JP2595251B2 - Flaw detection method for ferromagnetic piping - Google Patents

Flaw detection method for ferromagnetic piping

Info

Publication number
JP2595251B2
JP2595251B2 JP62183084A JP18308487A JP2595251B2 JP 2595251 B2 JP2595251 B2 JP 2595251B2 JP 62183084 A JP62183084 A JP 62183084A JP 18308487 A JP18308487 A JP 18308487A JP 2595251 B2 JP2595251 B2 JP 2595251B2
Authority
JP
Japan
Prior art keywords
flaw detection
defect
eddy current
frequency
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62183084A
Other languages
Japanese (ja)
Other versions
JPS6426144A (en
Inventor
靖治 細原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP62183084A priority Critical patent/JP2595251B2/en
Publication of JPS6426144A publication Critical patent/JPS6426144A/en
Application granted granted Critical
Publication of JP2595251B2 publication Critical patent/JP2595251B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は都市ガス供給用配管等の強磁性体配管の渦流
探傷法に関するものである。
Description: TECHNICAL FIELD The present invention relates to an eddy current flaw detection method for ferromagnetic pipes such as city gas supply pipes.

(従来の技術) 配管の渦流探傷方法の一つとして、渦流探傷コイルに
複数種類の周波数の信号電流を供給して渦流探傷を行う
多重周波数探傷方法がある。従来のかかる方法は、例え
ばコイルに2周波数の信号電流を供給し、夫々の周波数
に対する信号の減算を行うことにより、検出すべき欠陥
による信号以外の雑音を単に抑制しようとするものであ
る。
(Prior Art) As one of the eddy current flaw detection methods for piping, there is a multi-frequency flaw detection method in which signal currents of a plurality of types of frequencies are supplied to an eddy current flaw detection coil to perform eddy current flaw detection. Such a conventional method is to simply suppress noise other than a signal due to a defect to be detected by, for example, supplying a signal current of two frequencies to a coil and subtracting a signal for each frequency.

(発明が解決しようとする課題) このような従来の方法は、非磁性体配管については有
効ではあるものの、強磁性体配管についての探傷におい
ては欠陥の種類や程度、例えば貫通孔であるか減肉であ
るか、また減肉の程度はどの程度であるかを検出し、こ
れらを具体的に出力するのは難しい。また、この方法で
は、継手等の、欠陥信号以外の信号が除去されてしまう
ので、これらを検出することができない。
(Problems to be Solved by the Invention) Although such a conventional method is effective for non-magnetic pipes, the flaw detection for ferromagnetic pipes is not limited to the type and degree of defects, for example, whether or not a through hole is present. It is difficult to detect whether it is meat and the degree of the thickness reduction and output these concretely. Further, according to this method, signals other than the defect signal such as joints are removed, so that these cannot be detected.

本発明は以上の課題を解決することを目的とするもの
である。
An object of the present invention is to solve the above problems.

(課題を解決するための手段) 上記の課題を解決するための本発明の構成を、実施例
に対応する図面を参照して説明すると、本発明では、配
管2内を移動自在に構成した基体1の周囲に渦流探傷用
コイル4を設け、この渦流探傷用コイル4に、減肉の検
出に適する低い周波数の信号と、貫通孔の検出に適する
高い周波数の信号を供給して夫々の周波数毎に渦流探傷
を行い、検出信号の変化により欠陥の種類の識別を行う
と共に、検出信号の大きさにより欠陥の程度を検出し、
これらの探傷結果はカラー画像表示装置14の共通の画面
中に出力して、その画面上に表示される、配管2の長さ
方向に対応する共通の帯状表示16中の対応位置に重ねて
表示するものとし、これらの表示17は、欠陥の種類を色
で、また欠陥の程度を幅で識別可能にすることを提案す
る。
(Means for Solving the Problems) The structure of the present invention for solving the above problems will be described with reference to the drawings corresponding to the embodiments. 1, a low-frequency signal suitable for detecting thinning and a high-frequency signal suitable for detecting a through-hole are supplied to the eddy current detection coil 4 for each frequency. Eddy current flaw detection to identify the type of defect based on the change in the detection signal, and detect the degree of the defect based on the magnitude of the detection signal.
These flaw detection results are output on a common screen of the color image display device 14 and displayed on the screen at a corresponding position in a common strip display 16 corresponding to the length direction of the pipe 2. These indications 17 suggest that the type of defect can be identified by color and the degree of defect can be identified by width.

(作用) 渦流探傷において、渦流探傷用コイル4に供給する信
号の周波数に対しての、欠陥の検出出力のSN比の関係は
第4図に示すように、SN比が最大となる周波数が欠陥の
種類、即ち減肉と貫通孔によって異なる。例えば第4図
において、減肉の検出出力のSN比が最大となる周波数fe
は約10kHz、また貫通孔の検出出力のSN比が最大となる
周波数fuは約80kHzである。
(Operation) In the eddy current flaw detection, the relationship between the frequency of the signal supplied to the eddy current flaw detection coil 4 and the SN ratio of the defect detection output is as shown in FIG. , Ie, thickness reduction and through holes. For example, in FIG. 4, the frequency fe at which the S / N ratio of the detection output of the wall thinning is maximized.
Is about 10 kHz, and the frequency fu at which the S / N ratio of the detection output of the through hole is maximum is about 80 kHz.

このため低い方の周波数feによる渦流探傷では、減肉
の検出信号を、欠陥以外の雑音や他の欠陥、即ち貫通孔
の検出信号から容易に分離して得ることができる。また
高い方の周波数fuによる渦流探傷では、貫通孔の検出信
号を、前記欠陥以外の雑音や減肉の検出信号から容易に
分離して得ることができる。また夫々の検出信号の大き
さから、夫々の欠陥の程度を検出することができる。
Therefore, in the eddy current flaw detection using the lower frequency fe, the detection signal of the thinning can be easily separated and obtained from the noise other than the defect and other defects, that is, the detection signal of the through hole. Further, in the eddy current flaw detection using the higher frequency fu, the detection signal of the through hole can be easily separated from the detection signal of noise other than the defect and the detection signal of the wall thinning. Further, the degree of each defect can be detected from the magnitude of each detection signal.

従って、夫々の周波数毎の探傷結果を画像表示装置の
共通の画面中に出力して、画面上に表示される共通の帯
状表示中に、探傷結果に応じて色及び幅を変えて重ねて
表示すれば、この画面上の表示により、配管の欠陥個所
を、その種類及び程度と共に検出することができる。
Therefore, the flaw detection results for each frequency are output to a common screen of the image display device, and are displayed in a common band shape displayed on the screen while changing colors and widths according to the flaw detection results. Then, the defect on the pipe can be detected together with its type and degree by the display on this screen.

(実施例) 以下に本発明の探傷方法を、都市ガス供給用埋設鉄管
等の強磁性体配管の探傷に適用した実施例を参照して詳
細に説明する。
(Example) Hereinafter, the flaw detection method of the present invention will be described in detail with reference to an example in which flaw detection is performed on a ferromagnetic pipe such as a buried iron pipe for supplying city gas.

第1図、第2図は本発明方法を実施するための機器等
の構成の実施例を模式的に示すもので、また第3図
(a),(b)は探傷部の構成例を示すものである。こ
れらの図において、符号1は配管2内に移動自在に構成
した基体で、この基体1は、周囲に車輪3を設けて、対
象とする配管2内を、その内壁面との間に適宜間隔を保
持しつつ移動自在に構成している。符号4は前記基体1
の周囲に設けた渦流探傷コイルで、この渦流探傷コイル
4は、第2図(a)に示すように前後一対のコイル4a,4
bで構成している。
FIG. 1 and FIG. 2 schematically show an embodiment of the configuration of equipment and the like for carrying out the method of the present invention, and FIGS. 3 (a) and 3 (b) show an example of the configuration of a flaw detector. Things. In these figures, reference numeral 1 denotes a base which is configured to be movable in a pipe 2. The base 1 is provided with wheels 3 around the base, and a suitable space is provided between the target pipe 2 and its inner wall surface. It is configured to be movable while holding the. Reference numeral 4 denotes the base 1
The eddy current flaw detection coil 4 is provided around a pair of coils 4a and 4a, as shown in FIG.
It consists of b.

渦流探傷コイル4には渦流探傷装置本体5から信号線
15を介して、高、低2つの周波数の信号を供給して渦流
探傷を行う構成としており、このため渦流探傷装置本体
5には、これらの夫々の周波数毎に渦流探傷を行う一対
の渦流探傷手段6u,6eを設けている。
The eddy current flaw detection coil 4 has a signal line
The eddy current flaw detection device is configured to supply two high and low frequency signals via the line 15 to perform eddy current flaw detection. For this reason, the eddy current flaw detection device main body 5 has a pair of eddy current flaws that perform eddy current flaw detection for each of these frequencies. Means 6u and 6e are provided.

渦流探傷手段6における具体的な渦流探傷手法として
は、前記一対のコイル4a,4bによって得られる振幅と位
相の2つの情報に基づき、後述するように欠陥等におけ
る検出信号の信号の変化を検出して行う適宜の探傷手法
を適用することができる。
As a specific eddy current flaw detection method in the eddy current flaw detection means 6, a change in a signal of a detection signal at a defect or the like is detected based on two pieces of information of amplitude and phase obtained by the pair of coils 4a and 4b as described later. An appropriate flaw detection method can be applied.

一方、前記基体1には直流磁化用コイル7を設けてお
り、この直流磁化用コイル7には直流電流供給手段8か
ら所定の直流電流を供給することにより、前記渦流探傷
用コイル4により渦流探傷に際して、強磁性体配管2を
磁気飽和させることにより、材質に起因する雑音を低減
することができる。その際、直流磁化用コイル7には間
欠的に直流電流を供給し、これに同期して間欠的に渦流
探傷を行うようにすれば、基体1小型化、直流磁化用コ
イル7の発熱量の低減を行うことができる。
On the other hand, a DC magnetizing coil 7 is provided on the base 1, and a predetermined DC current is supplied to the DC magnetizing coil 7 from a DC current supply unit 8. At this time, noise caused by the material can be reduced by magnetically saturating the ferromagnetic pipe 2. At this time, if the DC current is intermittently supplied to the DC magnetizing coil 7 and the eddy current flaw detection is performed intermittently in synchronization with the DC current, the size of the base 1 can be reduced and the heat generation amount of the DC magnetizing coil 7 can be reduced. Reduction can be performed.

次に、符号9は探傷データ処理装置であり、この探傷
データ処理装置9は、前記渦流探傷手段6及び直流電流
供給手段8の制御機能及び渦流探傷手段6による探傷デ
ータの処理や出力機能を持たせるもので、コンピュータ
等を利用して適宜に構成することができる。更に、符号
10は磁心、11は基体移動用、渦流探傷信号電送用及び給
電用を兼ねるケーブル、12はケーブルドラム、13はケー
ブル11を介しての基体移動用及び移動距離計測用を兼ね
るケーブル移動装置、14は探傷出力手段としてのカラー
画像表示装置の1つとして、カラーCTRディスプレイを
示すものである。
Next, reference numeral 9 denotes a flaw detection data processing device. The flaw detection data processing device 9 has a function of controlling the eddy current flaw detection means 6 and the direct current supply means 8 and a function of processing and outputting flaw detection data by the eddy current flaw detection means 6. It can be appropriately configured using a computer or the like. Furthermore, the sign
Reference numeral 10 denotes a magnetic core, 11 denotes a cable for moving the substrate, and also for transmitting and feeding the eddy current flaw detection signal, 12 denotes a cable drum, 13 denotes a cable moving device that also serves for moving the substrate via the cable 11 and for measuring a moving distance, 14 1 shows a color CTR display as one of the color image display devices as flaw detection output means.

以上の構成においては、ケーブル移動装置13を動作さ
せて、ケーブル11により基体1を配管2内に移動させな
がら、直流電流供給手段8及び渦流探傷手段6を動作さ
せて渦流探傷を行う。この際、渦流探傷用コイル4に
は、減肉の検出に適する低い周波数fe(=10kHz)の信
号と、貫通孔の検出に適する高い周波数fu(=80kHz)
の信号を供給し、これらの周波数fe,fu毎に渦流探傷手
段6u,6eにより渦流探傷を行う。
In the above configuration, the eddy current flaw detection is performed by operating the DC current supply means 8 and the eddy current flaw detection means 6 while operating the cable moving device 13 and moving the base 1 into the pipe 2 by the cable 11. At this time, the coil 4 for eddy current flaw detection has a low frequency fe (= 10 kHz) signal suitable for detecting thinning and a high frequency fu (= 80 kHz) suitable for detecting a through hole.
And the eddy current flaw detection means 6u, 6e performs eddy current flaw detection for each of these frequencies fe, fu.

以上の構成における渦流探傷において、基体1が配管
2の減肉個所P1を横切る際、ある周波数における一対の
渦流探傷用コイル4a,4bによる検出信号のX成分及びY
成分は、第5図(a)に示すように変化し、この変化は
リサージュ表示においては第5図(b)に示される変化
となる。同様に、貫通孔個所P2を横切る際には第6図
(a),(b)に示す変化となる。また前記欠陥以外
の、例えば、継手個所P3を横切る際には、第7図
(a),(b)に示すように検出信号の振幅が大き過ぎ
て飽和レベルL以上となる変化をする。
In the eddy current flaw detection having the above configuration, when the base 1 crosses the thinned portion P1 of the pipe 2, the X component and the Y component of the detection signal from the pair of eddy current flaw detection coils 4a and 4b at a certain frequency.
The components change as shown in FIG. 5 (a), and this change becomes the change shown in FIG. 5 (b) in the Lissajous display. Similarly, when crossing the through hole portion P2, the changes shown in FIGS. 6 (a) and 6 (b) are made. 7A and 7B, the amplitude of the detection signal is too large to change to the saturation level L or more when crossing the joint P3 other than the defect.

即ち、減肉個所P1における検出信号の変化の特徴は、
X成分の出力がY成分に比較して大きく、リサージュ表
示においてX軸に沿った形状となるのに対して、貫通孔
個所P2における検出信号の変化の特徴は、X成分Y成分
共に出力が現れ、リサージュ表示においてX軸に対して
傾斜した形状となることである。
That is, the characteristic of the change of the detection signal at the thinning portion P1 is as follows.
The output of the X component is larger than that of the Y component, and the Lissajous display has a shape along the X axis. On the other hand, the characteristic of the change in the detection signal at the through-hole portion P2 is that the output appears in both the X component and the Y component. In the Lissajous display, the shape is inclined with respect to the X axis.

従ってこれらの差異を適宜の信号処理法によって識別
するとにより、欠陥の種類、即ち減肉か貫通孔かを識別
することができる。また、これらの欠陥個所P1,P2と、
継手個所P3等の欠陥以外の個所とは、出力の大きさによ
り識別することができる。
Therefore, by identifying these differences by an appropriate signal processing method, it is possible to identify the type of the defect, that is, whether the defect is thinner or a through hole. In addition, these defective parts P1, P2,
The portion other than the defect such as the joint portion P3 can be identified by the magnitude of the output.

ところで、上述したとおり、ある周波数の信号におけ
る前記検出信号のSN比は欠陥の種類によって異なり、即
ち、検出信号のSN比が最大となる周波数が欠陥の種類に
よって異なるため、単一の周波数のみを用いた場合に
は、これらの欠陥の検出が困難であったり、識別が困難
であるというような不都合がある。例えば減肉の検出に
適する低い周波数のみを用いる場合には、欠陥の種類の
識別が困難な場合が多く、特に貫通孔個所P2を、貫通孔
として識別して検出するのは困難である。逆に、貫通孔
の検出に適した高い周波数のみを用いる場合には、減肉
の検出が困難である。
By the way, as described above, the S / N ratio of the detection signal in a signal of a certain frequency differs depending on the type of defect, that is, since the frequency at which the S / N ratio of the detection signal is maximum differs depending on the type of defect, only a single frequency is used. When used, there are inconveniences such as difficulty in detecting these defects and difficulty in identification. For example, when only a low frequency suitable for detecting thinning is used, it is often difficult to identify the type of defect, and it is particularly difficult to identify and detect the through-hole portion P2 as a through-hole. Conversely, when only high frequencies suitable for detecting through holes are used, it is difficult to detect thinning.

ところが本発明では、前述したとおり欠陥の種類の夫
々に対応した高、低2つの周波数fu,fe毎に前述の検出
信号の処理を行い、これらの探傷結果を論理和としてカ
ラー画像表示装置に表示することにより欠陥の種類の識
別及び欠陥の程度の検出を良好に行うことができるので
ある。
However, in the present invention, as described above, the above-described detection signal is processed for each of the two high and low frequencies fu and fe corresponding to each type of defect, and the flaw detection results are displayed as a logical sum on the color image display device. By doing so, it is possible to satisfactorily identify the type of defect and detect the degree of defect.

即ち、探傷出力手段としては、カラーCTR14等のカラ
ー画像表示装置を使用し、まず、配管2の正常個所P4と
欠陥個所P1,P2及び継手個所P3を色分けして表示する。
That is, as a flaw detection output means, a color image display device such as a color CTR 14 is used, and first, a normal portion P4, defective portions P1, P2, and a joint portion P3 of the pipe 2 are displayed in different colors.

例えば、第8図(a)は、欠陥等を有する配管を模式
的に示すもので、また第8図(b),(c),(d)は
(a)の配管に対して本発明により探傷を行った場合の
カラーCTR14への探傷出力の表示例を模式的に示すもの
である。第8図(b),(c),(d)に示されるとお
り、探傷結果はカラーCRT14の画面上に表示される、配
管の長さ方向に対応する共通の帯状表示中の対応位置に
色分けして重ねて表示する。尚、第8図(b),
(c),(d)では、表示の色の違いは、図中の斜線の
態様の違いにより表している。
For example, FIG. 8 (a) schematically shows a pipe having a defect or the like, and FIGS. 8 (b), (c) and (d) show the pipe of FIG. 9 schematically shows a display example of a flaw detection output to the color CTR 14 when flaw detection is performed. As shown in FIGS. 8 (b), (c), and (d), the flaw detection results are displayed on the screen of the color CRT 14, and are color-coded at corresponding positions in the common strip shape corresponding to the length direction of the pipe. And overlay them. FIG. 8 (b),
In (c) and (d), the difference in the display color is represented by the difference in the shaded form in the figure.

まず、第8図(c)は低い周波数feによる探傷結果の
みの表示であり、この低い周波数feによる探傷では減肉
個所P1が良好に検出されていて、帯状表示中に、正常個
所P4と識別できるように異なった色で表示されている。
ところが、貫通孔個所P2は、欠陥としては検出されてい
るものの、渦流探傷手段6において減肉個所との識別が
できないため、減肉個所P1と同一の色で表示されてい
る。また継手個所P3は、上述したように渦流探傷手段6
において検出信号の大きさにより識別されて、以上の各
個所P1(P2),P4とは異なった色で表示されている。
First, FIG. 8 (c) shows a display of only the flaw detection result at the low frequency fe. In the flaw detection at this low frequency fe, the thinned portion P1 is detected well, and is distinguished from the normal portion P4 during the band display. They are displayed in different colors to make it possible.
However, although the through-hole portion P2 is detected as a defect, it cannot be distinguished from the thinned portion by the eddy current flaw detection means 6, so that it is displayed in the same color as the thinned portion P1. Also, the joint point P3 is provided with the eddy current flaw detection means 6 as described above.
Are identified by the magnitude of the detection signal, and are displayed in different colors from the above-described portions P1 (P2) and P4.

次に、第8図(d)は高い周波数fuによる探傷結果の
みの表示例であり、低い周波数feによる探傷では識別で
きなかった貫通孔個所P2は、この高い周波数fuでは渦流
探傷手段6において貫通孔として明確に識別されている
ため、帯状表示中に、色が第8図(c)における表示と
は異なって表示されている。ところが減肉個所P1欠陥と
しては検出されていないため正常個所P4と何ら変わらな
い表示がなされている。また継手個所P3はこの場合も明
確に識別されて第8図と同様な表示がなされている。
Next, FIG. 8 (d) is a display example of only the flaw detection result at the high frequency fu, and the through hole P2 which could not be identified by the flaw detection at the low frequency fe penetrates the eddy current flaw detection means 6 at this high frequency fu. Since the holes are clearly identified, the color is displayed differently from the display in FIG. 8C during the band display. However, since it is not detected as a thinned portion P1 defect, the display is no different from the normal portion P4. Also in this case, the joint part P3 is clearly identified, and the same display as in FIG. 8 is made.

そこで本発明では、第8図(c)と(d)を画面上で
加算し、重ね合わせると、第8図(b)に示される表示
となり、以上の個所P1,P2,P3,P4が共通の帯状表示中に
全て異なった色で表示される。従ってカラーCRT14の画
面の観察者は、配管の欠陥を、その種類と共に観察する
ことができる。
Therefore, in the present invention, when the images shown in FIGS. 8 (c) and (d) are added and superimposed on the screen, the display shown in FIG. 8 (b) is obtained, and the above points P1, P2, P3 and P4 are common. Are all displayed in different colors. Therefore, the observer of the screen of the color CRT 14 can observe the defect of the pipe together with the type thereof.

一方、以上の探傷においては、検出信号の振幅及び位
相によって、夫々減肉及び貫通孔の程度を検出すること
もでき、本発明では、これらの程度に応じて前記個所P
1,P2,P3の表示幅を変えて表示している。従って、観察
者は、上述したように欠陥の種類と共にその程度を一目
瞭然に観察することができる。
On the other hand, in the above flaw detection, the thickness and the degree of the through-hole can be respectively detected by the amplitude and the phase of the detection signal. In the present invention, the position P is determined according to these degrees.
The display width of 1, P2, P3 is changed. Therefore, the observer can clearly observe the type of the defect and the degree thereof at a glance as described above.

尚、例えば腐食による減肉については、減肉の幅を、
その表示の幅で表すと共に、腐食の程度を色の変化で表
すようにすることもできる。
For example, for the thickness reduction due to corrosion,
In addition to the width of the display, the degree of corrosion can be represented by a change in color.

(発明の効果) 本発明は以上のとおり、渦流探傷において、渦流探傷
用コイルに、減肉の検出に適する低い周波数の信号と、
貫通孔の検出に適する高い周波数の信号を供給して夫々
の周波数毎に渦流探傷を行い、検出信号の変化により欠
陥の種類の識別を行うと共に、検出信号の大きさにより
欠陥の程度を検出し、これらの探傷結果はカラー画像表
示装置の共通の画面中に出力して、その画面上に表示さ
れる、配管の長さ方向に対応する共通の対応位置に重ね
て表示するものとし、これらの表示は、欠陥の種類を色
で、また欠陥の程度を幅で識別可能にしたので探傷結果
の出力情報が多く、画面上の表示により、配管の欠陥
を、位置、種類及び程度を共に良好に検出することがで
きるという効果がある。
(Effects of the Invention) As described above, in the present invention, in the eddy current flaw detection, the coil for eddy current flaw detection is provided with a low frequency signal suitable for detecting thinning,
A high-frequency signal suitable for detecting through holes is supplied, eddy current flaw detection is performed for each frequency, the type of defect is identified based on the change in the detection signal, and the degree of the defect is detected based on the magnitude of the detection signal. These flaw detection results are output on a common screen of the color image display device, and are displayed on the screen in a superimposed manner at a common corresponding position corresponding to the length direction of the pipe. In the display, the type of defect can be identified by color, and the degree of defect can be identified by width, so there is a lot of output information of flaw detection results. There is an effect that it can be detected.

【図面の簡単な説明】[Brief description of the drawings]

第1図、第2図は本発明法を実施する構成を模式的に示
す説明図、第3図(a),(b)は要部の具体的構成の
実施例を示す、夫々縦断及び横断説明図である。また第
4図は信号周波数と欠陥検出出力のSN比との関係を示す
説明図、第5図(a),(b)、第6図(a),(b)
及び第7図(a),(b)は欠陥等の検出出力を示す説
明図で、夫々(a)は時間軸表示、(b)はリサージュ
表示である。更に第8図(a)は欠陥等を有する配管の
模式的断面図、第8図(b),(c),(d)は(a)
の配管に対しての検出出力のCRT表示の一例図である。 符号1……基体,2……配管,3……車輪,4(4a,4b)……
渦流探傷用コイル,5……渦流探傷装置本体,6(6a,6b)
……渦流探傷手段,7……直流磁化用コイル,8……直流電
流供給手段,9……探傷データ処理装置,10……磁心,11…
…ケーブル,12……ケーブルドラム,13……ケーブル移動
装置,14……画像表示装置(CRTディスプレイ)、15……
信号線。
1 and 2 are explanatory views schematically showing a configuration for carrying out the method of the present invention, and FIGS. 3 (a) and 3 (b) show an embodiment of a specific configuration of a main part, respectively, longitudinal and transverse sections. FIG. FIG. 4 is an explanatory view showing the relationship between the signal frequency and the SN ratio of the defect detection output, and FIGS. 5 (a) and (b), and FIGS. 6 (a) and (b).
7 (a) and 7 (b) are explanatory diagrams showing detection outputs of defects and the like, wherein (a) shows a time axis display and (b) shows a Lissajous display. Further, FIG. 8 (a) is a schematic sectional view of a pipe having a defect or the like, and FIGS. 8 (b), (c) and (d) are (a)
FIG. 6 is an example diagram of a CRT display of a detection output for a pipe of FIG. Reference numeral 1 ... Base, 2 ... Piping, 3 ... Wheel, 4 (4a, 4b) ...
Eddy current inspection coil, 5 …… Eddy current inspection device main body, 6 (6a, 6b)
... Eddy current flaw detection means, 7 ... DC magnetizing coil, 8 ... DC current supply means, 9 ... Flaw detection data processing device, 10 ... Magnetic core, 11 ...
... Cable, 12 ... Cable drum, 13 ... Cable moving device, 14 ... Image display device (CRT display), 15 ...
Signal line.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】配管内を移動自在に構成した基体の周囲に
渦流探傷用コイルを設け、この渦流探傷用コイルに、減
肉の検出に適する低い周波数の信号と、貫通孔の検出に
適する高い周波数の信号を供給して、夫々の周波数毎に
渦流探傷を行い、検出信号の変化により欠陥の種類の識
別を行うと共に、検出信号の大きさにより欠陥の程度を
検出し、これらの探傷結果はカラー画像表示装置の共通
の画面中に出力して、その画面上に表示される、配管の
長さ方向に対応する共通の帯状表示中の対応位置に重ね
て表示するものとし、これらの表示は、欠陥の種類を色
で、また欠陥の程度を幅で識別可能にすることを特徴と
する強磁性体配管の探傷方法
An eddy current detection coil is provided around a base movably configured in a pipe. The eddy current detection coil has a low-frequency signal suitable for detecting thinning and a high-frequency signal suitable for detecting a through hole. A frequency signal is supplied, eddy current flaw detection is performed for each frequency, the type of defect is identified based on the change in the detection signal, and the degree of the defect is detected based on the magnitude of the detection signal. Output to the common screen of the color image display device, and shall be displayed on the screen, superimposed on the corresponding position in the common strip display corresponding to the length direction of the pipe, and these displays shall be Flaw detection method for ferromagnetic piping, wherein the type of defect can be identified by color and the degree of defect can be identified by width
JP62183084A 1987-07-22 1987-07-22 Flaw detection method for ferromagnetic piping Expired - Fee Related JP2595251B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62183084A JP2595251B2 (en) 1987-07-22 1987-07-22 Flaw detection method for ferromagnetic piping

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62183084A JP2595251B2 (en) 1987-07-22 1987-07-22 Flaw detection method for ferromagnetic piping

Publications (2)

Publication Number Publication Date
JPS6426144A JPS6426144A (en) 1989-01-27
JP2595251B2 true JP2595251B2 (en) 1997-04-02

Family

ID=16129482

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62183084A Expired - Fee Related JP2595251B2 (en) 1987-07-22 1987-07-22 Flaw detection method for ferromagnetic piping

Country Status (1)

Country Link
JP (1) JP2595251B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007052550A1 (en) * 2005-10-31 2007-05-10 Sumitomo Metal Industries, Ltd. Method for measuring s/n ratio in eddy current scratch on inner surface of tube
JP2010117370A (en) * 2010-02-22 2010-05-27 Hitachi-Ge Nuclear Energy Ltd Eddy current inspecting system
KR101679520B1 (en) 2015-12-02 2016-11-24 한국가스공사 The defect's the width of a pipe measurement system using multi channel RFECT and measurement method using the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113970593A (en) * 2021-09-16 2022-01-25 南京晨光集团有限责任公司 Inside and outside wear combined type vortex automatic check out test set

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61182848U (en) * 1985-05-02 1986-11-14

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007052550A1 (en) * 2005-10-31 2007-05-10 Sumitomo Metal Industries, Ltd. Method for measuring s/n ratio in eddy current scratch on inner surface of tube
JP2010117370A (en) * 2010-02-22 2010-05-27 Hitachi-Ge Nuclear Energy Ltd Eddy current inspecting system
KR101679520B1 (en) 2015-12-02 2016-11-24 한국가스공사 The defect's the width of a pipe measurement system using multi channel RFECT and measurement method using the same

Also Published As

Publication number Publication date
JPS6426144A (en) 1989-01-27

Similar Documents

Publication Publication Date Title
US4379261A (en) Rotating magnetic field device for detecting cracks in metal
US5414353A (en) Method and device for nondestructively inspecting elongated objects for structural defects using longitudinally arranged magnet means and sensor means disposed immediately downstream therefrom
US5751144A (en) Method and device including primary and auxiliary magnetic poles for nondestructive detection of structural faults
JPH01203965A (en) Inspector for material to be inspected made of non-ferromagnetic metal
WO2009139432A1 (en) Magnetic flaw detecting method and magnetic flaw detection device
EP1674861A1 (en) Eddy current probe and inspection method comprising a pair of sense coils
JP4766472B1 (en) Nondestructive inspection apparatus and nondestructive inspection method
JP2595251B2 (en) Flaw detection method for ferromagnetic piping
JP2008128733A (en) Magnetic flaw detection method and magnetic flaw detecting device
JPH04269653A (en) Leakage magnetic flux detector
JPH10197493A (en) Eddy-current flow detecting probe
JP3266899B2 (en) Method and apparatus for flaw detection of magnetic metal body
JP2007322176A (en) Magnetic flaw detector and leakage magnetic sensor
JP3307220B2 (en) Method and apparatus for flaw detection of magnetic metal body
Zaini et al. Detection of crack on a mild steel plate by using a magnetic probe incorporating an array of fluxgate sensors
JP4344072B2 (en) Coil device for wire eddy current testing
JPH06242076A (en) Electromagnetic flaw detecting equipment
JP4031958B2 (en) Magnetic material bending portion fracture inspection method and inspection apparatus
JPS6125312B2 (en)
JPH10318987A (en) Eddy current flaw detector
JPH07113788A (en) Probe coil for eddy current flaw detection
JPS626163A (en) Rotary magnetic field type eddy current examination method
JPH01301161A (en) Eddy current induction type defect detecting device
JPH02247556A (en) Method and device for detecting decarburized layer
JPH09178710A (en) Flaw detecting element for eddy current flaw detection device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees