、高能率なタ
ンデム冷延ミルによる冷間圧延プロセスを採るこ
とができるので、本発明は産業上〓益するところ
が極めて大である。
[Table] (Effects of the Invention) According to the present invention, in the production of ferritic or martensitic stainless steel thin sheets, it is possible to omit the hot-rolled plate annealing process and omit or simplify the coil grinding process. Since a cold rolling process using a highly efficient tandem cold rolling mill can be adopted, the present invention has extremely large industrial benefits.

Claims (1)

【特許請求の範囲】 1 重量%で、Cr:5〜18%を主要合金元素と
して含有するマルテンサイト系或はフエライト系
ステンレス鋼薄板の製造方法であつて、熱間圧延
鋼帯の長さ方向および幅方向中央部分の巻き取り
温度を、800〜600℃とするとともに熱間圧延にお
けるランアウトテーブルでの鋼帯冷却水量を、鋼
帯の長さ方向および幅方向部位に応じて個別に制
御し、鋼帯巻き取り中および巻き取り後の復熱に
よつてコイル全体の軟化或は焼戻しの進行を均一
化することによつて、熱延板焼鈍工程を省略し、
次いで鋼帯のデスケーリングにおいて、硫酸或は
塩酸を主成分とする酸洗液で、鋼帯表面層を片面
当り10マイクロメートル以上溶削し、コイル研削
工程を省略若しくは簡略化し、然る後、冷間圧延
することを特徴とするCr系ステンレス鋼薄板の
製造方法。 2 熱間圧延鋼帯を巻き取つた後、コイルを保熱
炉に装入し、コイルの復熱を、より均一にする特
許請求の範囲第1項記載のCr系ステンレス鋼薄
板の製造方法。 3 硫酸或は塩酸を主成分とする酸洗液で、鋼帯
表面層を片面当たり10マイクロメートル以上溶削
したステンレス鋼帯を、ロール直径が150mm以上
の大径ロールを有するタンデム圧延機で冷間圧延
する特許請求の範囲第1項または第2項記載の
Cr系ステンレス鋼薄板の製造方法。 4 ロール直径が150mm以上の大径ロールを有す
るタンデム圧延機で冷間圧延したステンレス鋼帯
を、さらに、直径が100mm以下のロールを有する
冷間圧延機で仕上冷間圧延する特許請求の範囲第
1項乃至第3項の何れか一つに記載のCr系ステ
ンレス鋼薄板の製造方法。
[Claims] A method for manufacturing a martensitic or ferritic stainless steel thin plate containing 1% by weight and 5 to 18% Cr as a main alloying element, the method comprising: a hot rolled steel strip in the longitudinal direction; and the winding temperature at the central portion in the width direction is set to 800 to 600°C, and the amount of cooling water for the steel strip at the run-out table during hot rolling is controlled individually according to the longitudinal and widthwise portions of the steel strip, By uniformizing the progress of softening or tempering of the entire coil by reheating during and after winding the steel strip, the hot-rolled sheet annealing process is omitted,
Next, in descaling the steel strip, the surface layer of the steel strip is abraded by 10 micrometers or more per side using a pickling solution containing sulfuric acid or hydrochloric acid as a main component, and the coil grinding process is omitted or simplified, and then, A method for manufacturing a Cr-based stainless steel thin plate, which is characterized by cold rolling. 2. The method for producing a Cr-based stainless steel thin plate according to claim 1, wherein after winding the hot-rolled steel strip, the coil is placed in a heat retention furnace to more uniformly recover heat from the coil. 3 A stainless steel strip whose surface layer has been melt-cut by 10 micrometers or more per side with a pickling solution containing sulfuric acid or hydrochloric acid as the main component is cooled in a tandem rolling mill with large-diameter rolls with a roll diameter of 150 mm or more. Inter-rolling according to claim 1 or 2
Method for manufacturing Cr-based stainless steel thin plate. 4. Claim No. 4 in which a stainless steel strip is cold-rolled in a tandem rolling mill having large diameter rolls with a roll diameter of 150 mm or more, and is further cold-rolled for finishing in a cold rolling mill with rolls having a diameter of 100 mm or less. A method for producing a Cr-based stainless steel thin plate according to any one of items 1 to 3.
JP17135886A 1986-07-21 1986-07-21 Manufacture of sheet metal for cr stainless steel Granted JPS6328829A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17135886A JPS6328829A (en) 1986-07-21 1986-07-21 Manufacture of sheet metal for cr stainless steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17135886A JPS6328829A (en) 1986-07-21 1986-07-21 Manufacture of sheet metal for cr stainless steel

Publications (2)

Publication Number Publication Date
JPS6328829A JPS6328829A (en) 1988-02-06
JPH0325487B2 true JPH0325487B2 (en) 1991-04-08

Family

ID=15921705

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17135886A Granted JPS6328829A (en) 1986-07-21 1986-07-21 Manufacture of sheet metal for cr stainless steel

Country Status (1)

Country Link
JP (1) JPS6328829A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU6364796A (en) * 1995-07-07 1997-02-10 Highveld Steel & Vanadium Corporation Limited A steel
KR20020051269A (en) * 2000-12-22 2002-06-28 이구택 annealing and pickling method for uniform surface quality of high Cr ferritic stainless steel
JP2008190009A (en) * 2007-02-06 2008-08-21 Nippon Steel Corp Manufacturing method of hot-rolled ferritic stainless steel strip having excellent sulfuric-acid pickling property
CN103014303A (en) * 2012-12-13 2013-04-03 内蒙古北方重工业集团有限公司 Production method of thin and long thin-plate type part
CN103215422A (en) * 2013-04-06 2013-07-24 山东泰山钢铁集团有限公司 Method for plastically producing thin stainless steel cold-rolled plates by utilizing hot-rolled steel bands
CN105934288B (en) * 2014-12-09 2019-12-24 Posco公司 Heat treatment method of AHSS hot-rolled coil, cold rolling method using same and heat treatment device
WO2016170761A1 (en) * 2015-04-21 2016-10-27 Jfeスチール株式会社 Martensitic stainless steel

Also Published As

Publication number Publication date
JPS6328829A (en) 1988-02-06

Similar Documents

Publication Publication Date Title
JPH0325487B2 (en)
JPH0730404B2 (en) New production method of austenitic stainless steel sheet with excellent surface characteristics and materials
JPH0461048B2 (en)
JPH0742513B2 (en) Method for producing austenitic stainless steel sheet
JP2001026826A (en) Production of stainless hot rolled steel strip
JP3839090B2 (en) Manufacturing method of steel plate for heat treatment with excellent scale peeling resistance
JPH02410B2 (en)
JPH02258931A (en) Production of cr stainless steel sheet by thin-wall casting method
JP3839091B2 (en) Manufacturing method of steel plate for heat treatment with excellent scale peeling resistance
JPH07216522A (en) Production of titanium sheet excellent in surface characteristic
JPS6024325A (en) Production of ferritic stainless steel plate having less ridging and excellent formability
JPH07228958A (en) Production of pure titanium sheet for industry
JP3799179B2 (en) Method for producing austenitic stainless steel sheet
JP3671516B2 (en) Method for producing hot-rolled steel sheet with excellent pickling and surface properties
JP3583268B2 (en) Stainless steel strip excellent in surface gloss and method for producing the same
JPH02412B2 (en)
JPH07180012A (en) Production of titanium sheet having beautiful surface
JPS6112828A (en) Manufacture of ferrite stainless steel sheet surperior in surface property and workability
JPS61246326A (en) Manufacture of ferritic stainless steel sheet superior in surface property and workability
JPS59163003A (en) Manufacture of stainless steel strip excellent in surface property
JPH0631395A (en) Production of thin cast slab for non-oriented silicon steel sheet
JPH09291311A (en) Method and equipment for manufacturing hot rolled stainless steel plate excellent in surface characteristic and descaling property
JPH04120215A (en) Manufacture of grain oriented silicon steel sheet excellent in magnetic characteristic and surface characteristic
JPS62270203A (en) Descaling method for thin shape memory alloy sheet
JPS635169B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term