JP2678836B2 - Method of regenerating ferric chloride solution - Google Patents

Method of regenerating ferric chloride solution

Info

Publication number
JP2678836B2
JP2678836B2 JP17310091A JP17310091A JP2678836B2 JP 2678836 B2 JP2678836 B2 JP 2678836B2 JP 17310091 A JP17310091 A JP 17310091A JP 17310091 A JP17310091 A JP 17310091A JP 2678836 B2 JP2678836 B2 JP 2678836B2
Authority
JP
Japan
Prior art keywords
ferric chloride
nickel
chloride
chloride solution
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP17310091A
Other languages
Japanese (ja)
Other versions
JPH05195257A (en
Inventor
忠 平出
信雄 金山
孝明 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsurumi Soda Co Ltd
Original Assignee
Tsurumi Soda Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsurumi Soda Co Ltd filed Critical Tsurumi Soda Co Ltd
Priority to JP17310091A priority Critical patent/JP2678836B2/en
Publication of JPH05195257A publication Critical patent/JPH05195257A/en
Application granted granted Critical
Publication of JP2678836B2 publication Critical patent/JP2678836B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • ing And Chemical Polishing (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、例えばニッケルを含む
塩化第2鉄エッチング廃液を処理して、塩化第2鉄エッ
チング液を再生する方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for treating a ferric chloride etching waste liquid containing nickel, for example, to regenerate the ferric chloride etching liquid.

【0002】[0002]

【従来の技術】最近のインバー材などのニッケル材料を
エッチングするエッチング液としては、一般に濃度47
〜50ボーメの塩化第2鉄(FeCl)溶液が用いら
れている。塩化第2鉄によりニッケル(Ni)をエッチ
ングした後のエッチング廃液は、下記の化学式1からわ
かるように、1%前後のニッケルを含む塩化第2鉄溶液
と、ニッケルイオンに見合う2〜3%の塩化第1鉄(F
eCl)溶液とを含有している。
2. Description of the Related Art As an etching solution for etching nickel materials such as recent Invar materials, a concentration of 47 is generally used.
50 Baume ferric chloride (FeCl 3) solution is used. As can be seen from the following chemical formula 1, the etching waste liquid after etching nickel (Ni) with ferric chloride is a ferric chloride solution containing about 1% nickel, and 2 to 3% of nickel ions commensurate with nickel ions. Ferrous chloride (F
eCl 2 ) solution.

【0003】[0003]

【化1】 このようなエッチング廃液(塩化第2鉄廃液)を処理し
て塩化第2鉄溶液を再生するためには、下記の化学式2
に示すように廃液中に鉄スクラップを投入して、先ず塩
化第2鉄を塩化第1鉄とした後、即ちFe3+をFe
2+とした後ニッケルを析出させて分離除去し、その後
塩化第1鉄を塩素化して塩化第2鉄を再生する方法が知
られている。
Embedded image In order to recycle the ferric chloride solution by treating such etching waste liquid (ferric chloride waste liquid), the following chemical formula 2 is used.
As shown in Fig. 1, iron scrap is put into the waste liquid, ferric chloride is first converted to ferrous chloride, that is, Fe 3+ is converted to Fe.
There is known a method in which nickel is deposited after separation into 2+ , separated and removed, and then ferrous chloride is chlorinated to regenerate ferric chloride.

【0004】[0004]

【化2】 Embedded image

【0005】[0005]

【発明が解決しようとする課題】しかしながら上述の再
生法においては、化学式2からもわかるように、廃液中
の塩化第2鉄に対して1、5倍の塩化第2鉄が再生産さ
れ、このため余分な塩化第2鉄を化学式3に示すように
中和処理して廃棄するかあるいは化学式4に示すように
塩化第1鉄が生成された段階で余分な塩化第1鉄を中和
処理して廃棄するようにしている。
However, in the above-mentioned regeneration method, as can be seen from the chemical formula 2, 1 to 5 times as much ferric chloride as the ferric chloride in the waste liquid is re-produced. Therefore, excess ferric chloride is neutralized as shown in Formula 3 and discarded, or excess ferrous chloride is neutralized at the stage where ferrous chloride is produced as shown in Formula 4. I try to discard it.

【0006】[0006]

【化3】 Embedded image

【0007】[0007]

【化4】 そして仮に市場における塩化第2鉄溶液の需要が一定で
あれば、上記の再生サイクルにおいては、塩化第1鉄ま
たは塩化第2鉄の廃棄量は戻り廃液の約50%にも達す
る。一方ニッケルをエッチングするためには高濃度の塩
化第2鉄溶液が必要であるから、Fe3+をFe2+
還元するためには多量の鉄スクラップが必要となるが、
このように多量の鉄材を用いながら、多量の塩化第1鉄
あるいは塩化第2鉄を廃棄することは、鉄の投入量と、
製品として使用される量とがアンバランスであり、非常
に効率が悪い。
Embedded image And if the demand for ferric chloride solution in the market is constant, the amount of ferrous chloride or ferric chloride discarded in the above regeneration cycle reaches about 50% of the returned waste liquid. On the other hand, a high concentration ferric chloride solution is required to etch nickel, so a large amount of iron scrap is required to reduce Fe 3+ to Fe 2+ .
In this way, discarding a large amount of ferrous chloride or ferric chloride while using a large amount of iron material is
The amount used as a product is unbalanced and is very inefficient.

【0008】本発明はこのような事情のもとになされた
ものであり、その目的は、生産効率のよい塩化第2鉄溶
液の再生方法を提供することにある。
The present invention has been made under such circumstances, and an object thereof is to provide a method for regenerating a ferric chloride solution with high production efficiency.

【0009】[0009]

【課題を解決するための手段及び作用】ニッケル材をエ
ッチングした後の塩化第2鉄廃液の処理を例にとって本
発明を説明する。図1は本発明の一例の工程図であり、
本発明では先ず上記の廃液を還元工程において還元触媒
を用いて水素ガスにより還元処理する。具体的には、還
元触媒により処理塔内の通路を塞ぐように触媒層を形成
し、当該処理塔内にて前記廃液を触媒層の上方から下方
に通流すると共に、下方から水素ガスを供給し、こうし
て還元触媒に塩化第2鉄廃液と水素ガスとを同時に接触
させるようにする。 この場合塩化第2鉄の結晶化を抑
えるために廃液を例えば純水により1.2〜2倍程度に
希釈することが望ましい。この結果塩化第2鉄は化学式
5に示すように還元されて塩化第1鉄となり、処理塔か
ら排出された処理液中には、塩化第1鉄と塩酸とニッケ
ルのエッチング時に生成された塩化ニッケル(NiCl
)とが含まれている。
Means and Actions for Solving the Problems The present invention will be described by taking as an example the treatment of a ferric chloride waste liquid after etching a nickel material. FIG. 1 is a process chart of an example of the present invention,
In the present invention, first, the above waste liquid is subjected to reduction treatment with hydrogen gas using a reduction catalyst in the reduction step. Specifically, a catalyst layer is formed by a reducing catalyst so as to block a passage in the treatment tower, and the waste liquid is allowed to flow from above the catalyst layer to below in the treatment tower, and hydrogen gas is supplied from below. Thus, the ferric chloride waste liquid and hydrogen gas are brought into contact with the reduction catalyst at the same time. In this case, in order to suppress crystallization of ferric chloride, it is desirable to dilute the waste liquid 1.2 to 2 times with pure water, for example. As a result, ferric chloride is reduced to ferrous chloride as shown in Chemical Formula 5, and in the processing liquid discharged from the processing tower, nickel chloride formed during etching of ferrous chloride, hydrochloric acid, and nickel (NiCl
2 ) and are included.

【0010】[0010]

【化5】 次いで前記還元工程にて生成された塩酸を除去するため
にその処理液を拡散透析槽に投入して拡散透析を行う。
これによって拡散透析槽における純水などの溶媒側に塩
酸が拡散して回収され、処理液中から塩酸が除去され
る。しかる後この処理液中に鉄スクラップを投入して、
塩化ニッケルより電離したニッケルイオンと鉄との置換
反応によりニッケルを析出させ(化学式2参照)、固液
分離によりニッケルを除去する。このニッケルの析出除
去工程においては、例えば液温70〜90℃の下でニッ
ケル含有量の2〜10倍程度の量の鉄スクラップを必要
とするが、ニッケルの濃度は廃液に対して例えば1%前
後と非常に小さいので、使用される鉄スクラップの量は
わずかである。
Embedded image Then, in order to remove the hydrochloric acid generated in the reduction step, the treatment liquid is put into a diffusion dialysis tank to perform diffusion dialysis.
As a result, hydrochloric acid is diffused and recovered on the solvent side such as pure water in the diffusion dialysis tank, and hydrochloric acid is removed from the treatment liquid. After that, put iron scrap into this treatment liquid,
Nickel is deposited by a substitution reaction of nickel ionized from nickel chloride with iron (see Chemical Formula 2), and nickel is removed by solid-liquid separation. In this nickel precipitation removal step, for example, an iron scrap whose amount is about 2 to 10 times the nickel content is required under a liquid temperature of 70 to 90 ° C., but the nickel concentration is, for example, 1% with respect to the waste liquid. The amount of iron scrap used is very small as it is very small in front and back.

【0011】その後ニッケルを除去した処理液中に塩素
ガスを通すことにより塩化第1鉄を塩素化して塩化第2
鉄とし、更に塩化第2鉄溶液を濃縮して高濃度の塩化第
2鉄溶液を再生する。
After that, chlorine gas is passed through the treatment liquid from which nickel has been removed to chlorinate the ferrous chloride and to remove the ferric chloride.
The iron is added, and the ferric chloride solution is concentrated to regenerate a high-concentration ferric chloride solution.

【0012】以上において、上述の還元工程に用いる還
元触媒としては、例えば白金族金属よりなる母粒子の表
面に撥水性物質よりなる多数の子粒子が付着され、子粒
子の一部が撥水性物質よりなる基体に溶着してなるもの
を好適に用いることができる。 その理由は次の通りで
ある。即ち、白金族金属、水素ガス及び塩化第2鉄溶液
の接触領域(三相界面)において、還元反応が起こる
が、撥水性物質の表面に水素ガスが存在すると水分が弾
かれるため、反応領域は母粒子と子粒子との接触部とな
る。
In the above, as the reduction catalyst used in the above-mentioned reduction step, for example, a large number of child particles made of a water-repellent substance are attached to the surface of mother particles made of a platinum group metal, and a part of the child particles are made of the water-repellent substance. What is formed by welding to the base material can be preferably used. The reason is as follows. That is, in the contact region (three-phase interface) of the platinum group metal, hydrogen gas and ferric chloride solution, a reduction reaction occurs, but when hydrogen gas is present on the surface of the water-repellent substance, water is repelled, so that the reaction region is It becomes a contact portion between the mother particles and the child particles.

【0013】ここで例えば撥水性物質よりなる基体に白
金族金属粒子を単に付着した場合には、各粒子と基体と
の接触部のみが反応領域となるが、上述の還元触媒の場
合には母粒子とこれの表面に多数付着した子粒子との接
触部が反応領域となるので、反応領域を大きくとること
ができ、この結果例えば白金黒並みの高い触媒活性を得
ることができ、三相界面反応を効率的に行うことができ
る。
Here, for example, when platinum group metal particles are simply adhered to a substrate made of a water-repellent substance, only the contact area between each particle and the substrate serves as a reaction region. Since the reaction area is the contact area between the particles and many particles attached to the surface of the particles, the reaction area can be made large. As a result, high catalytic activity equivalent to that of platinum black can be obtained, and the three-phase interface can be obtained. The reaction can be carried out efficiently.

【0014】なお、前記還元触媒において白金族金属と
しては、Pt、Ir、Rh、Ruなどを単体として用い
てもよいが、これらを2種以上組み合わせてなる合金を
用いてもよい。
As the platinum group metal in the reduction catalyst, Pt, Ir, Rh, Ru, etc. may be used alone, but an alloy formed by combining two or more of them may be used.

【0015】また本発明は、塩化第2鉄廃液中に含まれ
る除去対象の金属イオンはニッケル以外の金属イオンで
あってもよい。
In the present invention, the metal ions to be removed contained in the ferric chloride waste liquid may be metal ions other than nickel.

【0016】[0016]

【実施例】図2は塩化第2鉄廃液を還元処理するための
装置の一例を示す概略図であり、この例では、上端部及
び下端部に夫々原料液導入口11及び処理液排出口12
を備えた内径10cm、高さ1.5mの処理塔2を用
い、その中央部付近に、後述する還元触媒を、例えばフ
ッ素樹脂よりなる上下2枚のメッシュ体の間に600g
充填することにより通路を塞ぐように触媒固定床3を形
成すると共に、前記処理塔2の底部に、気体のみ透過す
る多孔板4を配置し、この多孔板4の下方に水素ガス供
給部5を設けることによって還元処理装置が構成されて
いる。
EXAMPLE FIG. 2 is a schematic view showing an example of an apparatus for reducing ferric chloride waste liquor. In this example, a raw material liquid inlet 11 and a treatment liquid outlet 12 are provided at the upper end and the lower end, respectively.
Using a treatment tower 2 having an inner diameter of 10 cm and a height of 1.5 m, a reduction catalyst to be described later is provided near the center thereof, for example, 600 g between two upper and lower mesh bodies made of fluororesin.
A fixed catalyst bed 3 is formed so as to block the passage by filling, and a porous plate 4 that allows only gas to permeate is arranged at the bottom of the processing tower 2, and a hydrogen gas supply unit 5 is provided below the porous plate 4. The reduction processing device is configured by providing the reduction processing device.

【0017】次に前記還元触媒の製法について述べる
と、塩化白金酸(HPtCl・6HO)の溶媒液
を用い、Pt2gを含むエタノール溶液50mlと、P
TFE粉末4gを分散した懸濁液12gとを混合し、こ
の混合液中にPTFEの切削片(幅5mm、長さ5〜1
0cm、平均厚さ100μ)よりなる200gの基体を
浸漬した後乾燥し、浸漬、乾燥を25〜30回繰り返し
て平均厚さ1.2μ程度の粒子層を得る。しかる後これ
を水素ガス雰囲気炉中にて280℃で60分間加熱し、
これにより白金塩を白金金属まで還元すると共に、その
表面に付着しているPTFEの粉末の一部と基体とを軟
化溶融により互いに溶着し、以って還元触媒が得られ
る。
Next, the production method of the reduction catalyst will be described. Using a solvent solution of chloroplatinic acid (H 2 PtCl 6 · 6H 2 O), 50 ml of an ethanol solution containing 2 g of Pt and P were added.
The suspension was mixed with 12 g of a suspension in which 4 g of TFE powder was dispersed, and a PTFE cut piece (5 mm in width and 5 to 1 in length) was added to the mixture.
After immersing 200 g of a substrate having a thickness of 0 cm and an average thickness of 100 μm, the substrate is dried, and immersion and drying are repeated 25 to 30 times to obtain a particle layer having an average thickness of about 1.2 μm. Thereafter, this was heated at 280 ° C. for 60 minutes in a hydrogen gas atmosphere furnace,
As a result, the platinum salt is reduced to platinum metal, and a part of the PTFE powder adhering to the surface and the base are welded to each other by softening and melting, whereby a reduction catalyst is obtained.

【0018】ここで塩化第2鉄を45〜47%、塩化第
1鉄を2〜3%、塩化ニッケル(NiCl)を1〜2
%含む塩化第2鉄廃液を5l用意し、塩化第1鉄が結晶
化しないように前記廃液を純水で1.2倍に希釈して、
処理塔2内に導入口11を介して0.5l/hの流量で
導入すると共に水素ガスを4l/minの流量で通気
し、還元処理を行ったところ、排出口12より取り出さ
れた処理液中には塩化第2鉄が0.1%、塩化第1鉄が
30%、塩化ニッケルが3%そして塩酸が7〜8%含ま
れていた。
Here, ferric chloride is 45 to 47%, ferrous chloride is 2 to 3%, and nickel chloride (NiCl 2 ) is 1 to 2
% Of ferric chloride waste liquid containing 5% of the ferric chloride is diluted, and the waste liquid is diluted 1.2 times with pure water so that ferrous chloride does not crystallize.
When the hydrogen gas was introduced into the treatment tower 2 through the inlet 11 at a flow rate of 0.5 l / h and hydrogen gas was aerated at a flow rate of 4 l / min to carry out the reduction treatment, the treatment liquid taken out from the discharge outlet 12 It contained 0.1% ferric chloride, 30% ferrous chloride, 3% nickel chloride and 7-8% hydrochloric acid.

【0019】従ってこの還元工程によって廃液中の塩化
第2鉄の略全部が塩化第1鉄に還元されたことが裏付け
られている。
Therefore, it is supported by this reduction step that almost all of the ferric chloride in the waste liquid was reduced to ferrous chloride.

【0020】その後前記処理液を、図3に示す拡散透析
槽6の被処理液室61内に1l/hで導入すると共に溶
媒室62内に純水を1.2l/hの流量で導入したとこ
ろ、被処理液室61側から取り出された処理液中には塩
化第1鉄及び塩化ニッケルが含まれていたが、塩酸が著
しく減少した。また溶媒室62側から取り出された溶媒
中には塩酸及び微量の塩化第1鉄が含まれていた。従っ
てこの拡散透析槽6において、被処理液室61側に含ま
れる塩酸の全てが交換膜7を介して溶媒中に拡散し、還
元処理工程にて生成された塩酸が除去されたことがわか
る。
Thereafter, the treatment liquid was introduced into the treated liquid chamber 61 of the diffusion dialysis tank 6 shown in FIG. 3 at a rate of 1 l / h, and pure water was introduced into the solvent chamber 62 at a flow rate of 1.2 l / h. However, the treatment liquid taken out from the treatment liquid chamber 61 side contained ferrous chloride and nickel chloride, but the hydrochloric acid was significantly reduced. The solvent extracted from the solvent chamber 62 side contained hydrochloric acid and a trace amount of ferrous chloride. Therefore, in this diffusion dialysis tank 6, it can be seen that all of the hydrochloric acid contained in the liquid chamber 61 side diffused into the solvent through the exchange membrane 7 and the hydrochloric acid produced in the reduction treatment step was removed.

【0021】そして拡散透析槽6にて処理された処理液
中に、ニッケルイオンの含有量の4〜5倍の鉄スクラッ
プを投入してニッケルを析出脱離し、次いで当該処理液
中に塩素ガスを通気し、これにより塩化第1鉄を塩素化
して塩化第2鉄とし、更に濃縮して高濃度の塩化第2鉄
溶液(再生溶液)を得た。
Then, into the treatment liquid treated in the diffusion dialysis tank 6, iron scrap having a content of 4 to 5 times the content of nickel ions is charged to deposit and desorb nickel, and then chlorine gas is added to the treatment liquid. Aeration was carried out, and thereby ferrous chloride was chlorinated to ferric chloride and further concentrated to obtain a highly concentrated ferric chloride solution (regeneration solution).

【0022】[0022]

【発明の効果】以上のように本発明によれば、塩化第2
鉄を水素ガスにより還元して塩化第1鉄としているた
め、この還元処理においては、モル比で塩化第1鉄は塩
化第2鉄と同量だけ生成され、その後廃液中のニッケル
などの金属イオンを析出脱離し、次いで塩化第1鉄を塩
素化して塩化第2鉄としているから、塩化第2鉄は金属
イオンに対応する量だけ増えるに過ぎず、結局再生倍率
が従来法に比べてはるかに低い。
As described above, according to the present invention, the second chloride
Since iron is reduced by hydrogen gas to ferrous chloride, in this reduction treatment, ferrous chloride is produced in the same amount as ferric chloride in a molar ratio, and thereafter, metal ions such as nickel ions in the waste liquid are generated. Is deposited and desorbed, and then ferric chloride is chlorinated to form ferric chloride. Therefore, ferric chloride only increases by the amount corresponding to the metal ions, and the regeneration ratio is far higher than that of the conventional method. Low.

【0023】従って再生サイクルの中で余分な塩化第2
鉄の生成量が少ない上、使用される鉄材はほとんど金属
イオンの析出にのみ消費されるのでその使用量が少なく
て済み、この結果無駄のない再生処理を行うことができ
る。また還元処理時に生成された塩酸は拡散透析処理に
より回収されるので、この点においても有効な処理法で
ある。
Therefore, in the regeneration cycle, an extra second chloride is added.
In addition to producing a small amount of iron, the iron material used is almost consumed only for the precipitation of metal ions, so that the amount of iron used is small, and as a result, it is possible to perform a recycling process without waste. Further, since hydrochloric acid produced during the reduction treatment is recovered by the diffusion dialysis treatment, this is also an effective treatment method.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のフローを示す工程図である。FIG. 1 is a process chart showing a flow of the present invention.

【図2】還元処理を行うための装置の一例を示す説明図
である。
FIG. 2 is an explanatory diagram showing an example of an apparatus for performing a reduction process.

【図3】拡散透析処理を行うための装置の一例を示す説
明図である。
FIG. 3 is an explanatory diagram showing an example of an apparatus for performing diffusion dialysis treatment.

【符号の説明】[Explanation of symbols]

2 処理塔 3 触媒固定床 4 多孔板 5 水素ガス供給部 6 拡散透析槽 2 treatment tower 3 catalyst fixed bed 4 porous plate 5 hydrogen gas supply section 6 diffusion dialysis tank

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 金属イオンを含む塩化第2鉄廃液中に還
元触媒の存在下で水素を通気し、これにより塩化第2鉄
を還元して塩化第1鉄とする工程と、この工程により得
られた還元処理液を拡散透析し、還元時に生成した塩酸
を分離除去する工程と、この工程により塩酸が分離除去
された廃液に鉄を反応させて、置換反応により前記金属
イオンを析出脱離させる工程と、この工程にて処理され
た処理液を塩素化して塩化第2鉄溶液を得る工程とを含
むことを特徴とする塩化第2鉄溶液の再生方法。
1. A step of aerating hydrogen in a ferric chloride waste liquor containing metal ions in the presence of a reducing catalyst, thereby reducing ferric chloride to ferrous chloride, and a step obtained by this step. The reduction treatment liquid thus obtained is subjected to diffusion dialysis to separate and remove hydrochloric acid generated during reduction, and iron is reacted with the waste liquid from which hydrochloric acid has been separated and removed in this process to deposit and desorb the metal ions by a substitution reaction. A method for regenerating a ferric chloride solution, comprising: a step; and a step of chlorinating the treatment liquid treated in this step to obtain a ferric chloride solution.
JP17310091A 1991-06-17 1991-06-17 Method of regenerating ferric chloride solution Expired - Lifetime JP2678836B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17310091A JP2678836B2 (en) 1991-06-17 1991-06-17 Method of regenerating ferric chloride solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17310091A JP2678836B2 (en) 1991-06-17 1991-06-17 Method of regenerating ferric chloride solution

Publications (2)

Publication Number Publication Date
JPH05195257A JPH05195257A (en) 1993-08-03
JP2678836B2 true JP2678836B2 (en) 1997-11-19

Family

ID=15954181

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17310091A Expired - Lifetime JP2678836B2 (en) 1991-06-17 1991-06-17 Method of regenerating ferric chloride solution

Country Status (1)

Country Link
JP (1) JP2678836B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100395114B1 (en) * 1999-12-23 2003-08-21 주식회사 포스코 A reusing method of waste sulfuric acid solution as pickling solution and ferrous sulfate coagulant

Also Published As

Publication number Publication date
JPH05195257A (en) 1993-08-03

Similar Documents

Publication Publication Date Title
US4775452A (en) Process for dissolution and recovery of noble metals
US4331520A (en) Process for the recovery of hydrogen-reduced metals, ions and the like at porous hydrophobic catalytic barriers
JPWO2016093329A1 (en) Hydrogen peroxide decomposition catalyst, method for producing the same, and method for decomposing hydrogen peroxide using the catalyst
JPS61223140A (en) Recovery of copper from arsenic and antimony-containing solution
CN113493237B (en) Preparation of modified nano-iron and method for treating high-concentration nitrate wastewater by using modified nano-iron
JP2678836B2 (en) Method of regenerating ferric chloride solution
JPH07180076A (en) Process and apparatus for electrolytic formation of arsine
JPH1028833A (en) Electrolytic bath for removing electrochemically convertible impurity from gas and method
JP2520674B2 (en) Method and device for recovering metal supported on carrier
JP2004057954A (en) Water treatment catalyst and method of treating water
KR100369739B1 (en) Manufacturing process of potassium dicyanoaurate
JPH07316865A (en) Electrolytic method and electrolytic cell
JP2587742B2 (en) Method for removing halogenate ions from aqueous alkali metal halide solution
CN113544098A (en) Method for treating electrolyte from an electrorefining process
JPH08206661A (en) Method and apparatus for electrochemical recovery of nitrate
JP4099697B2 (en) Purification method of sulfuric acid cooking solution of iron titanate
CN219449948U (en) Metal impurity removing device in treatment material
JPH06212473A (en) Method for recovering noble metal
JP2002004075A (en) Method for decomposing chlorate in saline water
US1115351A (en) Process of separating metals from ores.
JPH11277007A (en) Method for washing electronic material
JP4018831B2 (en) Etching waste treatment method
JPH07145427A (en) Method for recovering and recycling palladium or palladium alloy from contact material
JPS58136786A (en) Diaphragm system electrolytic reduction method
JPH01224203A (en) Method for recovering iodine from organic iodine compound-containing waste liquor