JPS61127816A - Hot rolling method of austenitic stainless steel - Google Patents

Hot rolling method of austenitic stainless steel

Info

Publication number
JPS61127816A
JPS61127816A JP24995884A JP24995884A JPS61127816A JP S61127816 A JPS61127816 A JP S61127816A JP 24995884 A JP24995884 A JP 24995884A JP 24995884 A JP24995884 A JP 24995884A JP S61127816 A JPS61127816 A JP S61127816A
Authority
JP
Japan
Prior art keywords
hot
rolling
rolled
temperature
heating zone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24995884A
Other languages
Japanese (ja)
Inventor
Kenji Watanabe
健次 渡辺
Keiichi Yoshioka
吉岡 啓一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP24995884A priority Critical patent/JPS61127816A/en
Publication of JPS61127816A publication Critical patent/JPS61127816A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To eliminate the need for an annealing stage after hot rolling by dividing a hot finish rolling group to the first half and second half, executing ordinary high-speed hot rolling with the finishing mills of the first half and rolling a steel at a specific draft or above with the finishing mills of the second half. CONSTITUTION:A heating zone or holding zone is preliminarily installed between the rolling stands in the hot finish rolling group and the hot rough rolling is executed in the stage of subjecting an austenitic stainless steel to hot rolling. The steel is then hot-rolled by the finishing mills in the stage before the heating zone or holding zone and is held at >=1,000 deg.C within 10 minutes in the heating zone or holding zone. The steel is succession hot-rolled at >=20% draft by the finishing mills in the rear stage and the temp. on the outlet side of the final hot finishing mill is maintained at >=950 deg.C. The steel plate right after the end of the final hot finish rolling is quickly cooled down to <=600 deg.C and is thereafter coiled.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は18%cr−8%Ni系を中心とするオース
テナイト系ステンレス鋼の熱間圧延方法に関し、特に熱
間圧延後の焼鈍工程(いわゆる熱延板焼鈍)を省略可能
とした熱間圧延方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention relates to a hot rolling method for austenitic stainless steel, mainly 18% CR-8% Ni system, and particularly relates to an annealing process after hot rolling (so-called hot rolling). The present invention relates to a hot rolling method that makes it possible to omit plate annealing.

従来の技術 従来一般にオーステナイト系ステンレス鋼薄板を製造す
るにあたっては、成分調整した溶鋼を連続鋳造法あるい
は造塊−分塊圧延法によってスラブとし、そのスラブを
熱間圧延して熱延板とした後、連続焼鈍−酸洗ラインに
おいて、軟化焼鈍(熱延板焼鈍)を行なうとともに表面
に付着したスケールを除去するための酸洗法による脱ス
ケールを行ない、その後冷間圧延によって所要の板厚の
薄板とし、さらに最終焼鈍および酸洗を行なりて冷延薄
鋼板製品とするのが通常であった。このような従来の一
般的な方法における熱間圧延後の熱延板に対する焼鈍の
目的は、機械的性質の均一化を図って冷延製品の面内異
方性を小さくすると同時に、その後の冷間圧延における
加工を容易にするために熱延板の軟質化を図ることにあ
り、そのためには通常1000℃以上の高温での熱処理
を必要とする。このような熱延板焼鈍のための高温での
熱処理においては、多量の熱エネルギーを消費しておシ
、また連続焼鈍−酸洗ラインのライン速度は焼鈍によっ
て律速されている。したがってこのような熱延板焼鈍を
省略することができれば、省エネルギーおよび生産性向
上の点で多大なメリットが得られると期待される。
Conventional technology Conventionally, in the production of austenitic stainless steel thin sheets, composition-adjusted molten steel is formed into a slab by continuous casting or ingot-blubber rolling, and the slab is hot-rolled to form a hot-rolled sheet. In the continuous annealing-pickling line, softening annealing (hot-rolled sheet annealing) and descaling are performed using a pickling method to remove scale attached to the surface, followed by cold rolling to form a thin sheet of the required thickness. Normally, the product is then subjected to final annealing and pickling to produce a cold-rolled thin steel sheet product. The purpose of annealing the hot-rolled sheet after hot rolling in this conventional general method is to equalize the mechanical properties and reduce the in-plane anisotropy of the cold-rolled product, and at the same time to reduce the in-plane anisotropy of the cold-rolled product. The objective is to soften the hot rolled sheet in order to facilitate processing during rolling, and for this purpose heat treatment at a high temperature of 1000° C. or higher is usually required. In such high-temperature heat treatment for annealing hot-rolled sheets, a large amount of thermal energy is consumed, and the line speed of the continuous annealing-pickling line is determined by the annealing. Therefore, if such hot-rolled sheet annealing can be omitted, it is expected that great benefits will be obtained in terms of energy saving and productivity improvement.

ところで最近に至シ、オーステナイト系ステンレス鋼の
薄板の製造プロセスにおける熱延板に対する焼鈍工程の
省略について、既にいくつか提案がなされている。その
代表的なものとしては、例えば特公昭5B−56642
号に示されるように単に熱延板を軟質にすることだけを
目的として熱間圧延終了温度を高める方法、あるいは例
えば特開昭59−13028号に示されているように、
熱延鋼板の軟質化を考慮せずに熱間仕上圧延時の噛込温
度を下げて熱延組織を残し、冷延材の材質改善を回った
方法などがある。
Recently, several proposals have already been made for omitting the annealing step for hot rolled sheets in the manufacturing process of thin sheets of austenitic stainless steel. Typical examples include, for example, Special Publication No. 5B-56642
There is a method of increasing the hot rolling end temperature simply for the purpose of making the hot rolled sheet soft, as shown in No. 1983, or as shown in, for example, JP-A-59-13028.
There is a method to improve the material quality of cold-rolled steel by lowering the biting temperature during hot finish rolling to leave the hot-rolled structure intact without considering the softening of the hot-rolled steel sheet.

発明が解決すべき問題点 上述のように既に提案されているオーステナイト系ステ
ンレス鋼熱延板の焼鈍工程省略のための方法は、その後
の冷間圧延工程における作業性と冷延製品の材質面との
両者の面から総合的に検討されたものではなく、いずれ
も一長一短があり、実用化には至っていない。すなわち
前記2方法のうち、前者の方法は熱延板を軟質化して冷
延工程での作業性を改善することのみが図られ、材質面
、特に材質の均一化による面内異方性の低減については
効果がなく、一方後者の方法は材質面のみに考慮が払わ
れたものであって、熱延板の軟質化による冷延工程での
作業性(冷延性)の改善はなされなかった。また、熱延
後の焼鈍を省略した熱延板においては、一般に表面スケ
ール層直下の脱Cr層が少なりため酸洗工程での脱スケ
ール性が劣り、そのため酸洗後もスケール残りが生じ易
く、冷延板の表面品質に悪影響を及ぼす問題があるが、
前記の従来の方法ではこの点も解決されていなかったの
が実情である。
Problems to be Solved by the Invention As mentioned above, the method for omitting the annealing process of hot-rolled austenitic stainless steel sheets has been developed in such a way that the workability in the subsequent cold rolling process and the material quality of the cold-rolled product are Both aspects have not been comprehensively studied, and each has advantages and disadvantages, and has not been put into practical use. In other words, of the two methods mentioned above, the former method is only intended to soften the hot-rolled sheet and improve workability in the cold rolling process, and to reduce in-plane anisotropy by making the material uniform, especially the material. On the other hand, the latter method was considered only in terms of material quality, and did not improve workability (cold-rollability) in the cold rolling process by softening the hot-rolled sheet. In addition, in hot-rolled sheets in which annealing after hot rolling is omitted, there is generally less Cr-removal layer directly under the surface scale layer, resulting in poor descaling performance in the pickling process, and as a result, scale remains easily even after pickling. , there is a problem that adversely affects the surface quality of cold-rolled sheets.
The reality is that this point has not been solved in the conventional methods described above.

この発明は以上の事情に鑑みてなされたもので、熱延板
に対する焼鈍工程を省略した場合でも、後工程の冷間圧
延を容易にすると同時に、冷間圧延後の製品の面内異方
性を著しく小さく(すなわちイヤリング率を著しく小さ
く)することができ、しかも熱延板の脱スケール性を著
しく改善することを可能とした、オーステナイト系ステ
ンレス鋼の熱間圧延方法を提供することを目的とするも
のである。
This invention was made in view of the above circumstances, and even when the annealing process for hot-rolled sheets is omitted, it facilitates cold rolling in the subsequent process, and at the same time improves the in-plane anisotropy of the cold-rolled product. The purpose of the present invention is to provide a method for hot rolling austenitic stainless steel, which makes it possible to significantly reduce the earring ratio (that is, significantly reduce the earring ratio) and to significantly improve the descaling properties of hot rolled sheets. It is something to do.

問題点を解決するための手段 上述の目的を達成するべく、オーステナイト系ステンレ
ス鋼の熱延鋼板の軟質化、脱スケール性の改善、および
冷延板の材質向上(特に面内異方性の低減)について総
合的に検討を加え、鋭意実験・研究を重ねた結果、通常
6〜7スタンドで構成さ几ている熱間仕上圧延機群を前
半と後半に分け、前半の熱間仕上圧延機で通常の高速熱
間圧延を行なった後、1OOO℃以上の温度で10分以
内加熱・保持し、引続き後半の熱間仕上圧延機で20チ
以上の圧下率で圧延しかつ最終仕上圧延機出側温度を9
50℃以上に確保し、さらにその熱間仕上圧延終了直後
の熱延板を600℃以丁に急冷してから巻取ることによ
りて、熱延鋼板の軟質化と脱スケール性の向上、および
冷延板での面内異方性の低減を同時に達成し得ることを
見出し、この発明をなすに至ったのである。
Means to Solve the Problems In order to achieve the above objectives, we have softened the hot-rolled austenitic stainless steel sheet, improved the descaling properties, and improved the material quality of the cold-rolled sheet (especially reduced in-plane anisotropy). ), and as a result of intensive experiments and research, we divided the hot finishing mill group, which usually consists of 6 to 7 stands, into the first half and the second half, and the first half hot finishing mill After performing normal high-speed hot rolling, it is heated and held at a temperature of 100°C or higher for less than 10 minutes, and then rolled at a reduction rate of 20 inches or higher in a hot finishing mill in the latter half, and then rolled at the exit of the final finishing mill. Temperature 9
By maintaining the temperature at 50°C or higher, and then rapidly cooling the hot-rolled steel sheet immediately after hot finish rolling to 600°C or higher before winding it, the hot-rolled steel sheet becomes softer and the descaling property is improved. They discovered that it is possible to simultaneously reduce the in-plane anisotropy of a rolled sheet, and came up with the present invention.

したがってこの発明の方法は、オーステナイト系ステン
レス鋼を熱間圧延するにあたり、仕上圧延機群内の圧延
機スタンド間に加熱帯もしくは保熱帯を設置しておき、
オーステナイト系ステンレス鋼スラブを熱間粗圧延した
後、前記加熱帯もしくは保熱帯りり前段側の熱間仕上圧
延機で熱間圧延し、次いで前記加熱帯もしくは保熱帯に
おいて1000℃以上の温度に10分以内保持し、引続
いて後段側の熱間仕上圧延機により20%以上の圧下率
で熱間圧延しかつ最終仕上圧延機出側温度を950℃以
上に確保し、さらに最終仕上圧延直後の銅帯を600℃
以下に急冷してから巻取ることを特徴とするもつでちる
Therefore, in the method of the present invention, when hot rolling austenitic stainless steel, a heating zone or a heating zone is installed between rolling mill stands in a group of finishing mills,
After the austenitic stainless steel slab is hot-rough rolled, it is hot-rolled in a hot finishing mill on the preceding stage of the heating zone or insulating zone, and then heated to a temperature of 1000°C or higher for 10 minutes in the heating zone or insulating zone. Then, hot rolling is carried out at a reduction rate of 20% or more using a hot finishing mill on the later stage, and the temperature at the exit of the final finishing mill is maintained at 950°C or higher, and further, the copper immediately after the final finishing rolling is The band is heated to 600℃
It is characterized by being rapidly cooled and then rolled up.

発明の詳細な説明 先ずこの発明の方法をなすに至る基礎となった知見につ
いて説明する。
DETAILED DESCRIPTION OF THE INVENTION First, the findings that formed the basis for the method of this invention will be explained.

本発明′者等は熱間圧延の焼鈍工程を省略した熱延板に
ついての調査結果から次のような知見を得た。
The inventors of the present invention obtained the following knowledge from the results of investigation on hot rolled sheets in which the annealing process of hot rolling was omitted.

(、)  熱延板の軟質化を図るためには熱間仕上圧延
終了温度を高くする必要がある。
(,) In order to soften the hot-rolled sheet, it is necessary to raise the finishing temperature of hot finish rolling.

(b)  通常の条件で熱間圧延を行なって焼鈍工程を
省略した場合、酸洗ラインにおいてスケール残りや肌黒
が生じ易いため、ライン速度を上げることができない。
(b) If hot rolling is performed under normal conditions and the annealing step is omitted, scale residue and black skin tend to occur in the pickling line, making it impossible to increase the line speed.

(C)  通常の条件で熱間圧延を行なって焼鈍工程を
省略した場合、冷延板での面内異方性は熱延板焼鈍を行
なった現行材と比較して大きい。
(C) When hot rolling is performed under normal conditions and the annealing process is omitted, the in-plane anisotropy of the cold rolled sheet is greater than that of the current material which is annealed.

(d)  熱間粗圧延後、シートバーの粒径を調整する
ことKよって冷延板の面内異方性を改善することができ
る。
(d) After hot rough rolling, the in-plane anisotropy of the cold rolled sheet can be improved by adjusting the grain size of the sheet bar.

これらの基礎的な知見に基いてさらに実験・研究を重ね
た結果、先ず熱間仕上圧延の中途で1000℃以上の温
度に短時間加熱保持するととによって、表面スケール層
直下のCr欠乏層の形成が促進されて脱スケール性の向
上に有利となるとともに、再結晶が促進されて熱延板集
合組織もランダム化され、冷延板での面内異方性の改善
に有利となり、さらに上述のような加熱保持後の圧下率
を20%以上としかつ最終仕上圧延機出側温度を950
℃とすることによって熱延板の軟質化が達成され、しか
も最終仕上圧延直後(巻取前)に600℃以下に急冷す
ることも脱スケール性の向上に有利となることを見出し
た。そしてこれらの各条件を組合せることKよって、熱
延板に対する焼鈍工程を省略しても、脱スケール性に優
れかっ冷間圧延性における加工性が良好でしかも冷間圧
延後の面内異方性も小さい熱延板を得ることが可能とな
ったのである。
As a result of further experiments and research based on these basic findings, we first found that a Cr-depleted layer was formed just below the surface scale layer by heating and holding at a temperature of 1000°C or higher for a short time in the middle of hot finish rolling. is promoted, which is advantageous for improving descaling properties, and recrystallization is promoted and the texture of the hot rolled sheet is randomized, which is advantageous for improving the in-plane anisotropy of the cold rolled sheet. The rolling reduction rate after heating and holding is 20% or more, and the final finish rolling machine exit temperature is 950.
It has been found that softening of the hot-rolled sheet can be achieved by adjusting the temperature to 600°C or lower, and that quenching to 600°C or lower immediately after final finish rolling (before winding) is also advantageous for improving descaling properties. By combining these conditions, even if the annealing process for hot-rolled sheets is omitted, the descaling properties are excellent, the workability in cold rolling is good, and the in-plane anisotropy after cold rolling is improved. This made it possible to obtain hot-rolled sheets with low hardness.

次にこのような熱間圧延各条件の限定理由について実験
結果に基いて説明する。
Next, the reason for limiting each hot rolling condition will be explained based on experimental results.

代表的なオーステナイト系ステンレス鋼であるSUS 
304鋼種O200m厚の連鋳スラブを1240℃にお
いて1時間加熱し、熱間粗圧延により2゜〜5Qw厚の
シートバーとした後、直ちに7バスの熱間仕上圧延によ
p4wm厚の熱延板とした。この熱間仕上圧延において
は、その中途で種々の条件で加熱保持を行なった。この
ようにして作成された熱延板に対し、熱延板焼鈍を施さ
ずに、シッットブラストおよび酸洗による脱スケール処
理を施した。酸洗は、80℃の20%H2SO4中に5
0秒浸漬し、続いて20チ(I(NO,+HF )中に
50秒浸漬する条件で行なった。セして酸洗後の熱延板
についてスケール残りの有無を調べ、脱スケール性を評
価した。さらに酸洗後の熱延板を常法に従って冷間圧延
して0.70厚の冷延板とし、仕上焼鈍を行なって冷延
板製品としてその材質、特に面内異方性を調べた。
SUS, a typical austenitic stainless steel
A continuous cast slab of 304 steel type O with a thickness of 200 m was heated at 1240°C for 1 hour, hot rough rolled into a sheet bar with a thickness of 2° to 5Qw, and then immediately hot-rolled in 7 baths to a hot rolled plate with a thickness of P4wm. And so. During this hot finish rolling, heating and holding were performed under various conditions during the hot finish rolling. The hot-rolled sheet thus produced was subjected to descaling treatment by shit blasting and pickling without hot-rolled sheet annealing. Pickling was carried out in 20% H2SO4 at 80 °C.
The test was carried out under the conditions of immersion for 0 seconds, followed by 50 seconds of immersion in 20 ml (I(NO, +HF)).After pickling, the hot rolled sheet was examined for the presence or absence of scale remaining, and the descaling performance was evaluated. Furthermore, the hot-rolled sheet after pickling was cold-rolled according to a conventional method to obtain a cold-rolled sheet with a thickness of 0.70, which was then final annealed to produce a cold-rolled sheet product.The material properties, especially the in-plane anisotropy, were investigated. Ta.

この実験における熱間仕上圧延中途における加熱保持温
度と熱延板の脱スケール性との関係を第1図に示す。第
1図から、熱間仕上圧延中途での加熱保持温度が100
0℃以上であれば脱スケール性が極めて良好となること
がわかる。しかしながら1000℃以上の温度で10分
以上加熱保持すればスケールロス量が増大し、歩留シが
低下するとともに、省エネルギーの観点からも好ましく
なくなる。したがってこの発明では熱間仕上圧延の中途
において1000℃以上の温度に10分以内の短時間保
持するものとした。なおこのように保持するためには、
熱間仕上圧延機群における中間の圧延機スタンド間に1
鋼板を加熱するだめの加熱手段を備えた加熱帯、あるい
は鋼板の熱を逃がさないように保温のみを行なう保熱帯
を設置しておけば良い。なおまた、この1000℃以上
の温度での保持時間の下限は特に規定しないが、その効
果を充分に発揮させるためには、通常は10秒以上保持
することが好ましい。また上述のような熱間仕上圧延中
途における保持温度の上限は特に限定しないが、スケー
ルロスあるいはエネルギーコスト等の観点から通常は1
200℃以下とすることが好ましい。
FIG. 1 shows the relationship between the heating holding temperature in the middle of hot finish rolling and the descaling property of the hot rolled sheet in this experiment. From Figure 1, the heating holding temperature in the middle of hot finish rolling is 100
It can be seen that when the temperature is 0° C. or higher, the descaling properties are extremely good. However, heating and holding at a temperature of 1000° C. or more for 10 minutes or more increases the amount of scale loss, lowers the yield, and is not preferable from the viewpoint of energy saving. Therefore, in the present invention, the temperature is maintained at 1000° C. or higher for a short time of 10 minutes or less in the middle of hot finish rolling. In order to maintain it in this way,
1 between the intermediate rolling mill stands in the hot finishing mill group
It is sufficient to install a heating zone equipped with a heating means for heating the steel plate, or a heating zone that only keeps the steel plate warm so that the heat does not escape. Furthermore, there is no particular lower limit to the holding time at this temperature of 1000° C. or higher, but in order to fully exhibit the effect, it is usually preferable to hold the temperature for 10 seconds or more. In addition, the upper limit of the holding temperature in the middle of hot finish rolling as mentioned above is not particularly limited, but it is usually set at 1 from the viewpoint of scale loss or energy cost.
The temperature is preferably 200°C or less.

一方、冷間圧延後の製品板の面内異方性に関しては、熱
間仕上圧延中途での加熱保持が極めて有効であるが、前
述の脱スケール性改善のだめの1000℃以上10分以
内の加熱保持によって充分にイヤリング率低下を達成で
きることが確認された。
On the other hand, regarding the in-plane anisotropy of the product sheet after cold rolling, heating and holding during the middle of hot finish rolling is extremely effective. It was confirmed that retention can sufficiently reduce the earring rate.

次に熱間仕上圧延後半、すなわち前述のような1000
℃以上10分以内の加熱保持後の仕上圧延における圧下
率と、最終仕上圧延終了温度は、熱延鋼板の軟質化、ひ
いては冷間圧延での加工性に影響を与える。すなわち、
前述の加熱保持後の圧下率が20%未満では仕上圧延終
了温度を高くしても圧延によって導入された歪が解放さ
れにくくなって硬質と々るから、加熱保持後の熱間仕上
圧延後半での圧下率は2C1以上とした。一方、加熱保
持後の熱間仕上圧延後半での圧下率が20チ以上でらっ
ても、仕上圧延終了温度が950℃未満では再結晶が完
了せず、熱延板が硬質となるから、仕上圧延終了温度(
最終仕上圧延機出1111I温度)は950℃以上とし
た。
Next, the second half of hot finish rolling, that is, 1000 rolls as described above.
The reduction ratio in finish rolling after heating and holding for at least 10 minutes above °C and the finishing temperature of final finish rolling affect the softening of the hot rolled steel sheet and, in turn, the workability in cold rolling. That is,
If the rolling reduction ratio after heating and holding is less than 20%, the strain introduced by rolling will be difficult to release even if the finish rolling temperature is increased, and the material will become hard. The rolling reduction ratio was set to 2C1 or more. On the other hand, even if the rolling reduction in the latter half of hot finish rolling after heating and holding is 20 inches or more, if the finish rolling end temperature is less than 950°C, recrystallization will not be completed and the hot rolled sheet will become hard. Finish rolling end temperature (
The final finish rolling mill exit temperature (1111I temperature) was 950°C or higher.

熱間仕上圧延終了後の冷却過程は、熱延板の脱スケール
性および酸洗後の表面品質に影響を与える。すなわち、
熱間仕上圧延終了後の冷却過程でC「炭化物が析出した
場合、粒界が鋭敏化して酸洗工程で粒界腐食を受け、肌
荒れの原因となるが、仕上圧延終了後、巻取シまでの間
に600’C以下の温度まで急冷すればcr炭化物の析
出を抑制することができ、酸洗による肌荒れを防止する
ことができる。またこのように熱間仕上圧延終了直後に
600℃以下まで急冷することによってスケールが割れ
易く、酸洗工程での脱スケール性を向上させることがで
き、したがってこの発明では熱間仕上圧延終了直後に6
00℃以下に急冷してから巻取ることとした。なおこの
ような急冷は、例えば水冷あるいは衝風冷却などによっ
て3ル一程度以上の冷却速度で行なうことが好ましい。
The cooling process after finishing hot rolling affects the descaling properties of the hot rolled sheet and the surface quality after pickling. That is,
If carbides precipitate during the cooling process after finishing hot rolling, the grain boundaries will become sensitized and undergo intergranular corrosion during the pickling process, causing rough skin. If the temperature is rapidly cooled to below 600'C during the process, precipitation of Cr carbides can be suppressed and roughness of the skin due to pickling can be prevented. By rapid cooling, the scale is easily broken and the descaling performance in the pickling process can be improved.
It was decided to rapidly cool the film to below 00°C and then wind it up. Incidentally, such rapid cooling is preferably carried out at a cooling rate of about 1.3 liters or more, for example, by water cooling or blast cooling.

以上のように、熱間粗圧延終了後の熱間仕上圧延中途に
おいて1000℃以上の温度K10分以内保持し、かつ
その後の熱間仕上圧延後半での圧下率を20%以上とす
るとともに最終熱間仕上圧延機出側温度を950℃以上
とし、さらに仕上圧延終了直後の鋼板を600°C以下
に急冷してから巻取ることによって、現行の熱延板焼鈍
を省略しても、脱スケール処理における脱スケール性が
良好でしかも冷間圧延工場での冷延性に優れた軟質な熱
延板を得ることができる。またこの熱延板を熱延板焼鈍
なしで冷間圧延した場合でも、熱間仕上圧延中途での1
000℃以上の保持によって再結晶が充分に促進されて
熱延集合組織がランダム化され、したがってイヤリング
率の小さい面内異方性の少ない冷延板を得ることが可能
となる。なお熱間仕上圧延中途での加熱保持によって、
後半の仕上圧延温度を高めることができ、そのため後半
の仕上圧延圧下率を大きくして従来よりも薄い熱延鋼板
を得ることも可能となる。
As mentioned above, in the middle of the hot finish rolling after the hot rough rolling, the temperature K is kept at 1000°C or more for 10 minutes or less, and the rolling reduction rate in the latter half of the hot finish rolling is kept at 20% or more, and the final heat is By setting the exit side temperature of the finish rolling mill to 950°C or higher, and then rapidly cooling the steel plate immediately after finish rolling to 600°C or lower before winding it, descaling can be achieved even if the current hot-rolled plate annealing is omitted. It is possible to obtain a soft hot-rolled sheet that has good descaling properties in the process and excellent cold rollability in a cold rolling mill. Furthermore, even if this hot-rolled sheet is cold-rolled without hot-rolled sheet annealing, 1.
By maintaining the temperature at 000° C. or higher, recrystallization is sufficiently promoted and the hot-rolled texture is randomized, making it possible to obtain a cold-rolled sheet with a small earring ratio and little in-plane anisotropy. In addition, by heating and holding in the middle of hot finish rolling,
The finishing rolling temperature in the second half can be increased, and therefore it is also possible to increase the finishing rolling reduction ratio in the second half to obtain a hot rolled steel sheet that is thinner than before.

実  施  例 SUS 304鋼種の200m1厚の連鋳スラブを用い
、第2図に示す工程によって実験圧延を行ない、熱延板
および冷延製品板の特性を調べた。第1表に主要な熱延
条件を示す。なお熱間粗圧延前のスラブ加熱は1250
℃X l hrで行ない、熱延板の酸洗は80℃の20
%H2SO4に50秒浸漬後、65℃の20チ(HNO
3+HF )混酸液に50秒l!!漬した。
EXAMPLE Using a continuous cast slab of SUS 304 steel with a thickness of 200 m1, experimental rolling was carried out according to the process shown in FIG. 2, and the properties of the hot-rolled sheet and the cold-rolled product sheet were investigated. Table 1 shows the main hot rolling conditions. In addition, the slab heating before hot rough rolling is 1250
℃X l hr, and hot-rolled sheets were pickled at 80℃ for 20
%H2SO4 for 50 seconds, then 20 cm (HNO
3+HF) 50 seconds in the mixed acid solution! ! Pickled.

また熱間仕上圧延中途での加熱保持は電気炉によって行
ない、温度測定は熱電対と放射温度針金併用した。冷延
製品の仕上板厚は0.71111とし、仕上焼鈍は11
00℃X11m1gにて行なった。なお第1表において
41−ム15はこの発明の条件範囲内の方法(本発明法
)で実施したものであり、厘L6〜&23は熱間仕上圧
延中途での加熱保持は行なったが、いずれかの条件がこ
の発明の範囲を外れる方法(比較法)で実施したもので
ある。さらに比較のため、現行の方法に従して、熱間仕
上圧延中途での加熱保持を行なわず、熱延板焼鈍をtt
oo’cxt−の条件で行なった例を第1表の烹24.
&25に示す。
Further, heating and holding during the hot finish rolling was performed using an electric furnace, and temperature measurement was performed using both a thermocouple and a radiation temperature wire. The finished plate thickness of the cold-rolled product is 0.71111, and the final annealing is 11.
The test was carried out at 00°C and 11ml/g. In Table 1, 41-mm 15 was carried out using the method within the condition range of this invention (method of the present invention), and 41-mm 15 was carried out by the method within the condition range of this invention (method of the present invention), and 41-mm 15 was carried out by the method within the condition range of this invention (method of the present invention), and although heating and holding was performed in the middle of hot finish rolling, These conditions were carried out using a method (comparative method) that is outside the scope of this invention. Furthermore, for comparison, according to the current method, hot-rolled sheet annealing was performed at TT without heating and holding in the middle of hot finish rolling.
An example conducted under the conditions of oo'cxt- is shown in Table 1, 24.
&25.

以上の実施例における熱延板および冷延製品板の特性調
査結果を第2表に示す。なお第2表において脱スケール
性評価は、O印は酸洗後にスケール残りが無く脱スケー
ル性が良好な場合、Δ印は若干スケール残シが生じた場
合、x印はスケール残シが多かった場合をそれぞれ示す
。またイヤリング率鈍)は、絞り試験における耳部の山
の高さをh+ 、谷の高さをhtとし、次式のheで表
わした。
Table 2 shows the results of investigating the characteristics of the hot-rolled sheets and cold-rolled product sheets in the above examples. In addition, in Table 2, the descaling performance evaluation is as follows: "O" indicates that there is no scale remaining after pickling and the descaling performance is good, "Δ" indicates that there is some scale remaining, and "X" indicates that there is a lot of scale remaining. Each case is shown below. The earring ratio (dull) was expressed by he in the following equation, where h+ is the height of the peak of the ear in the drawing test and ht is the height of the valley.

he=((h+  ht)/(ht+hz)/z)xt
o。
he=((h+ht)/(ht+hz)/z)xt
o.

第2表 第2表に示すように、本発明法により得らnた熱延板の
脱スケール性は、この発明の条件を外れた比較法により
得られた熱延板の如くスケール残りが生じることがなく
極めて優れており、熱延板焼鈍を施した現行法と比較し
て゛も遜色ないことが明らかである。また熱延板の硬さ
も比較法によるものと比較して軟質であって、現行法に
よるものとほぼ同等となシ、次工程の冷間圧延で耳割れ
が発生することなく容易に圧延することができた。
Table 2 As shown in Table 2, the descaling property of the hot-rolled sheet obtained by the method of the present invention is different from that of the hot-rolled sheet obtained by the comparative method, which does not meet the conditions of the present invention, where scale remains. It is clear that this method is extremely superior, and is comparable to the current method of annealing hot-rolled sheets. In addition, the hardness of the hot-rolled sheet is softer than that produced by the comparative method, and is almost the same as that produced by the current method, making it easy to roll without edge cracking in the next step of cold rolling. did it.

そしてまた冷延製品板の伸びは、冷間圧延後に仕上焼鈍
を行なっているため熱延条件の影響はほとんどなく、現
行法によるものと同等またはそれ以上の値を示し、また
第2表には示さなかったが0、2 %耐力および引張強
さにおいても現行法によるものとほとんど差は認められ
なかった。
Furthermore, the elongation of the cold-rolled product sheet is hardly affected by the hot-rolling conditions because finish annealing is performed after cold rolling, and the elongation is equal to or higher than that obtained by the current method, and is not shown in Table 2. However, there was almost no difference in 0 and 2% yield strength and tensile strength compared to those made by the current method.

さらに冷延製品板の面内異方性の評価値であるイヤリン
グ率は、本発明法による場合には比較法による場合と比
べて格段に低く、シかも現行法による場合と比較しても
低く、面内異方性が極めて少ないことが明らかである。
Furthermore, the earring ratio, which is an evaluation value of the in-plane anisotropy of cold-rolled product sheets, is much lower when using the method of the present invention than when using the comparative method, and may even be lower than when using the current method. It is clear that the in-plane anisotropy is extremely small.

なお本発明法および比較法において、熱間仕上圧延中途
での加熱保持時間が10分の場合につきその加熱保持温
度と冷延製品板のイヤリング率との関係を第3図に示す
In addition, in the method of the present invention and the comparative method, when the heating holding time in the middle of hot finish rolling is 10 minutes, the relationship between the heating holding temperature and the earring ratio of the cold rolled product sheet is shown in FIG.

第3図から明らかなように本発明法に従って熱間仕上圧
延中途での加熱保持温度を1000℃以上とすることに
よってイヤリング率が著しく低くなることが判る。
As is clear from FIG. 3, the earring ratio is significantly lowered by setting the heating holding temperature in the middle of hot finish rolling to 1000° C. or higher according to the method of the present invention.

発明の効果 以上の実施例からも明らかなように、この発明の熱間圧
延方法によれば、熱延板焼鈍を省略しても酸洗工程での
脱スケール性が著しく優れた熱延板を得ることができ、
したがって省エネルギーやライン速度上昇による製造コ
ストの低減を図ることができ、また再結晶が充分く行な
われて軟質な熱延板が得られるため、冷間圧延での耳割
れの発生などを招くことなく容易に冷間圧延することが
でき、さらには冷間圧延製品の面内異方性も小さくなる
ため深絞り加工により発生するイヤリングも小さく、加
工時の歩留シ向上にも寄与できるなど、種々の効果が得
られる。
Effects of the Invention As is clear from the above examples, the hot rolling method of the present invention makes it possible to produce a hot rolled sheet with extremely excellent descaling properties in the pickling process even if hot rolled sheet annealing is omitted. you can get
Therefore, it is possible to reduce manufacturing costs by saving energy and increasing line speed, and since recrystallization is sufficiently performed and a soft hot-rolled sheet is obtained, there is no occurrence of edge cracks during cold rolling. It can be easily cold-rolled, and since the in-plane anisotropy of cold-rolled products is reduced, the earrings produced during deep drawing are also smaller, contributing to improved yields during processing. The effect of this can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は熱間仕上圧延中途での加熱保持温度と熱延板5
脱スケール性との関係を示す相関図、第2図は実施例に
おける工程を示す工程図、第3図は実施例における熱間
仕上圧延中途での加熱保持温度と冷延製品板のイヤリン
グ率との関係を示す相関図である。
Figure 1 shows the heating holding temperature in the middle of hot finish rolling and the hot rolled plate 5.
A correlation diagram showing the relationship with descaling properties, Fig. 2 is a process diagram showing the process in the example, and Fig. 3 shows the relationship between the heating holding temperature in the middle of hot finish rolling and the earring ratio of the cold rolled product sheet in the example. FIG.

Claims (1)

【特許請求の範囲】[Claims] オーステナイト系ステンレス鋼を熱間圧延するにあたり
、熱間仕上圧延機群内の圧延スタンド間に加熱帯もしく
は保熱帯を設置しておき、オーステナイト系ステンレス
鋼スラブを熱間粗圧延した後、前記加熱帯もしくは保熱
帯より前段側の仕上圧延機で熱間圧延し、続いて前記加
熱帯もしくは保熱帯において1000℃以上の温度に1
0分以内保持し、引続き後段側の仕上圧延機により20
%以上の圧下率で熱間圧延し、かつ最終熱間仕上圧延機
出側温度を950℃以上に確保し、さらに最終熱間仕上
圧延終了直後の鋼板を600℃以下の温度に急冷してか
ら巻取ることを特徴とするオーステナイト系ステンレス
鋼の熱間圧延方法。
When hot rolling austenitic stainless steel, a heating zone or a heating zone is installed between rolling stands in a group of hot finishing mills, and after hot rough rolling an austenitic stainless steel slab, the heating zone is Alternatively, hot rolling is performed in a finishing rolling mill located before the heating zone, and then heated to a temperature of 1000°C or higher in the heating zone or the heating zone.
Hold the roll for less than 0 minutes, and then use the finishing mill on the later stage to roll it for 20 minutes.
% or more, and ensure the final hot finishing mill outlet temperature is 950°C or higher, and then quickly cool the steel plate immediately after the final hot finishing rolling to a temperature of 600°C or lower. A method for hot rolling austenitic stainless steel characterized by winding.
JP24995884A 1984-11-27 1984-11-27 Hot rolling method of austenitic stainless steel Pending JPS61127816A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24995884A JPS61127816A (en) 1984-11-27 1984-11-27 Hot rolling method of austenitic stainless steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24995884A JPS61127816A (en) 1984-11-27 1984-11-27 Hot rolling method of austenitic stainless steel

Publications (1)

Publication Number Publication Date
JPS61127816A true JPS61127816A (en) 1986-06-16

Family

ID=17200713

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24995884A Pending JPS61127816A (en) 1984-11-27 1984-11-27 Hot rolling method of austenitic stainless steel

Country Status (1)

Country Link
JP (1) JPS61127816A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005105345A (en) * 2003-09-30 2005-04-21 Nippon Steel Corp Method for producing austenitic stainless steel sheet excellent in uniformity of surface

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005105345A (en) * 2003-09-30 2005-04-21 Nippon Steel Corp Method for producing austenitic stainless steel sheet excellent in uniformity of surface

Similar Documents

Publication Publication Date Title
JPS63421A (en) Novel production of thin austenitic stainless steel sheet having excellent surface characteristic and material quality
JPH01215925A (en) Method for cold rolling grain-oriented magnetic steel sheet
JPS61127816A (en) Hot rolling method of austenitic stainless steel
JP4003821B2 (en) Method for producing ferritic stainless steel sheet with excellent ridging resistance
JPH091209A (en) Equipment for continuously casting and hot-rolling stainless steel strip and manufacture of stainless steel strip excellent in surface quality
JP3222057B2 (en) Method for producing Cr-Ni stainless steel hot-rolled steel sheet and cold-rolled steel sheet excellent in surface quality and workability
JP3917320B2 (en) Method for producing ferritic stainless steel sheet with excellent ridging resistance
JPH037729B2 (en)
JPH04160117A (en) Manufacture of ferritic stainless steel sheet excellent in gloss, corrosion resistance and ridging resistance
JPH0219426A (en) Manufacture of cr-ni stainless steel sheet having excellent quality and surface property
JPS5913026A (en) Manufacture of ferritic stainless steel sheet with superior workability
JPH0525548A (en) Production of cr-ni stainless steel sheet excellent in material and surface quality
JPH0156126B2 (en)
JPH07268460A (en) Production of cr-ni stainless steel sheet excellent in surface quality and workability
JPH0368929B2 (en)
JPH04120215A (en) Manufacture of grain oriented silicon steel sheet excellent in magnetic characteristic and surface characteristic
JPH02263930A (en) Production of cr-ni stainless steel sheet excellent in surface quality
JPS62192537A (en) Manufacture of cold rolled austenitic stainless steel sheet or strip
JP2730802B2 (en) Method for producing thin Cr-Ni stainless steel sheet with excellent workability
JP2000094100A (en) Production of austenitic stainless steel thin plate
JPS61246323A (en) Manufacture of austenitic stainless steel sheet or strip
JP2000045030A (en) Manufacture of cold-rolled sheet of low carbon steel
JPH09268323A (en) Hot rolled austenitic stainless steel plate excellent in recrystallization softening characteristic, and its production
JPS61246326A (en) Manufacture of ferritic stainless steel sheet superior in surface property and workability
JPS6362822A (en) Production of cold rolled steel sheet for deep drawing