JPS635169B2 - - Google Patents

Info

Publication number
JPS635169B2
JPS635169B2 JP59128824A JP12882484A JPS635169B2 JP S635169 B2 JPS635169 B2 JP S635169B2 JP 59128824 A JP59128824 A JP 59128824A JP 12882484 A JP12882484 A JP 12882484A JP S635169 B2 JPS635169 B2 JP S635169B2
Authority
JP
Japan
Prior art keywords
cooling
feo
temperature
scale
descaling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59128824A
Other languages
Japanese (ja)
Other versions
JPS619918A (en
Inventor
Tsuyoshi Sasaki
Shigeya Ooishi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd, Sumitomo Metal Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP12882484A priority Critical patent/JPS619918A/en
Publication of JPS619918A publication Critical patent/JPS619918A/en
Publication of JPS635169B2 publication Critical patent/JPS635169B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/04Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for de-scaling, e.g. by brushing
    • B21B45/08Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for de-scaling, e.g. by brushing hydraulically

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

[発明の技術分野] 本発明は、熱延鋼板等の鋼材の脱スケールのた
めの処理方法に係り、さらに詳しくは熱間鋼材表
面に脱スケールが容易なスケール組成FeOを残存
させる処理方法に関する。以下本発明の説明は熱
間圧延鋼帯(以降単に熱延鋼板と称す)について
述べる。 [発明の技術的背景] 熱延鋼板のスケールは、これを除去しないと、
次工程の冷間圧延過程での表面欠陥の発生原因と
なる。 そこで、従来から、脱スケールのために、大別
して酸洗による化学的処理法や、シヨツトブラス
ト、曲げまたは圧下、ブラツシング、あるいは研
削等の機械的処理方法が採用されてきた。 そして、この種の脱スケール法として、数多く
提案がなされているが、現在の一般的傾向とし
て、長大なスペースや大規模の酸洗設備を要する
酸洗法を用いることなく、機械的脱スケール法の
みによつて達成できないか、あるいは酸洗法を使
用するとしても、可能な限り酸洗設備を小さく
し、その分機械的脱スケール法によつて補償でき
ないかとの観点からの追求がなされている。 「従来技術」 このような脱スケール技術自体を追求する一方
で、脱スケールの前処理として、熱間圧延から巻
取りの間の段階でスケールとしてFeOを多く残存
させる方法が知られている。 古くは、熱延鋼材を200℃/hr以上の速度で急
冷し、ウスタイトを残存させたものを冷間圧延す
るという技術が、特開昭52−21245号公報に開示
されている。 また、特開昭54−50437号公報や特開昭56−
163258号公報には、熱延鋼板をある冷却速度で冷
却した後、曲げや圧下によりスケールにクラツク
を入れ、後に脱スケールする方法が教示されてい
る。その他、特開昭52−114429号公報、57−9504
号公報、58−159916号公報等に示された技術があ
る。 これらの従来技術に共通する思想は、スケール
としてマグネタイト(Fe3O4)よりウスタイト
(FeO)の方が、脱スケール性に優れているので、
ウスタイトが残存した状態で脱スケールを行わん
とするものである。 ところが、これらの技術は、冷却速度がきわめ
て遅く、FeOの大部分が、Fe3O4変態してしまう
常法の巻取法に比較して、脱スケール性に優れる
が、高度の脱スケール性を得ることができない。 [発明の目的] 本発明の目的は、前記従来の問題点を解決し、
脱スケール性に優れるFeOを多く残存させること
ができる熱間圧延鋼材の処理方法を提供すること
にある。 [発明の概要] この目的を達成するための本発明法は、熱間仕
上圧延後の熱間圧延鋼材を、570℃以上の温度で、
0.1〜15%の加工率をもつて圧下または曲げを与
えて鋼材のスケールにクラツクを入れるととも
に、その加工中または加工直後から冷却を開始
し、570℃以上の温度から300℃以下の温度まで30
℃/min以上の冷却速度で冷却することを特徴と
する熱間圧延鋼材の処理方法である。 本発明者らは、前記従来技術において、必らず
しも良好な脱スケール性が得られないのは、たと
え熱延鋼板を急冷しても、さしてFeOを多く残存
させる効果という点からは大きな効果を示さない
ためであることを見出した。したがつて、急冷
後、クラツクを入れても、FeOの残存率が低い限
り、脱スケール性の大幅な向上を期待できない。 これに対して、本発明に従つて、スケールにク
ラツクを入れながら、あるいは入れた後に水冷す
れば、そのクラツクを通つて地金と接するFeOま
で冷却水が浸透し、FeOに対する冷却効果が十分
に発揮され、その結果FeOのFe3O4への変態を防
止でき、もつてFeOを多く残存させることができ
る。 [発明の具体例] 以下本発明を図面を参照しながら具体的に説明
する。 第1図および第2図によつて、本発明法を概説
すれば、熱間圧延機の仕上スタンド1を出た鋼
材、たとえば900℃程度の熱延鋼板2は、搬送過
程で徐々に冷却されて温度低下を生じる。本発明
では、570℃以上の温度状態、たとえば60℃の状
態で、圧延機3により0.1〜15%の軽圧下を行い、
その後570℃以上の温度たとえば570℃の温度状態
の鋼板2に対して、たとえば冷却水のスプレーに
よる水冷装置4により、300℃程度になるまで、
30℃/min以上の冷却速度で急冷を行う。次に巻
取機5にて200℃程度の鋼板を巻取る。 本発明は、予め圧下等により鋼板のスケール層
にクラツクを入れた後、30℃/min以上という冷
却速度により急冷することを主要点としている。 この点について、第3図〜第6図を参照しなが
ら説明すると、スケールは、鉄地金Fe上に、
FeO、Fe3O4、Fe2O3の順で層構成をなしている
が、処理を全く行なわない一般巻取や前記従来法
においては、冷却が自然冷却によるのできわめて
冷却速度が遅いため、あるいはたとえ急冷すると
しても、冷却の当初は冷却効果がFeO層まで十分
に作用せず、FeOからFe3O4への変態を十分に抑
制できないため、第6図のように、当初第3図の
ようにかなりの厚みで存在していたFeOの一部
が、Fe3O4へ変態してしまい、一般的に層厚比と
して、Fe2O3:Fe3O4:FeO=1:6:3程度で
あつた。 これに対して、本発明では、まず第4図に示す
ように、FeOからFe3O4への変態が未だ起らない
状態でクラツク6をスケールに入れる。次いで、
同変態が生じない状態で、水冷を行う。その結
果、冷却水Wは、第5図にて容易に判断できるよ
うに、クラツク6を伝つてFeO層まで浸透し、
FeO層を効果的にかつ速かに冷却する。したがつ
て、同変態が生じない状態で冷却がなされ、もは
や変態が生じる可能性がない300℃以下に冷却す
れば、当初のFeO層がそのままで残存する。 付言すると、特に前記従来技術について述べれ
ば、急冷技術が示されているが、そこに示された
冷却速度は、ある温度範囲内での平均の冷却速度
であつて、570℃未満の温度から直ちに変態が生
じることに対して、その変態進行速度に十分対処
できていないものであつた。これに対して、本発
明に従つて、予めクラツクを入れた後、冷却を行
えば、常にFeO層に対する冷却効果が十分に作用
する。ちなみに、本発明法によると、層厚比とし
て、Fe2O3:Fe3O4:FeO=1:2:7程度とな
る。 第7図に、冷却特性と変態との関係を示した。
570℃でFeO(ウスタイト)がFe3O4(マグネタイ
ト)に変態することは、前記先行技術を示す各公
報や「鉄と鋼」VoL51、1965、高木、P90〜93が
報告しているように周知のことである。この事項
を踏えて、本発明者らが冷却速度を種々変えて実
験を繰返したところ、冷却速度との関係で第7図
に図示のような結果が得られた。 したがつて、同図から、570℃以上の温度から
冷却を開始すべきこと、冷却速度は30℃/min以
上、特に35℃/min以上が好ましいこと、冷却は
300℃以下まで、好ましくは200℃以下まで続行す
べきことが判る。 一方、スケール層にクラツクを与えるのは、上
記例では600℃としたが、圧延条件や雰囲気温度
によつて変動するから、850℃〜580℃の温度範囲
内において行えばよい。クラツクを与えるのは、
圧下以外に、第8図のように、レベラー7による
曲げ加工でもよい。加工率は0.1〜15%特に2〜
7%が好ましい。0.1%未満では、クラツクを与
えることができず、また特に15%を超えると、ス
ケールの押込疵を生じてしまい、製品に悪影響を
与える。 冷却に際しては、冷却水のスプレー方式による
のがよいが、冷却水槽中を通すものであつてもよ
い。冷却の開始は、クラツクの付与と同時に行つ
てもよい。冷却開始温度は、570℃の直上で、通
常630〜570℃の範囲がよい。冷却開始時期を制御
するために、鋼板の温度検出器を水冷装置の上流
側に設け、この温度信号に基づいて、スプレー列
の冷却開始列を設定することは有効である。ま
た、冷却速度は、30℃/min以上という条件の下
であれば、変化させてもよく、たとえば冷却初期
に冷却水量を増し、その後は少なくすることもで
きる。なお、加工開始を850℃以上の温度から行
うとクラツクが発生しても、その後クラツクが密
着し、冷却効率が低下したり、二次スケールが発
生する問題があるので注意を要する。 巻取つたコイルは、冷間圧延前に脱スケール処
理を行う。脱スケール処理としては、公知技術を
適宜組み合わせればよいが、第9図のように、酸
洗槽8を通すもののほか、第10図に示す工程を
経るものが特に優れていることを本発明者らは確
認している。すなわち、アンコイラー9からの鋼
板2を、0.5〜15%の圧下や曲げ加工工程10を
経て、50℃以上の温湯槽11を通し昇温させ、次
いで塩酸等をスプレー12により3秒以上酸塗布
し、その後ブラシロール13によりスケール槽を
押込量0.1mm以上、500rpm〜1000rpmでブラシ研
掃し、最終的に3秒以上スプレー14により酸洗
するものである。 [実施例] 次に実施例を示す。 第1表に示す通り、種々の条件を変え、FeOの
残存率を調べた。対象鋼板はJIS G 3141の
SPCC材である。なお、仕上圧延温度はいずれも
約900℃である。
[Technical Field of the Invention] The present invention relates to a treatment method for descaling steel materials such as hot rolled steel sheets, and more particularly to a treatment method for leaving FeO, a scale composition that is easy to descale, on the surface of hot rolled steel materials. The present invention will be described below with reference to a hot rolled steel strip (hereinafter simply referred to as a hot rolled steel sheet). [Technical Background of the Invention] If scale on hot rolled steel sheets is not removed,
This causes surface defects to occur during the next cold rolling process. Therefore, conventionally, chemical treatment methods such as pickling, and mechanical treatment methods such as shot blasting, bending or rolling, brushing, or grinding have been employed for descaling. Many proposals have been made for this type of descaling method, but the current general trend is to use mechanical descaling instead of the pickling method, which requires a large space and large-scale pickling equipment. Studies have been carried out to find out whether it is possible to achieve this by using pickling methods alone, or even if pickling methods are used, whether it is possible to make the pickling equipment as small as possible and compensate for this by using mechanical descaling methods. . "Prior Art" While such descaling technology itself is being pursued, a method is known in which a large amount of FeO remains as scale during the stage between hot rolling and coiling as a pretreatment for descaling. In the past, a technique was disclosed in JP-A-52-21245 in which hot-rolled steel was rapidly cooled at a rate of 200° C./hr or more and the resulting material was cold-rolled with wustite remaining. Also, JP-A-54-50437 and JP-A-56-
Japanese Patent No. 163258 teaches a method of cooling a hot rolled steel sheet at a certain cooling rate, cracking the scale by bending or rolling, and then removing the scale. Others, JP-A-52-114429, 57-9504
There are techniques disclosed in Japanese Patent No. 58-159916 and the like. The idea common to these conventional technologies is that wustite (FeO) has better descaling properties than magnetite (Fe 3 O 4 ) as a scale.
The purpose is to perform descaling while wustite remains. However, these techniques have superior descaling properties compared to the conventional winding method in which the cooling rate is extremely slow and most of the FeO is transformed into Fe 3 O 4 , but they do not have a high degree of descaling performance. can't get it. [Object of the invention] The object of the present invention is to solve the above-mentioned conventional problems,
The object of the present invention is to provide a method for treating hot-rolled steel materials that allows a large amount of FeO, which has excellent descaling properties, to remain. [Summary of the Invention] The method of the present invention for achieving this object is to process a hot-rolled steel material after hot finish rolling at a temperature of 570°C or higher.
Apply rolling or bending at a processing rate of 0.1 to 15% to create cracks in the scale of the steel material, and begin cooling during or immediately after processing, from a temperature of 570℃ or higher to a temperature of 300℃ or less for 30 minutes.
This is a method for treating hot rolled steel, characterized by cooling at a cooling rate of ℃/min or more. The present inventors believe that the reason why good descaling performance cannot always be obtained with the above-mentioned conventional technology is that even if the hot rolled steel sheet is rapidly cooled, it is not effective in keeping a large amount of FeO remaining. It was found that this is because it does not show any effect. Therefore, even if cracking is applied after quenching, as long as the FeO residual rate is low, no significant improvement in descaling performance can be expected. On the other hand, according to the present invention, if the scale is cooled with water while or after being cracked, the cooling water will penetrate through the cracks to the FeO in contact with the base metal, and the cooling effect on FeO will be sufficient. As a result, the transformation of FeO to Fe 3 O 4 can be prevented, and a large amount of FeO can remain. [Specific Examples of the Invention] The present invention will be specifically described below with reference to the drawings. To outline the method of the present invention with reference to FIGS. 1 and 2, the steel material leaving the finishing stand 1 of a hot rolling mill, for example, a hot rolled steel plate 2 at about 900°C, is gradually cooled during the conveyance process. This causes a temperature drop. In the present invention, a light reduction of 0.1 to 15% is performed by the rolling mill 3 at a temperature of 570°C or higher, for example, 60°C,
Thereafter, the steel plate 2 at a temperature of 570°C or higher, for example, is heated by a water cooling device 4 that sprays cooling water until the temperature reaches about 300°C.
Perform rapid cooling at a cooling rate of 30℃/min or higher. Next, the steel plate at a temperature of about 200°C is wound up using a winding machine 5. The main point of the present invention is to first crack the scale layer of the steel plate by rolling or the like, and then rapidly cool it at a cooling rate of 30° C./min or more. To explain this point with reference to Figures 3 to 6, the scale is
FeO, Fe 3 O 4 , and Fe 2 O 3 form a layered structure in this order, but in general winding without any treatment or in the conventional method described above, the cooling rate is extremely slow due to natural cooling. Alternatively, even if rapid cooling is performed, the cooling effect does not reach the FeO layer sufficiently at the beginning of cooling, and the transformation from FeO to Fe 3 O 4 cannot be sufficiently suppressed. A part of FeO , which existed in a considerable thickness such as : It was about 3. In contrast, in the present invention, as shown in FIG. 4, the crack 6 is first put into a scale in a state where the transformation from FeO to Fe 3 O 4 has not yet occurred. Then,
Water cooling is performed in a state where the same transformation does not occur. As a result, the cooling water W penetrates through the crack 6 to the FeO layer, as can be easily determined in Fig. 5.
Cool the FeO layer effectively and quickly. Therefore, if cooling is performed in a state where this transformation does not occur, and the temperature is lowered to 300°C or below, where there is no possibility of transformation occurring, the original FeO layer will remain as it is. In addition, specifically referring to the above-mentioned prior art, a rapid cooling technique is shown, but the cooling rate shown there is an average cooling rate within a certain temperature range, and the cooling rate shown there is an average cooling rate within a certain temperature range, and the cooling rate shown there is an average cooling rate within a certain temperature range. Although metamorphosis occurs, the speed at which the metamorphosis progresses has not been adequately addressed. On the other hand, according to the present invention, if cooling is performed after cracking in advance, a sufficient cooling effect is always exerted on the FeO layer. Incidentally, according to the method of the present invention, the layer thickness ratio is approximately Fe 2 O 3 :Fe 3 O 4 :FeO=1:2:7. FIG. 7 shows the relationship between cooling characteristics and transformation.
The transformation of FeO (wustite) into Fe 3 O 4 (magnetite) at 570°C is reported in the publications showing the above-mentioned prior art and in "Tetsu to Hagane" VoL51, 1965, Takagi, P90-93. This is well known. Based on this fact, the inventors of the present invention repeated experiments with various cooling rates, and obtained the results shown in FIG. 7 in relation to the cooling rate. Therefore, from the same figure, it is clear that cooling should be started from a temperature of 570℃ or higher, that the cooling rate is preferably 30℃/min or higher, especially 35℃/min or higher, and that cooling should be performed at a temperature of 570℃ or higher.
It can be seen that the temperature should be continued to below 300°C, preferably below 200°C. On the other hand, cracks are given to the scale layer at 600°C in the above example, but this may vary depending on rolling conditions and ambient temperature, so it may be done within a temperature range of 850°C to 580°C. The one who gives the crack is
In addition to rolling, bending using a leveler 7 as shown in FIG. 8 may be used. Processing rate is 0.1~15%, especially 2~
7% is preferred. If it is less than 0.1%, cracks cannot be produced, and if it exceeds 15%, scale indentation flaws will occur, which will adversely affect the product. For cooling, it is preferable to use a cooling water spray method, but it is also possible to use a cooling water tank. The cooling may be started at the same time as the crack is applied. The cooling start temperature is just above 570°C, usually in the range of 630 to 570°C. In order to control the cooling start timing, it is effective to provide a steel plate temperature sensor upstream of the water cooling device and set the cooling start row of the spray rows based on this temperature signal. Further, the cooling rate may be changed as long as it is 30° C./min or more; for example, the amount of cooling water may be increased at the initial stage of cooling, and then reduced. Note that if processing is started at a temperature of 850°C or higher, even if cracks occur, the cracks will adhere to each other afterwards, reducing cooling efficiency and creating secondary scale, so care must be taken. The wound coil is descaled before cold rolling. The descaling process may be performed by appropriately combining known techniques, but the present invention has shown that, in addition to the process of passing through the pickling tank 8 as shown in Fig. 9, the process of passing through the process shown in Fig. 10 is particularly superior. They have confirmed that. That is, the steel plate 2 from the uncoiler 9 is subjected to a reduction of 0.5 to 15% and a bending process 10, then passed through a hot water bath 11 of 50°C or higher to raise the temperature, and then hydrochloric acid or the like is applied with a spray 12 for 3 seconds or more. Thereafter, the scale tank is brushed with a brush roll 13 at a pushing depth of 0.1 mm or more at 500 rpm to 1000 rpm, and finally pickled with a spray 14 for 3 seconds or more. [Example] Next, an example will be shown. As shown in Table 1, the residual rate of FeO was investigated under various conditions. The target steel plate is JIS G 3141.
It is SPCC material. Note that the finish rolling temperature was approximately 900°C in all cases.

【表】 以上の結果から、本発明によれば、脱スケール
が容易なFeOを多く残存させることができること
が判る。 [発明の効果] 以上の通り、本発明によれば、スケール層にク
ラツクを生成させた後、急冷するものであるか
ら、FeOのFe3O4への変態を確実に防止でき、脱
スケールが容易なFeOを多く残存させることがで
きる。
[Table] From the above results, it is clear that according to the present invention, a large amount of FeO, which is easily descaled, can remain. [Effects of the Invention] As described above, according to the present invention, since cracks are generated in the scale layer and then rapidly cooled, the transformation of FeO to Fe 3 O 4 can be reliably prevented and descaling can be prevented. A large amount of easy FeO can remain.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明法の概略示的説明図、第2図は
その温度パターンの一例図、第3図〜第5図は本
発明法によるスケール層の状態を示す断面図、第
6図は通常の巻取熱延鋼板におけるスケール層の
状態を示す断面図、第7図は冷却特性と変態との
関係図、第8図は曲げ加工例の概要図、第9図お
よび第10図は脱スケール例の概要図である。 1……仕上圧延機、2……鋼板、3……軽圧下
用圧延機、4……水冷装置、6……クラツク。
FIG. 1 is a schematic explanatory diagram of the method of the present invention, FIG. 2 is an example of the temperature pattern, FIGS. 3 to 5 are cross-sectional views showing the state of the scale layer according to the method of the present invention, and FIG. A cross-sectional view showing the state of the scale layer in a normal hot-rolled steel sheet, Fig. 7 is a diagram of the relationship between cooling characteristics and transformation, Fig. 8 is a schematic diagram of an example of bending, and Figs. 9 and 10 are It is a schematic diagram of an example of scale. 1...Finishing rolling mill, 2...Steel plate, 3...Light rolling mill, 4...Water cooling device, 6...Crack.

Claims (1)

【特許請求の範囲】[Claims] 1 熱間仕上圧延後の熱間圧延鋼材を、570℃以
上の温度で、0.1〜15%の加工率をもつて圧下ま
たは曲げを与えて鋼材のスケールにクラツクを入
れるとともに、その加工中または加工直後から冷
却を開始し、570℃以上の温度から300℃以下の温
度まで30℃/min以上の冷却速度で冷却すること
を特徴とする熱間圧延鋼材の処理方法。
1. After hot finish rolling, the hot rolled steel material is subjected to rolling or bending at a temperature of 570°C or higher with a working rate of 0.1 to 15% to create cracks in the scale of the steel material, and during the processing or processing. A method for processing hot-rolled steel material, characterized in that cooling is started immediately after, and cooling is performed from a temperature of 570°C or higher to a temperature of 300°C or lower at a cooling rate of 30°C/min or higher.
JP12882484A 1984-06-22 1984-06-22 Treatment of hot rolled steel stock Granted JPS619918A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12882484A JPS619918A (en) 1984-06-22 1984-06-22 Treatment of hot rolled steel stock

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12882484A JPS619918A (en) 1984-06-22 1984-06-22 Treatment of hot rolled steel stock

Publications (2)

Publication Number Publication Date
JPS619918A JPS619918A (en) 1986-01-17
JPS635169B2 true JPS635169B2 (en) 1988-02-02

Family

ID=14994316

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12882484A Granted JPS619918A (en) 1984-06-22 1984-06-22 Treatment of hot rolled steel stock

Country Status (1)

Country Link
JP (1) JPS619918A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0442065Y2 (en) * 1986-09-19 1992-10-02
JP2001358551A (en) 2000-06-15 2001-12-26 Matsushita Electric Ind Co Ltd Filter

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56139214A (en) * 1980-03-31 1981-10-30 Mitsubishi Heavy Ind Ltd Descaling method for hot rolled steel strip
JPS5711706A (en) * 1980-06-24 1982-01-21 Nippon Steel Corp Rolling mill line

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56139214A (en) * 1980-03-31 1981-10-30 Mitsubishi Heavy Ind Ltd Descaling method for hot rolled steel strip
JPS5711706A (en) * 1980-06-24 1982-01-21 Nippon Steel Corp Rolling mill line

Also Published As

Publication number Publication date
JPS619918A (en) 1986-01-17

Similar Documents

Publication Publication Date Title
KR100313619B1 (en) Process and processing lines for manufacturing cold rolled stainless steel strips, titanium alloy strips and other metal strips
JP4905615B2 (en) Stainless steel strip manufacturing method and integrated rolling mill line
JP3407847B2 (en) Descaling method of hot rolled steel strip
JPH03130320A (en) Production of grain-oriented silicon steel sheet excellent in surface characteristic
JP4813123B2 (en) Method for producing austenitic stainless steel sheet with excellent surface quality
JPS62253732A (en) Production of austenitic stainless steel strip and sheet having excellent polishability
JPS5741821A (en) Descaling method for steel strip
JPS635169B2 (en)
JPH0610172A (en) Treatment of hot finished austenitic stainless steel strip
JP3121959B2 (en) Method of manufacturing cold rolled stainless steel strip
JPH0325487B2 (en)
JPH11129015A (en) Method of producing thin-scale steel sheet
JPS6149706A (en) Manufacture of thin austenite stainless-steel sheet
JP3133870B2 (en) Method for producing austenitic stainless steel sheet having good surface gloss
JPS582245B2 (en) Method for producing hot rolled steel strip with thin black scale
JPH0325486B2 (en)
JPH037729B2 (en)
JPH09108724A (en) Mechanical descaling method for hot rolled strip
RU2233717C2 (en) Stainless-steel strip making process and complex line of rolling mill
JPH07216522A (en) Production of titanium sheet excellent in surface characteristic
JPS61199084A (en) Manufacture of cr stainless steel sheet
JPH0156126B2 (en)
JPH11179493A (en) Production of steel strip excellent in surface quality with twin roll type continuous casting machine
JPH11156427A (en) Descaling method for hot rolled plate
JP3857817B2 (en) Manufacturing method of stainless steel strip with excellent pickling performance by twin roll type continuous casting machine