JP2587742B2 - Method for removing halogenate ions from aqueous alkali metal halide solution - Google Patents

Method for removing halogenate ions from aqueous alkali metal halide solution

Info

Publication number
JP2587742B2
JP2587742B2 JP34204991A JP34204991A JP2587742B2 JP 2587742 B2 JP2587742 B2 JP 2587742B2 JP 34204991 A JP34204991 A JP 34204991A JP 34204991 A JP34204991 A JP 34204991A JP 2587742 B2 JP2587742 B2 JP 2587742B2
Authority
JP
Japan
Prior art keywords
ions
salt water
alkali metal
metal halide
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP34204991A
Other languages
Japanese (ja)
Other versions
JPH05147928A (en
Inventor
孝明 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsurumi Soda Co Ltd
Original Assignee
Tsurumi Soda Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsurumi Soda Co Ltd filed Critical Tsurumi Soda Co Ltd
Priority to JP34204991A priority Critical patent/JP2587742B2/en
Publication of JPH05147928A publication Critical patent/JPH05147928A/en
Application granted granted Critical
Publication of JP2587742B2 publication Critical patent/JP2587742B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、アルカリ金属ハロゲン
化物水溶液中のハロゲン酸イオンの除去方法に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for removing halide ions from an aqueous alkali metal halide solution.

【0002】[0002]

【従来の技術】水酸化ナトリウムを製造する方法の一つ
として、例えば原料塩を水に溶かして得た原塩水をイオ
ン交換膜法などにより電解する方法が広く用いられてい
る。この方法においては、先ず反応槽にて原塩水及び淡
塩水(後述の電解槽で得られた塩水)に、炭酸ナトリウ
ムおよび水酸化ナトリウムを添加して、原塩水中に含ま
れるカルシウムイオンやマグネシウムイオンを炭酸カル
シウム及び水酸化マグネシウムの結晶粒子とし、次いで
高分子凝集剤を添加して結晶粒子を凝集させてフロック
を形成し、更に固液分離を行った後上澄液を例えばキレ
ート樹脂よりなるフィルタ部を通して濾過し、しかる後
前記原塩水(上澄液)を電解槽で電解して水酸化ナトリ
ウムを得るようにしている。
2. Description of the Related Art As one method of producing sodium hydroxide, for example, a method of electrolyzing raw salt water obtained by dissolving a raw material salt in water by an ion exchange membrane method or the like is widely used. In this method, first, sodium carbonate and sodium hydroxide are added to raw salt water and fresh saline (brine water obtained in an electrolytic cell described later) in a reaction tank, and calcium ions and magnesium ions contained in the raw salt water are added. To crystal particles of calcium carbonate and magnesium hydroxide, then add a polymer coagulant to aggregate the crystal particles to form a floc, further perform solid-liquid separation, and then filter the supernatant, for example, a chelate resin Then, the raw salt water (supernatant) is electrolyzed in an electrolytic cell to obtain sodium hydroxide.

【0003】ところで上述の電解槽の陽極室には塩化ナ
トリウムを含む溶液(以下「淡塩水」という。)が残
り、この淡塩水は戻り塩水として前記反応槽に戻されて
原塩水と混合されるが、電解時に淡塩水中にClO
ClO などの塩素酸イオンが多量に混入するためこ
れら塩素酸イオンを除去する必要がある。その理由につ
いては、塩素酸イオンが塩水精製プロセスに取り込まれ
ると、前記フィルタ部のキレート樹脂を劣化させてフィ
ルタ機能を低下させてしまうし、またイオン交換膜を劣
化させて電解性能を大幅に低下させてしまうからであ
る。
Meanwhile, a solution containing sodium chloride (hereinafter referred to as "fresh salt water") remains in the anode chamber of the above-mentioned electrolytic cell, and this fresh salt water is returned to the reaction tank as return salt water and mixed with raw salt water. However, during electrolysis, a large amount of chlorate ions such as ClO and ClO 3 are mixed in the salt water, and it is necessary to remove these chlorate ions. The reason for this is that when chlorate ions are taken into the brine purification process, the chelate resin in the filter section will be degraded and the filter function will be degraded, and the ion exchange membrane will be degraded and the electrolytic performance will be greatly reduced. This is because they will let you.

【0004】そこで従来では、淡塩水中の塩素酸イオン
を除去するために、塩素酸塩を含む塩水中に、亜硫酸塩
やチオ硫酸塩を溶かした溶液を添加して反応させる方
法、あるいは活性炭と淡塩水と水素とを接触させる方法
などの還元法、更にはまた塩酸を添加して分解する方法
などが採用されている。
[0004] Therefore, conventionally, in order to remove chlorate ions in the salt water, a method in which a solution in which a sulfite or a thiosulfate is dissolved is added to a salt water containing chlorate to cause a reaction, or activated carbon is used. A reduction method such as a method in which fresh salt water is brought into contact with hydrogen, and a method in which hydrochloric acid is added to decompose the mixture are employed.

【0005】[0005]

【発明が解決しようとする課題】しかしながら硫酸塩を
用いて塩素酸イオンを還元する方法では、硫酸イオンが
塩水中に残り、このため淡塩水を塩水精製プロセスに戻
すことによって最終製品である水酸化ナトリウム中に硫
酸イオンが不純物として混入してしまう。このため水酸
化ナトリウムの純度が問題になる場合にはボウ硝(Na
SO)として除去するようにしているが、この場合
にはボウ硝除去設備が必要になりコストアップになって
いる。また活性炭を用いる方法では、塩素酸イオンの除
去率が低く、塩酸を用いる方法では、塩素酸イオン1モ
ル当り10倍モル程度の塩酸を添加しなければならずこ
のため未反応塩酸を中和するためのアルカリが必要にな
り、コストアップになる。
However, in the method of reducing chlorate ions using sulfate, sulfate ions remain in the salt water, so that the fresh salt water is returned to the salt water refining process so that the final product, hydroxylation, is obtained. Sulfate ions are mixed into sodium as impurities. For this reason, when the purity of sodium hydroxide is a problem,
2 SO 4 ) is removed, but in this case, the equipment for removing bow nitrate is required and the cost is increased. In the method using activated carbon, the removal rate of chlorate ions is low. In the method using hydrochloric acid, about 10 times mol of hydrochloric acid must be added per 1 mol of chlorate ions, so that unreacted hydrochloric acid is neutralized. Alkalis are required, which increases costs.

【0006】本発明は、このような事情のもとになされ
たものであり、その目的は、アルカリ金属ハロゲン化物
水溶液中のハロゲン酸イオン、例えば塩水中に含まれる
塩素酸イオンを効率的に除去する方法を提供することに
ある。
The present invention has been made under such circumstances, and it is an object of the present invention to efficiently remove halogenate ions in an aqueous alkali metal halide solution, for example, chlorate ions contained in salt water. It is to provide a way to do it.

【0007】[0007]

【課題を解決するための手段】本発明は、白金族金属よ
りなる母粒子の表面に撥水性物質よりなる多数の子粒子
が付着され、子粒子の一部が撥水性物質よりなる基体に
溶着してなる還元触媒を用い、前記還元触媒に、ハロゲ
ン酸イオンを含むアルカリ金属ハロゲン化物水溶液と水
素ガスとを同時に接触させることを特徴とする。
According to the present invention, a large number of child particles made of a water repellent substance are adhered to the surface of a base particle made of a platinum group metal, and a part of the child particles is welded to a substrate made of a water repellent substance. And an aqueous solution of an alkali metal halide containing halogen acid ions and hydrogen gas are simultaneously brought into contact with the reduction catalyst.

【0008】上記の還元触媒は例えば次のようにして製
造することができる。
The above reduction catalyst can be produced, for example, as follows.

【0009】先ず白金族金属塩を例えばエタノールなど
の有機溶媒に溶解した溶液と、第1の撥水性物質の粉末
を界面活性剤を含む水もしくはアルコールなどの分散媒
に分散してなる懸濁液とを混合して塗布液を得る。
First, a solution in which a platinum group metal salt is dissolved in an organic solvent such as ethanol, and a suspension obtained by dispersing a powder of the first water repellent substance in a dispersion medium containing water or alcohol containing a surfactant. To obtain a coating solution.

【0010】一方軟化点が前記第1の撥水性物質の軟化
点と同じかまたは近似した第2の撥水性物質よりなる例
えば多孔質の基体を用意する。これら第1及び第2の撥
水性物質としては同じ物質を用いることが好ましく、例
えばPTFE(ポリテトラフルオレフィン)などのフッ
素樹脂を用いることができる。そして前記混合液中に基
体を浸漬するか、あるいは混合液を基体に塗布または噴
霧するなどして基体表面(多孔質の場合内部の表面も含
む)に混合液をコーティングし、その後基体を乾燥す
る。これにより基体表面に白金族金属塩の結晶粒子が折
出すると共に当該結晶粒子の表面に例えば多数のPTF
Eの子粒子が凝集付着する。
On the other hand, for example, a porous substrate made of a second water repellent substance having a softening point equal to or close to the softening point of the first water repellent substance is prepared. It is preferable to use the same substance as the first and second water-repellent substances, and for example, a fluororesin such as PTFE (polytetrafluolefin) can be used. Then, the substrate is immersed in the mixed solution, or the mixed solution is applied or sprayed on the substrate to coat the mixed solution on the surface of the substrate (including the inner surface when porous), and then the substrate is dried. . As a result, crystal particles of the platinum group metal salt are deposited on the surface of the substrate, and a large number of PTFs are formed on the surface of the crystal particles.
The child particles of E aggregate and adhere.

【0011】更に続けて前記混合液を基体表面にコーテ
ィングした後同様に乾燥し、この操作を繰り返して基体
表面に例えば厚さ0.5〜10μの粒子層を形成する。
しかる後水素ガス中で基体をPTFEの軟化点付近例え
ば250〜310℃に加熱し、白金族金属塩を白金族金
属まで還元する。尚、基体の乾燥は格別に処理を行うこ
となくこの加熱処理に組み込むことができる。
Subsequently, the mixture is coated on the surface of the substrate and dried in the same manner, and this operation is repeated to form a particle layer having a thickness of, for example, 0.5 to 10 μm on the surface of the substrate.
Thereafter, the substrate is heated in a hydrogen gas to around the softening point of PTFE, for example, at 250 to 310 ° C., to reduce the platinum group metal salt to the platinum group metal. The drying of the substrate can be incorporated in this heat treatment without special treatment.

【0012】このときPTFEが軟化溶融し、白金族金
属粒子同士がPTFEの子粒子の溶着により結着すると
共に、子粒子及び基体が溶着により一体化し、以って還
元触媒が得られる。図2はこのような還元触媒を示す図
であり、1は白金族金属よりなる母粒子、2はPTFE
よりなる子粒子、3は基体、4は溶着部である。
At this time, the PTFE is softened and melted, and the platinum group metal particles are bonded to each other by welding of the PTFE child particles, and the child particles and the base are integrated by welding to obtain a reduction catalyst. FIG. 2 is a diagram showing such a reduction catalyst, wherein 1 is a base particle made of a platinum group metal, and 2 is PTFE.
Numeral 3 is a substrate, and 4 is a welded portion.

【0013】ここで前記基体としては、PTFEの切削
クズメッシュ体、ラシヒリングあるいはチューブ等用い
ることができる。そして例えば処理塔内において、前記
還元触媒により通路を塞ぐように触媒層を形成し、当該
処理塔内にてハロゲン酸イオンを含むアルカリ金属ハロ
ゲン化物水溶液(以下「被処理液」という。)を触媒層
の上方から下方に通流すると共に、下方から水素ガスを
供給し、こうして還元触媒に被処理液と水素とを同時に
接触させる。
Here, as the substrate, a cut wool mesh body of PTFE, a Raschig ring or a tube can be used. Then, for example, in a treatment tower, a catalyst layer is formed so as to close the passage by the reduction catalyst, and an alkali metal halide aqueous solution containing a halogenate ion (hereinafter, referred to as “liquid to be treated”) is formed in the treatment tower. The gas flows from the upper part to the lower part of the bed, and the hydrogen gas is supplied from the lower part, so that the liquid to be treated and the hydrogen are simultaneously brought into contact with the reduction catalyst.

【0014】[0014]

【作用】白金族金属、水素ガス及び被処理液の接触領域
(三相界面)において、被処理液例えば淡塩水中のNa
ClOが水素ガスにより還元されてHOとなるが、
撥水性物質の表面に水素ガスが存在すると水分が弾かれ
るため、反応領域は母粒子と子粒子との接触部となる。
In the contact area (three-phase interface) between the platinum group metal, hydrogen gas and the liquid to be treated, Na in the liquid to be treated,
ClO 3 is reduced by hydrogen gas to H 2 O,
When hydrogen gas is present on the surface of the water-repellent substance, the water is repelled, so that the reaction region becomes a contact portion between the mother particle and the child particle.

【0015】ここで例えば撥水性物質よりなる基体に白
金族金属粒子を単に付着した場合には、各粒子と基体と
の接触部のみが反応領域となるが、本発明の場合には母
粒子とこれの表面に多数付着した子粒子の接触部が反応
領域となるので、反応領域を大きくとることができ、こ
の結果例えば白金黒並みの高い触媒活性を得ることがで
き、三相界面反応を効率的に行うことができる。
Here, for example, when platinum group metal particles are simply attached to a substrate made of a water-repellent substance, only the contact area between each particle and the substrate becomes a reaction region. The contact area of a large number of child particles adhered to the surface becomes a reaction area, so that a large reaction area can be obtained. As a result, a catalyst activity as high as, for example, platinum black can be obtained, and the three-phase interface reaction can be efficiently performed. Can be done

【0016】なお、白金族金属としては、Pt、Ir、
Rh、Ruなどを単体として用いてもよいが、これらを
2種以上組み合わせてなる合金として用いてもよい。
The platinum group metals include Pt, Ir,
Rh, Ru or the like may be used as a single substance, or may be used as an alloy formed by combining two or more kinds.

【0017】また撥水性物質としては、フッ素樹脂に限
られるものではない。
The water-repellent substance is not limited to a fluororesin.

【0018】[0018]

【実施例】図1は本発明方法を実施するための一例を示
す概略図であり、この例では、上端部及び下端部に夫々
被処理液導入口51及び被処理液排出口52を備えた内
径10cm、高さ1.5mの処理塔5を用い、その中央
付近に後述する還元触媒を例えばフッ素樹脂よりなる上
下2枚のメッシュ体の間に充填することにより通路を塞
ぐように触媒固定床6を形成すると共に、前記処理塔5
の底部に、気体のみ透過する多孔板7を配置し、この多
孔板7の下方に水素ガス供給部8を設けることによって
淡塩水の処理装置が構成されている。
FIG. 1 is a schematic view showing an example for carrying out the method of the present invention. In this example, a liquid inlet 51 and a liquid outlet 52 are provided at an upper end and a lower end, respectively. Using a treatment tower 5 with an inner diameter of 10 cm and a height of 1.5 m, a fixed catalyst is filled near the center between two upper and lower mesh bodies made of, for example, a fluororesin so as to block the passage by filling the catalyst with the catalyst. 6 and the processing tower 5
A perforated plate 7 that allows only gas to pass therethrough is disposed at the bottom, and a hydrogen gas supply unit 8 is provided below the perforated plate 7 to constitute a fresh brine treatment apparatus.

【0019】次に前記還元触媒の製法について述べる
と、塩化白金酸(HPtCl・6HO)の溶解液
を用い、Pt2gを含むエタノール溶液50mlと、P
TFE粉末4gを分散した懸濁液12gとを混合し、こ
の混合液中にPTFEの切削片(幅5mm、長さ5〜1
0cm、平均厚さ100μ)よりなる200gの基体を
浸漬した後乾燥し、浸漬、乾燥を25〜30回繰り返し
て平均厚さ1.2μ程度の粒子層を得る。しかる後これ
を水素ガス雰囲気炉中にて280℃で60分間加熱し、
これにより白金塩を白金金属まで還元すると共に、その
表面に付着しているPTFEの粉末の一部と基体とを軟
化溶融により互いに溶着し、以って還元触媒が得られ
る。
[0019] Next will be described preparation of the reduction catalyst, using a solution of chloroplatinic acid (H 2 PtCl 6 · 6H 2 O), and ethanol solution 50ml containing Pt2g, P
The suspension was mixed with 12 g of a suspension in which 4 g of TFE powder was dispersed, and a PTFE cut piece (5 mm in width and 5 to 1 in length) was added to the mixture.
After immersing 200 g of a substrate having a thickness of 0 cm and an average thickness of 100 μm, the substrate is dried, and immersion and drying are repeated 25 to 30 times to obtain a particle layer having an average thickness of about 1.2 μm. Thereafter, this was heated at 280 ° C. for 60 minutes in a hydrogen gas atmosphere furnace,
As a result, the platinum salt is reduced to platinum metal, and a part of the PTFE powder adhering to the surface and the base are welded to each other by softening and melting, whereby a reduction catalyst is obtained.

【0020】ここで塩素酸塩(NaClO)を0.5
g/l含んでいる淡塩水に塩酸を加え、この淡塩水を
0.5l/hrの流量で導入口51および排出口52を
介して処理塔5内を循環させると共に、水素ガス供給部
8から水素ガスを60l/hrの流量で処理塔5内を通
気させたところ、淡塩水のNaClOの濃度は、図3
に示すように低下した。ただし実線1は淡塩水の温度を
75℃、pHを0、点線2は淡塩水の温度を65℃、p
Hを0、実線3は淡塩水の温度を75℃、pHを1.5
とした場合における結果である。この結果からNaCl
は60〜90%分解することが理解される。
Here, chlorate (NaClO 3 ) is added in an amount of 0.5
g / l of fresh salt water is added with hydrochloric acid, and the fresh salt water is circulated in the treatment tower 5 at a flow rate of 0.5 l / hr through the inlet 51 and the outlet 52 and from the hydrogen gas supply unit 8. When hydrogen gas was passed through the inside of the treatment tower 5 at a flow rate of 60 l / hr, the concentration of NaClO 3 in fresh salt water was as shown in FIG.
As shown. However, the solid line 1 is the temperature of fresh salt water at 75 ° C., pH is 0, and the dotted line 2 is the temperature of fresh salt water at 65 ° C., p
H is 0, solid line 3 is the temperature of fresh salt water at 75 ° C. and pH is 1.5
It is a result in the case of having set it as. From this result, NaCl
O 3 is understood to decompose 60% to 90%.

【0021】また処理塔5内に上述のようにして淡塩水
を3ヶ月間流し、その後同様に淡塩水を流しながら水素
ガスを供給してNaClOの分解率を調べたところ、
やはり60〜90%の分解率が得られた。従ってこの実
験から還元触媒活性が衰えていないことが理解される。
Further, fresh salt water was allowed to flow in the treatment tower 5 for three months as described above, and then hydrogen gas was supplied while the fresh salt water was flowing in the same manner to determine the decomposition rate of NaClO 3 .
Again, a degradation rate of 60-90% was obtained. Therefore, it is understood from this experiment that the activity of the reduction catalyst has not declined.

【0022】図4は本発明方法を適用して塩水精製によ
り水酸化ナトリウムを得るための塩水精製装置の全体構
成を示す説明図である。図4中91は反応槽であり、こ
の反応槽91にて、原塩水と淡塩水とに対し、炭酸ナト
リウム及び水酸化ナトリウムを添加してカルシウムイオ
ン及びマグネシウムイオンが結晶粒子となる。92は、
高分子凝集剤を添加して結晶粒子を凝集させるフロック
形成槽、93は凝集された結晶粒子を沈降分離させる沈
降分離槽、94は残存している結晶粒子を濾過するフィ
ルタ部、95は残存しているカルシウムイオン及びマグ
ネシウムイオンをイオン交換樹脂により除去するための
イオン交換樹脂塔、96は電解槽である。そしてこの実
施例では、電解槽96の陽極室から出た淡塩水に対して
塩素酸イオンの除去処理を行うように図1に示すような
処理塔からなる塩素酸イオン除去装置98が設けられて
おり、前記淡塩水は、この除去装置98の供給される前
に、塩酸が添加されてpHが1〜2に調整されると共
に、脱塩素塔97にて空気によるバブリングが行われ
る。このように塩酸を添加し、バブリングを行う理由
は、淡塩水中の溶存塩素ガス濃度を下げるためである。
塩素酸イオン除去装置98にて処理された淡塩水は、p
H調整槽99にてpHの調整が行われた後原塩溶解タン
クに戻され、再び反応槽91へ送られることになる。
FIG. 4 is an explanatory diagram showing the overall configuration of a brine purification apparatus for obtaining sodium hydroxide by brine purification by applying the method of the present invention. In FIG. 4, reference numeral 91 denotes a reaction tank. In this reaction tank 91, sodium carbonate and sodium hydroxide are added to raw salt water and fresh salt water to convert calcium ions and magnesium ions into crystal particles. 92 is
A floc forming tank for adding a polymer flocculant to agglomerate crystal particles, 93 is a sedimentation separation tank for sedimenting and separating the aggregated crystal particles, 94 is a filter section for filtering remaining crystal particles, and 95 is a remaining filter part. An ion-exchange resin tower 96 for removing calcium ions and magnesium ions from the ion-exchange resin is an electrolytic cell. In this embodiment, a chlorate ion removing device 98 composed of a treatment tower as shown in FIG. 1 is provided so as to perform a chlorate ion removal treatment on the fresh salt water discharged from the anode chamber of the electrolytic cell 96. Before the fresh salt water is supplied to the removing device 98, hydrochloric acid is added to adjust the pH to 1-2, and bubbling with air is performed in the dechlorination tower 97. The reason why the hydrochloric acid is added and the bubbling is performed is to reduce the concentration of dissolved chlorine gas in the fresh salt water.
The fresh salt water treated by the chlorate ion removing device 98 is p
After the pH is adjusted in the H adjusting tank 99, the pH is returned to the raw salt dissolving tank, and is sent to the reaction tank 91 again.

【0023】以上において本発明では、還元触媒により
固定床を形成する代りに、還元触媒を浮遊させた流動床
としても同様の効果が得られることは勿論である。
In the above, in the present invention, the same effect can of course be obtained by using a fluidized bed in which a reduction catalyst is suspended, instead of forming a fixed bed with a reduction catalyst.

【0024】また本発明は塩水に限らず他のアルカリ金
属(アルカリ土類金属も含む)ハロゲン化物水溶液中の
ハロゲン酸イオンを除去する場合に適用することができ
る。
The present invention is not limited to salt water, and can be applied to the case of removing halogenate ions from other alkali metal (including alkaline earth metal) halide aqueous solutions.

【0025】[0025]

【発明の効果】本発明によれば、白金族金属よりなる母
粒子の表面に撥水性物質よりなる多数の子粒子を付着し
てなるものであるため、(作用)の項で詳述したように
反応領域を大きくとることができ、従って触媒活性が高
く、被処理液中のハロゲン酸イオンの除去処理を効率的
に行うことができる。
According to the present invention, since a large number of child particles made of a water-repellent substance are adhered to the surface of a base particle made of a platinum group metal, as described in the section of (action), The reaction area can be made large, and therefore, the catalytic activity is high, and the treatment for removing halogenate ions in the liquid to be treated can be performed efficiently.

【0026】しかも白金族金属が撥水性物質の溶着部を
介して基体に強固に結着されるので、物理的剥離や化学
的劣化による剥離を抑えることができ、触媒を交換する
ことなく長期に亘って処理を行うことができる。
Moreover, since the platinum group metal is firmly bound to the substrate through the welded portion of the water repellent material, physical peeling or peeling due to chemical deterioration can be suppressed, and the catalyst can be used for a long time without replacing the catalyst. The processing can be performed over a period of time.

【0027】なお、撥水性物質よりなる基体の表面に単
に白金族金属層を形成した場合には、物理的剥離が起こ
り易く、すぐに活性が低下してしまう。
When a platinum group metal layer is simply formed on the surface of a substrate made of a water-repellent substance, physical separation easily occurs, and the activity is immediately reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に用いられる装置の一例を示す概略図で
ある。
FIG. 1 is a schematic view showing an example of an apparatus used in the present invention.

【図2】本発明方法に用いられる還元触媒を模式的に示
す説明図である。
FIG. 2 is an explanatory view schematically showing a reduction catalyst used in the method of the present invention.

【図3】NaClOの濃度変化を示すグラフである。FIG. 3 is a graph showing a change in the concentration of NaClO 3 .

【図4】本発明を適用した塩水精製装置を示す全体構成
図である。
FIG. 4 is an overall configuration diagram showing a salt water purification apparatus to which the present invention is applied.

【符号の説明】[Explanation of symbols]

1 白金族金属よりなる母粒子 2 撥水性物質よりなる子粒子 3 基体 5 処理塔 DESCRIPTION OF SYMBOLS 1 Base particle made of platinum group metal 2 Child particle made of water-repellent substance 3 Substrate 5 Treatment tower

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 白金族金属よりなる母粒子の表面に撥水
性物質よりなる多数の子粒子が付着され、子粒子の一部
が撥水性物質よりなる基体に溶着してなる還元触媒を用
い、 前記還元触媒に、ハロゲン酸イオンを含むアルカリ金属
ハロゲン化物水溶液と水素ガスとを同時に接触させるこ
とを特徴とするアルカリ金属ハロゲン化物水溶液中のハ
ロゲン酸イオンの除去方法。
A reducing catalyst comprising a plurality of water repellent substances adhered to the surface of mother particles made of a platinum group metal, and a part of the child particles welded to a substrate made of a water repellent substance; A method for removing halogenate ions from an aqueous alkali metal halide solution, comprising simultaneously contacting an aqueous alkali metal halide solution containing halogenate ions and hydrogen gas with a reduction catalyst.
JP34204991A 1991-11-29 1991-11-29 Method for removing halogenate ions from aqueous alkali metal halide solution Expired - Lifetime JP2587742B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34204991A JP2587742B2 (en) 1991-11-29 1991-11-29 Method for removing halogenate ions from aqueous alkali metal halide solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34204991A JP2587742B2 (en) 1991-11-29 1991-11-29 Method for removing halogenate ions from aqueous alkali metal halide solution

Publications (2)

Publication Number Publication Date
JPH05147928A JPH05147928A (en) 1993-06-15
JP2587742B2 true JP2587742B2 (en) 1997-03-05

Family

ID=18350764

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34204991A Expired - Lifetime JP2587742B2 (en) 1991-11-29 1991-11-29 Method for removing halogenate ions from aqueous alkali metal halide solution

Country Status (1)

Country Link
JP (1) JP2587742B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5283535B2 (en) * 2009-02-20 2013-09-04 株式会社日立ハイテクサイエンス Differential scanning calorimeter

Also Published As

Publication number Publication date
JPH05147928A (en) 1993-06-15

Similar Documents

Publication Publication Date Title
US4131526A (en) Process and apparatus for removal of contaminants from water
EP0221187B1 (en) Method of dissolving and recovering noble metals
EP0040243A1 (en) Process and apparatus for producing metals at porous hydrophobic catalytic barriers.
US5693213A (en) Electrolytic process of salt water
US6827832B2 (en) Electrochemical cell and process for reducing the amount of organic contaminants in metal plating baths
JP2587742B2 (en) Method for removing halogenate ions from aqueous alkali metal halide solution
US3347761A (en) Electropurification of salt solutions
JPH1028833A (en) Electrolytic bath for removing electrochemically convertible impurity from gas and method
JPH07180076A (en) Process and apparatus for electrolytic formation of arsine
JP3723592B2 (en) Purification method and plant for alkali metal chloride aqueous solution
EP0387907A1 (en) Method and apparatus for recovering silver from waste photographic processing solutions
JP3725685B2 (en) Hydrogen peroxide production equipment
JP2001029956A (en) Method for electrolysis
JPH101794A (en) Electrolytic cell and electrolyzing method
JPH01162789A (en) Method and device for recovering metal deposited on carrier
JP2678836B2 (en) Method of regenerating ferric chloride solution
US3647653A (en) Purification of brine
EP0082514B1 (en) Electrode material
JPH11286796A (en) Fluidized-bed electrolytic cell, method for recovering and removing metal such as nickel and treatment of water using the cell
JP2001062454A (en) Apparatus for production of electrolytic water
JP2571591B2 (en) Precious metal recovery method
JPH0349993B2 (en)
JPH06212473A (en) Method for recovering noble metal
US1299565A (en) Process of electrically preparing catalysts for hydrogenation.
JPH0413432B2 (en)