JP2590255B2 - Copper material with good bondability with ceramics - Google Patents

Copper material with good bondability with ceramics

Info

Publication number
JP2590255B2
JP2590255B2 JP1052855A JP5285589A JP2590255B2 JP 2590255 B2 JP2590255 B2 JP 2590255B2 JP 1052855 A JP1052855 A JP 1052855A JP 5285589 A JP5285589 A JP 5285589A JP 2590255 B2 JP2590255 B2 JP 2590255B2
Authority
JP
Japan
Prior art keywords
ceramics
copper material
copper
bonding
plating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1052855A
Other languages
Japanese (ja)
Other versions
JPH02232326A (en
Inventor
元久 宮藤
理一 津野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP1052855A priority Critical patent/JP2590255B2/en
Publication of JPH02232326A publication Critical patent/JPH02232326A/en
Application granted granted Critical
Publication of JP2590255B2 publication Critical patent/JP2590255B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/302Cu as the principal constituent

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Ceramic Products (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、セラミックスとの接合性の良い銅材に関す
る。
Description: FIELD OF THE INVENTION The present invention relates to a copper material having good bondability with ceramics.

[従来の技術] セラミックスに銅材を接合した接合体がハイブリット
ICなどの電子部品に多く用いられている。これらの接合
は、従来、モリブデンやタングステンなどの有機バイン
ダーを含む金属ペーストをセラミックス上に印刷した
後、雰囲気炉で加熱して金属ペーストをメタライズさせ
てメタライズ層を形成し、次いで、メタライズ層をニッ
ケルメッキした後、銅材をハンダ付けにより接合させる
といった種々の工程を含む複雑な方法で行われていた。
[Prior art] A hybrid body made of ceramic and copper material is hybrid
It is often used for electronic components such as ICs. Conventionally, these bondings are performed by printing a metal paste containing an organic binder such as molybdenum or tungsten on ceramics, and then heating the metal paste in an atmosphere furnace to metallize the metal paste to form a metallized layer. After plating, it has been performed by a complicated method including various steps such as joining a copper material by soldering.

これに対し、セラミックスと銅材との接合界面に銅の
酸化物(Cu2O)を生成させてセラミックスと銅を直接接
合させるという簡単な工程からなる方法が開発され、注
目されてる。この方法は、セラミックスと銅材とを直接
接触させた状態で単に加熱処理して両者を接合させるも
のである。銅−酸素の2元状態図から理解されるよう
に、1065℃以上の温度に加熱して酸素を接触界面に供給
することにより、Cu2O液相を形成させることができる
が、これを利用してセラミックスと銅材とを直接接合さ
せるのである。酸素の供給方法には銅中の酸素による方
法(タフピッチ銅使用)と雰囲気中に存在させた酸素に
よる方法(無酸素銅使用)とがあり、タフピッチ銅を使
った接合法が一般的に用いられている。
On the other hand, a method including a simple process of directly bonding ceramics and copper by generating copper oxide (Cu 2 O) at a bonding interface between the ceramics and the copper material has been developed and attracted attention. In this method, the ceramics and the copper material are simply brought into direct contact with each other by heat treatment in a state where they are in direct contact with each other. As can be understood from the binary phase diagram of copper-oxygen, a Cu 2 O liquid phase can be formed by heating to a temperature of 1065 ° C. or more and supplying oxygen to the contact interface. Then, the ceramic and the copper material are directly joined. There are two methods for supplying oxygen: a method using oxygen in copper (using tough pitch copper) and a method using oxygen present in the atmosphere (using oxygen-free copper). A joining method using tough pitch copper is generally used. ing.

この直接接合法はそれ以前の接合法に比べて工程も簡
単で種々の利点を有しているが、なお解決すべき問題点
が幾つか残っている。
Although this direct bonding method has simpler steps and various advantages as compared with the previous bonding method, there are still some problems to be solved.

それは、銅が融点近傍まで加熱されて保持されるた
め、30ppm前後含有されるS,Fe,Si,Ag,Pb,Niなどの不純
物元素により局所的に融点が著しく低下して、銅材の表
面(素子が搭載される表面)が極端に荒れる現象や、接
触面で同様の局所的融点低下が起ってぬれの面積が減り
良好な接合が得られないという現象が起る場合があるな
どである。
This is because copper is heated to near the melting point and held, so the melting point is significantly reduced locally due to impurity elements such as S, Fe, Si, Ag, Pb, and Ni contained around 30 ppm, and the surface of the copper material (The surface on which the element is mounted) may be extremely roughened, or the same local melting point reduction may occur at the contact surface, resulting in a decrease in the area of wetting and a failure to obtain good bonding. is there.

このため、接合歩留りが著しく低下してコストアップ
につながること、銅表面が荒れて素子の搭載が不可能と
なるなどの欠点があった。
For this reason, there have been disadvantages such as that the joining yield is remarkably reduced, leading to an increase in cost, and that the copper surface becomes rough, making it impossible to mount elements.

したがって、使用されるタフピッチ銅は、不純物元素
であるS,Fe,Si,Ag,Pb,Niなどの含有量をそれぞれ10ppm
以下にする必要があり、工業的には、溶解炉の炉材、操
業条件など非常にきびしい制約を受けることになる。
Therefore, the tough pitch copper used, the content of the impurity elements S, Fe, Si, Ag, Pb, Ni, etc. each 10ppm
It is necessary to make the following, and industrially, there are very severe restrictions such as furnace materials and operating conditions of the melting furnace.

[発明が解決しようとする課題] 本発明は、上記に説明したような従来技術に鑑みなさ
れたものであり、本発明の目的は、Sなどの不純物制御
を厳密に行う必要のない、セラミックスとの接合性の良
い銅材を提供することを目的とする。
[Problems to be Solved by the Invention] The present invention has been made in view of the prior art described above, and an object of the present invention is to provide a ceramic and a ceramic that do not need to strictly control impurities such as S. It is an object of the present invention to provide a copper material having good bonding properties.

[課題を解決するための手段] 本発明の銅材は、酸素濃度が180〜300ppmであり、残
部はCuおよび不可避不純物からなるタフピッチ銅に1〜
20μmの純度99.95重量%以上のCu層を設けたことを特
徴とするセラミックスと接合性の良い銅材である。
[Means for Solving the Problems] The copper material of the present invention has an oxygen concentration of 180 to 300 ppm, with the balance being 1 to 1 tough pitch copper comprising Cu and unavoidable impurities.
This is a copper material having a good bonding property with ceramics, which is provided with a Cu layer having a purity of 99.95% by weight or more of 20 μm.

[作用] 本発明に係るセラミックスと接合性の良い銅材につい
て以下詳細に説明する。
[Operation] A copper material having good bonding properties with the ceramic according to the present invention will be described in detail below.

酸素は、セラミックスと直接金属接合させる上での必
須の元素であり、180ppm未満の濃度では接合界面での酸
素の供給量が不十分であり、接合不良が発生する。ま
た、300ppmを超える濃度では、接合性は良好であるが、
高純度Cu層が1〜20μm施されていても、素子が搭載さ
れる表面が荒れる(過剰のO2が粒界に集まり、表面あら
さが大きくなる)。よって、酸素濃度は180〜300ppmと
する。
Oxygen is an essential element for direct metal bonding with ceramics, and if the concentration is less than 180 ppm, the supply of oxygen at the bonding interface is insufficient, resulting in poor bonding. At a concentration exceeding 300 ppm, the bondability is good,
Even if a high-purity Cu layer is applied in a thickness of 1 to 20 μm, the surface on which the element is mounted becomes rough (excessive O 2 is collected at the grain boundary, and the surface roughness becomes large). Therefore, the oxygen concentration is set to 180 to 300 ppm.

高純度Cu層は、セラミックスとの接合界面において、
不可避的に混入して不純物元素による局所的融点の低下
を抑制し、界面でのCu2O液相を十分に存在させ、良好な
接合界面を得る効果を有する。
The high-purity Cu layer, at the bonding interface with the ceramic,
It has the effect of suppressing the decrease in local melting point due to impurity elements by being inevitably mixed, allowing the Cu 2 O liquid phase at the interface to sufficiently exist, and obtaining a good bonding interface.

高純度Cu層の厚さが、1μm未満ではその効果は少な
く、20μmを超えると接合性が低下する。よって、高純
度Cu層の厚さは1〜20μmとする。
If the thickness of the high-purity Cu layer is less than 1 μm, the effect is small, and if it exceeds 20 μm, the bondability is reduced. Therefore, the thickness of the high-purity Cu layer is set to 1 to 20 μm.

また、高純度Cu層を設けない場合、素子が搭載される
タフピッチ表面は、Cu2O液相の形成により、凸凹が生
じ、表面粗さが著しく大きくなる(Rmax10μm以上)
が、高純度Cu層を1〜20μm設けることにより表面が比
較的平滑になり、素子搭載の品質安定につながる。この
場合、高純度Cu層の厚さは厚くなるほど良いが、セラミ
ックスとの接合性ならびに表面粗さおよびコスト面か
ら、1〜20μmが適切である。
When a high-purity Cu layer is not provided, the surface of the tough pitch on which the element is mounted becomes uneven due to the formation of a Cu 2 O liquid phase, and the surface roughness becomes extremely large (Rmax 10 μm or more).
However, by providing a high-purity Cu layer of 1 to 20 μm, the surface becomes relatively smooth, which leads to stable quality of device mounting. In this case, the thickness of the high-purity Cu layer is preferably as thick as possible, but 1 to 20 μm is appropriate in view of the bonding property with ceramics, surface roughness and cost.

高純度Cu層のCu濃度は、99.95%以上であり、たとえ
ば、めっき処理により設ければよい。なお、メッキの場
合、めっきのままでもよいが、素材表面の平滑性をさら
に良好にし、また、急蔵ガスの除去のため、Cuめっき
後、圧延および燒純処理を行ってもよい。
The high-purity Cu layer has a Cu concentration of 99.95% or more, and may be provided, for example, by plating. In the case of plating, the plating may be performed as it is, but rolling and sintering may be performed after Cu plating in order to further improve the smoothness of the material surface and to remove the urgent gas.

なお、本発明において接合の対象となるセラミックス
の種類には特に限定されないが、たとえば、Al2O3,AlO3
・SiO2などがあげられ、また、これらのセラミックスは
適宜の基本上に形成された膜であってもよい。
The type of ceramics to be joined in the present invention is not particularly limited, but, for example, Al 2 O 3 , AlO 3
• SiO 2 and the like, and these ceramics may be films formed on an appropriate basis.

[実施例] 本発明に係るセラミックスと接合性の良い銅材をその
実施によって以下に詳説する。
[Examples] A copper material having good bonding properties with ceramics according to the present invention will be described in detail below by way of its implementation.

第1表に示す含有成分および成分割合のタフピッチ銅
の0.3mmt材を供試材とした。
A 0.3 mmt material of tough pitch copper having the components and component ratios shown in Table 1 was used as a test material.

セラミックスはアルミナ質の1.5mmt×30mmw×500mml
のものを使用した。
Ceramics are alumina 1.5mmt × 30mmw × 500mml
Was used.

接合させる銅材はあらかじめ0.3mmt×25mmw×45mmlに
エッチング加工にて準備した。Cuめっきはエッチング加
工前硫酸銅めっき浴にて実施した。
The copper material to be joined was prepared in advance by etching to 0.3 mm × 25 mm × 45 mm. Cu plating was performed in a copper sulfate plating bath before etching.

接合試験は、セラミックスとを銅材を重ねて、N2ガス
100%雰囲気中(露点−50℃)で、1070℃×10分加熱処
理後、外観検査(×40)を行い、フクレの発生有無にて
接合性を評価した。また、銅材表面の表面粗さ測定およ
び走査電子顕微鏡により表面状況を観察した。
Bonding tests, a ceramic stacked copper material, N 2 gas
After a heat treatment at 1070 ° C. × 10 minutes in a 100% atmosphere (dew point −50 ° C.), an appearance inspection (× 40) was performed, and the bonding property was evaluated based on the presence or absence of blisters. The surface condition was observed by measuring the surface roughness of the copper material surface and using a scanning electron microscope.

第2表に試験条件ならびに試験結果を示す。 Table 2 shows the test conditions and test results.

また、セラミックスに接合した銅材の表面を走査電子
顕微鏡観察した結果のうち、代表例としてNo.1(実施
例)とNo.8(比較例)を第1図(a),(b)に示す。
FIGS. 1 (a) and 1 (b) show No. 1 (Example) and No. 8 (Comparative Example) as representative examples of the results of scanning electron microscope observation of the surface of the copper material bonded to the ceramics. Show.

第2表および第1図より明らかなように、No.1〜No.6
(実施例)は、比較例より、セラミックスとの接合性が
良好であり、素子などが搭載される銅材表面もRmax×10
μm以下と平滑性に優れていた。
As is clear from Table 2 and FIG. 1, No. 1 to No. 6
(Example) shows that the bondability with ceramics is better than that of Comparative Example, and the surface of the copper material on which elements are mounted is also Rmax × 10
It was excellent in smoothness of not more than μm.

これに対してNo.7およびNo.8(比較例)はCuめっき処
理がなく、フクレの発生が多く、銅材表面の凹凸が発生
している。
On the other hand, No. 7 and No. 8 (Comparative Example) did not have the Cu plating treatment, generated many blisters, and had irregularities on the copper material surface.

No.9,10,11,12(比較例)は、めっきの有無にかかわ
らず、O2濃度が300ppmを超えており、フクレの発生は少
なかったが、表面粗さが大きかった。
In Nos. 9, 10, 11, and 12 (Comparative Examples), regardless of the presence or absence of plating, the O 2 concentration exceeded 300 ppm and the occurrence of blisters was small, but the surface roughness was large.

No.13,14,15(比較例)はO2濃度が180ppm未満であ
り、Cuめっきの有無を問わず、銅材表面の表面粗さは良
好であるが、接合性に問題がある。
In Nos. 13, 14, and 15 (Comparative Examples), the O 2 concentration was less than 180 ppm, and the surface roughness of the copper material surface was good regardless of the presence or absence of Cu plating, but there was a problem in the bondability.

No.16(比較例)は、不純物規制を行ったタフピッチ
銅であり、接合性、表面粗さとも本発明と同等である
が、工業的に製造する上で、No.16ほどに不純物を規制
するためには、相当量の設備が必要になり、コストアッ
プ・生産性低下につながる。
No. 16 (comparative example) is a tough pitch copper with impurity control, and the bonding property and surface roughness are the same as those of the present invention. To do so, a considerable amount of equipment is required, leading to an increase in cost and a decrease in productivity.

[発明の効果] 本発明によれば、極限の不純物規制を行う必要もな
く、従来のタフピッチ銅にCuめっき層を存在させるとに
よりセラミックスとの接合性の良好な銅材を提供するこ
とができ、たとえば、電子部品としてのセラミックス−
銅複合材の品質、生産性の向上に多大に寄与するもので
ある。
[Effects of the Invention] According to the present invention, it is not necessary to control the limit of impurities, and by providing a Cu plating layer on conventional tough pitch copper, it is possible to provide a copper material having good bondability with ceramics. For example, ceramics as electronic components
This greatly contributes to the improvement of the quality and productivity of the copper composite material.

【図面の簡単な説明】[Brief description of the drawings]

第1図(a)は本発明No.1の銅材を用いてアルミナセラ
ミックスに直接接合した銅材表面の結晶粒の状態を示す
走査電子顕微鏡写真である。第1図(b)は比較例No.8
の銅材を用いてアルミナセラミックに直接接合した銅材
表面の結晶粒の状態を示す走査電子顕微鏡写真である。
FIG. 1 (a) is a scanning electron micrograph showing the state of crystal grains on the surface of a copper material directly bonded to alumina ceramics using the copper material of No. 1 of the present invention. FIG. 1 (b) shows Comparative Example No. 8
3 is a scanning electron micrograph showing the state of crystal grains on the surface of a copper material directly bonded to an alumina ceramic using the copper material of FIG.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】酸素濃度が180〜300ppmであり、残部はCu
および不可避不純物からなるタフピッチ銅に1〜20μm
の純度99.95重量%以上のCu層を設けたことを特徴とす
るセラミックスと接合性の良い銅材。
An oxygen concentration of 180 to 300 ppm, and the balance is Cu
1 to 20 μm for tough pitch copper consisting of unavoidable impurities
A copper material with good bondability to ceramics, characterized by having a Cu layer having a purity of 99.95% by weight or more.
JP1052855A 1989-03-07 1989-03-07 Copper material with good bondability with ceramics Expired - Lifetime JP2590255B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1052855A JP2590255B2 (en) 1989-03-07 1989-03-07 Copper material with good bondability with ceramics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1052855A JP2590255B2 (en) 1989-03-07 1989-03-07 Copper material with good bondability with ceramics

Publications (2)

Publication Number Publication Date
JPH02232326A JPH02232326A (en) 1990-09-14
JP2590255B2 true JP2590255B2 (en) 1997-03-12

Family

ID=12926475

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1052855A Expired - Lifetime JP2590255B2 (en) 1989-03-07 1989-03-07 Copper material with good bondability with ceramics

Country Status (1)

Country Link
JP (1) JP2590255B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997029216A1 (en) * 1996-02-09 1997-08-14 Brush Wellman Inc. Alloy c11004
JP4557354B2 (en) * 2000-03-27 2010-10-06 株式会社東芝 Method for manufacturing ceramic copper circuit board
WO2003090277A1 (en) 2002-04-19 2003-10-30 Mitsubishi Materials Corporation Circuit board, process for producing the same and power module
JP4206915B2 (en) * 2002-12-27 2009-01-14 三菱マテリアル株式会社 Power module substrate
JP5239731B2 (en) * 2007-12-21 2013-07-17 株式会社村田製作所 Multilayer ceramic electronic component and manufacturing method thereof
US8194391B2 (en) 2007-12-21 2012-06-05 Murata Manufacturing Co., Ltd. Multilayer ceramic electronic component and manufacturing method thereof
JP5282634B2 (en) * 2008-06-25 2013-09-04 株式会社村田製作所 Multilayer ceramic electronic component and manufacturing method thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62282797A (en) * 1986-05-29 1987-12-08 Dowa Mining Co Ltd Copper material for direct joining of ceramics-copper

Also Published As

Publication number Publication date
JPH02232326A (en) 1990-09-14

Similar Documents

Publication Publication Date Title
JPH0840789A (en) Ceramic metallized substrate having smooth plating layer and its production
JP2018024930A (en) Oxygen-free copper sheet, production method of oxygen-free copper sheet and ceramic circuit board
JP2590255B2 (en) Copper material with good bondability with ceramics
US5045400A (en) Composition for and method of metallizing ceramic surface, and surface-metallized ceramic article
JP3834351B2 (en) Ceramic circuit board
US6077564A (en) Process for producing a metal-coated, metallized component of aluminum nitride ceramic and metal-coated component obtained thereby
JP2642574B2 (en) Manufacturing method of ceramic electronic circuit board
JP3238051B2 (en) Brazing material
JP3495051B2 (en) Ceramic-metal joint
JP5016756B2 (en) Nitride-based ceramic member and metal member joined body and nitride-based ceramic circuit board using the same
JP2760107B2 (en) Surface structure of ceramic substrate and method of manufacturing the same
EP3799965A1 (en) Metallized ceramic substrate and method for manufacturing same
JPH05148053A (en) Ceramics-metal joined material
JPH1067586A (en) Circuit base plate for power module and its production
JPH0424312B2 (en)
JP7451964B2 (en) Cu alloy plate and its manufacturing method
JP3518843B2 (en) Metallized substrate
JP3302714B2 (en) Ceramic-metal joint
JPH05238857A (en) Method for metallizing substrate of aluminum nitride
JP4557354B2 (en) Method for manufacturing ceramic copper circuit board
JPH05170552A (en) Aluminum nitride substrate having metallized layer and metallization of the substrate
JPH04125986A (en) Metallized substrate of aluminum nitride and manufacture thereof
JP2729751B2 (en) Joining method of alumina ceramics and aluminum
JP2736949B2 (en) High strength aluminum nitride circuit board and method of manufacturing the same
JP3387655B2 (en) Joining method of ceramics and silicon