JP2582139B2 - 石炭ガス化燃料の低NOx化処理方法 - Google Patents

石炭ガス化燃料の低NOx化処理方法

Info

Publication number
JP2582139B2
JP2582139B2 JP63257220A JP25722088A JP2582139B2 JP 2582139 B2 JP2582139 B2 JP 2582139B2 JP 63257220 A JP63257220 A JP 63257220A JP 25722088 A JP25722088 A JP 25722088A JP 2582139 B2 JP2582139 B2 JP 2582139B2
Authority
JP
Japan
Prior art keywords
coal
fuel
oxygen
gas
gasified fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63257220A
Other languages
English (en)
Other versions
JPH02105889A (ja
Inventor
幹夫 佐藤
俊夫 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Original Assignee
Central Research Institute of Electric Power Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry filed Critical Central Research Institute of Electric Power Industry
Priority to JP63257220A priority Critical patent/JP2582139B2/ja
Publication of JPH02105889A publication Critical patent/JPH02105889A/ja
Application granted granted Critical
Publication of JP2582139B2 publication Critical patent/JP2582139B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、石炭ガス化燃料の低NOx化処理方法に関す
る。更に詳述すると、本発明は石炭ガス化燃料に不純物
として含まれるアンモニアを乾式で連続的に除去する方
法に関する。
(従来の技術) 近年、高効率で環境保全性に優れた石炭利用新技術と
して石炭ガス化複合発電が国内外において注目されてい
る。石炭ガス化複合発電とは石炭をガス化炉でガス化
し、これをガス精製装置により脱硫、脱塵した後、ガス
タービン燃焼器で燃焼させることによりガスタービンで
発電すると同時にその排熱で蒸気を発生させて蒸気ター
ビンでも発電する方式である。
ところで、このようなガスタービン等の燃焼にあって
は、窒素酸化物NOxの生成を伴うが、窒素酸化物は光化
学スモッグなどの原因となる環境汚染物質であるため、
環境に放出できる量・濃度は厳しく規制されている。
そこで、従来のNOx防止対策としてはNOxの発生を抑え
る燃焼技術の採用、燃焼排ガス中のNOxを除去する脱硝
技術の採用が一般的である。しかし、燃料自体が問題と
されることは従来なく、また燃料自体にNOxの原因とな
るアンモニアが問題となる程含まれることもなかった。
ところが、石炭をガス化炉でガス化する時、石炭中の
窒素分の一部がアンモニア(NH3)に転換するため、石
炭ガス化燃料中にはNH3が不純物として含まれることに
なる。NH3は水に吸収されやすいため、ガス精製をスク
ラバーなどの湿式方法で行う場合にはNH3は容易に除去
される。しかしながらその場合には石炭ガス化燃料の温
度が下がるため、石炭ガス化複合発電システムにおける
熱効率が低下する。このため、石炭ガス化複合発電シス
テムにおけるガス精製はドライ(乾式)状態で行う方法
が要望される。しかし、その場合には石炭ガス化炉内で
生成されたNH3はほとんどそのままの濃度でガスタービ
ン燃焼器に供給されることとなる。そして、この燃料中
に含まれるNH3は燃焼の過程で容易に窒素酸化物(NOx)
に転換する。
石炭ガス化炉内で生成されるアンモニア濃度は石炭種
やガス化条件によって異なるが数百ppmから数千ppmとさ
れ、ガスタービン燃焼器で発生するNOxのうちNH3に起因
するNOxの占める割合は高い。このため石炭ガス化燃料
中のNH3に起因する窒素酸化物を低減させるための石炭
ガス化複合発電システムにおける低NOx化技術が必要と
されている。
(発明が解決しようとする課題) しかしながら、石炭ガス化燃料は通常の気体燃焼に比
べ極めて低カロリー(2000kcal以下)で燃え難いガスで
ある上にガスタービン燃焼器での燃焼は火炎伝播速度を
上回る速度で燃料が流れるため益々着火し難く火炎安定
性に欠ける燃焼条件にある。このため、ガスタービン燃
焼器において燃料中のNH3に起因する窒素酸化物を低減
させるための燃焼技術を確立することはとても難度が高
く現在鋭意研究開発が進められているが未だ実現するに
至っていない。また、燃焼排ガス中のNOxを除去する方
法として一般的なアンモニア注入による触媒式排煙脱硝
装置は既に確立した技術であると言えるが、燃焼後の膨
張した排ガスに対して使用されるため約3万時間毎の比
較的短時間に交換しなければならず、石炭ガス化複合発
電システムに設置することはシステムの運転の上からも
経済的にも大きな負担となる。
そこで本発明は燃料自体の改善、即ち石炭ガス化燃料
の低NOx化処理方法を提供することを目的とする。具体
的には、石炭ガス化燃料中のアンモニアを乾式で比較的
長期に亙って連続的に除去する方法を提供することを目
的とする。
(課題を解決するための手段) かかる目的を達成するため、本発明の石炭ガス化燃料
の低NOx化処理は、石炭ガス化炉を出てガスタービン燃
焼器に供給する前の冷却された石炭ガス化燃料中に、微
量の酸素あるいは酸素を含む気体若しくは蒸発して酸素
ガスを生ずる化合物を注入し混合拡散し、触媒を通して
分解反応させてから前記ガスタービン燃焼器に供給する
ようにしている。
本発明において、酸素を含む気体としては例えば空気
が一般的であるがこれに限定されるものではなく、燃料
成分ないし燃焼に悪影響を与えないものであれば酸素を
含む全ての気体が使用可能である。また、蒸発して酸素
を生ずる化合物としては過酸化水素水などが含まれる。
尚、本明細書において特に断りがない限り、酸素と表現
する場合には、酸素の他、酸素を含む気体若しくは蒸発
し酸素ガスを生ずる化合物を含むものとする。
また上述の酸素に微量の窒素酸化物を加えることも効
果的である。この窒素酸化物としてはNO,N2O,NO2などが
好適である。この窒素酸化物の注入は燃料中のアンモニ
アの分解の下限温度を引下げる。
これら注入気体の量は微量であり、アンモニアに対す
る酸素濃度比O2/NH3は1〜3の範囲であることが好まし
く、アンモニアに対する窒素酸化物濃度比NO/NN3は0.5
〜1の範囲であることが好ましい。
(作用) したがって、石炭ガス化燃料中のNH3は触媒作用によ
って本来の反応温度以下の300〜400℃に比較的低温度で
酸素および窒素酸化物と反応して窒素(N2)と水(H
2O)に分解される。
すなわち、石炭ガス化燃料中のNH3は、反応温度より
比較的低温の燃料に注入され均一に拡散されたO2によっ
て、触媒下でHCNやCNおよびNHi(NH2,NHなど)に分解さ
れ、その後一部がO2と反応してNOを生成したり、N2に還
元される。
即ち、本発明は、燃料中のNH3のO2による分解とその
反応過程に伴うNOのNH3との反応を、触媒を利用して300
〜450℃の冷却状態の石炭ガス化燃料に対して行なわせ
る。また、O2の共存下でのみNH3とNOの反応がおこなわ
れるのであるから、窒素酸化物と共に酸素を混合して石
炭ガス化燃料中に注入すればNH3はO2および窒素酸化物
によって分解される。また、注入する酸素および窒素酸
化物は石炭ガス化燃料中のNH3濃度の最大数倍程度の微
量のため石炭ガス化燃料の他の組成変化に及ぼす影響は
問題にならないほど僅かである。
(実施例) 以下、本発明を実施例に基づき詳細に説明する。
図面に本発明を実施する石炭ガス化複合発電システム
の概要を示す。該図において、1は石炭ガス化炉、2は
石炭ガス化燃料を脱硫・脱塵処理可能な温度まで冷却す
るガス冷却器・熱交換器、3は石炭ガス化燃料中に含ま
れるチャー(すす)を捕集するサイクロン集塵器、4は
石炭ガス化燃料中のH2Sやサイクロン3で捕集しきれな
かったチャー等を除去するクリーンアップ(脱硫・脱
塵)装置、5はガスタービン設備、6は蒸気タービン設
備、7は石炭ガス化燃料とこれに所望濃度比で注入され
た微量の酸素等を均一に混合させる予混合器、8は触媒
である。また、ガスタービン設備5はガスタービン用燃
焼器9及びガスタービン10を含む。
尚、石炭ガス化炉1とガス冷却器2とは一般に一体的
に構成されるため、ガス冷却器2を含めて石炭ガス化炉
と呼ぶことが多い。そこで、本明細書においては、石炭
ガス化炉を出てガスタービン燃焼器に供給する前の冷却
された石炭ガス化燃料とは、図示のシステムにおいて、
ガス冷却器2以降でガスタービン設備5までの石炭ガス
化燃料供給系を流れるガスを意味する。
石炭ガス化燃料への微量の酸素の注入は、ガス冷却器
2とガスタービン燃焼器9との間でかつ触媒8の前にお
いて行なわれる。例えば、本実施例の場合、H2Sやチャ
ー等が除去されるクリーンアップ工程の後において、石
炭ガス化燃料供給系の配管内に突出させたノズル等を使
用して酸素を注入し、その後の予混合器7で完全に拡散
混合させるように設けられている。尚、酸素注入に際し
て予混合器7は必ずしも用いなくとも良く、均一混合が
可能であれば他の方法でも良い。また、酸素等の注入は
石炭ガス化炉のガス冷却器2とガスタービン燃焼器9と
の間であれば、どこででも注入可能であるし、注入方法
も特に限定されるものではない。本実施例の場合、注入
酸素として空気が使用されている。
尚、注入する酸素として過酸化水素水等の液体を使用
する場合、気化熱によって冷却されるため拡散がある程
度進まなければ反応温度に達しない。しかも、霧滴状で
噴射さるため貫通力が強く拡散性が良好である。
これら注入気体の量は微量であり、アンモニアに対す
る酸素濃度比O2/NH3は1〜3の範囲であることが好まし
く、アンモニアに対する窒素酸化物濃度比NO/NH3は0.5
〜1の範囲であることが好ましい。O2/NH3比は1より大
きいとアンモニアの分解には効果的であるが3を越える
と生成NO量が無視できない程度に増大し、全体として低
NOx化に効果がなくなるからである。また、1未満であ
ると多くのアンモニアが分解されずに残ってしまう。ま
た、上述の濃度比の酸素注入と同時にNOxを注入する
と、NH3を分解する下限温度を低下させる効果がある
が、その注入量がNOx/NH3比で0.5未満であるとその効果
は少なく、1を越えると残存NO量が無視できない量とな
る。斯様に、O2濃度とNO濃度は燃料中の残存NH3濃度あ
るいはNO濃度等に影響を与えるため、その注入量は、適
切に選択し十分均一に拡散混合してから触媒に通すこと
が重要である。
触媒8はガス冷却器2とガスタービン燃焼器9との間
に設置され、通常300〜450℃程度の冷却された石炭ガス
化燃料を通過させるように構成されている。例えば、石
炭ガス化燃料供給系の配管の途中に設置し、その中を燃
料ガスが通過するように設けるだけで良い。この触媒8
としては、バナジウム系や銅系触媒が挙げられ、例えば
Pt,Al2O3,SiO2を担体としたV2O5,MoO3等の使用が好まし
い。
以上のように構成されたシステムによると、石炭ガス
化炉1を出た後の石炭ガス化燃料は、脱硫・脱塵装置4
で取扱える程度の温度でかつ可能な限り高い温度、通常
450℃程度まで冷却されており、NH3の分解反応温度(70
0℃)よりもはるかに低い。このため酸素等を注入して
も反応しない。微量の酸素及び必要に応じて注入される
窒素酸化物は、石炭ガス化燃料中に噴射されると、未反
応のまま拡散して均一な混合状態となり、触媒8におい
て燃料中のNH3を酸化反応により分解するに十分な条件
に達する。従って、石炭ガス化燃料と酸素とは可能な限
り均一に混合された後反応を開始する。そして、触媒下
でHCNやCNおよびNHi(NH2,NHなど)に分解され、その後
一部がO2と反応してNOを生成したり、N2に還元される。
(発明の効果) 以上の説明より明らかなように、本発明は、ガス化炉
を出たNH3分解反応温度以下の(300〜450℃程度)の石
炭ガス化燃料に微量の酸素を含む気体あるいは酸素を含
む気体及び必要あれば微量の窒素酸化物を注入し、均一
に混合拡散させた後触媒に通すようにしているので、石
炭ガス化燃料中のNH3が触媒下にO2とあるいはNH3のO2
よる分解反応過程に伴うNOと反応して、窒素(N2)と水
(H2O)に分解されて除去される。
また、O2と共に窒素酸化物を同時に注入することによ
り、NH3の分解反応温度が低下するためNH3の分解がより
効果的に促進される。
したがって、本発明によると、石炭ガス化燃料中のNH
3を乾式で除去することができ、システム全体の熱効率
の低下を招かず、しかも、ガスタービン燃焼器内で生成
されるNH3に起因するNOxがなくなるため、NOxの発生量
を著しく低減することが可能となる。
また、燃焼排ガス中のNOxを排除する従来の触媒式排
煙脱硝方法に比べると、燃料そのものを反応させてNH3
を分解するため、体積比で1/3、複合発電システムの稼
動圧力(約20kg/cm2G)を考慮に入れると1/60のガス処
理量で従来と同じ脱硝効果を得ることができ、触媒交換
時間の大幅の延長を可能にして極めて経済的でかつシス
テム運転を容易なものとなる。また、燃料供給配管中に
触媒を設置するだけなので、従来の複合発電プラントを
ほとんど変更する必要がなく経済的である。しかも、O2
注入を300〜450℃の比較的低温度で行なうため、ハンド
リングが容易で安全性が高い。
【図面の簡単な説明】
図面は本発明を実施する石炭ガス化複合発電システムの
概要を示す原理図である。 1……ガス化炉、2……ガス冷却器、 4……クリーンアップ装置、 7……予混合器、8……触媒。

Claims (2)

    (57)【特許請求の範囲】
  1. 【請求項1】石炭ガス化炉を出てガスタービン燃焼器に
    供給する前の300〜450℃に冷却された石炭ガス化燃料中
    に、酸素あるいは酸素を含む気体若しくは蒸発して酸素
    ガスを生ずる化合物を、石炭ガス化燃料中のアンモニア
    に対し濃度比O2/NH3で1〜3となる割合で注入し混合拡
    散し、その後触媒に通して分解反応させてから前記ガス
    タービン燃焼器に供給することを特徴とする石炭ガス化
    燃料の低NOx化処理方法。
  2. 【請求項2】前記酸素あるいは酸素を含む気体若しくは
    蒸発して酸素ガスを生ずる化合物に加えて、窒素酸化物
    を、石炭ガス化燃料中のアンモニアに対し濃度比NO/NH3
    で0.5〜1となる割合で前記石炭ガス化燃料中に注入す
    ることを特徴とする請求項1記載の石炭ガス化燃料の低
    NOx化処理方法。
JP63257220A 1988-10-14 1988-10-14 石炭ガス化燃料の低NOx化処理方法 Expired - Lifetime JP2582139B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63257220A JP2582139B2 (ja) 1988-10-14 1988-10-14 石炭ガス化燃料の低NOx化処理方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63257220A JP2582139B2 (ja) 1988-10-14 1988-10-14 石炭ガス化燃料の低NOx化処理方法

Publications (2)

Publication Number Publication Date
JPH02105889A JPH02105889A (ja) 1990-04-18
JP2582139B2 true JP2582139B2 (ja) 1997-02-19

Family

ID=17303333

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63257220A Expired - Lifetime JP2582139B2 (ja) 1988-10-14 1988-10-14 石炭ガス化燃料の低NOx化処理方法

Country Status (1)

Country Link
JP (1) JP2582139B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010284640A (ja) * 2009-05-12 2010-12-24 Central Res Inst Of Electric Power Ind アンモニア分解触媒
JP5688748B2 (ja) * 2009-09-28 2015-03-25 一般財団法人電力中央研究所 乾式ガス精製設備及び石炭ガス化複合発電設備

Also Published As

Publication number Publication date
JPH02105889A (ja) 1990-04-18

Similar Documents

Publication Publication Date Title
JP3924150B2 (ja) ガス燃焼処理方法およびその装置
US8397482B2 (en) Dry 3-way catalytic reduction of gas turbine NOx
EP1625883A1 (en) Process for treating ammonia-containing exhaust gases
US5120516A (en) Process for removing nox emissions from combustion effluents
JPH07100131B2 (ja) 酸素含有炭化水素溶媒を含む尿素溶液を使用する,窒素ベ−スの汚染物質の削減
EP0933516B1 (en) Gasification power generation process and equipment
KR101139575B1 (ko) 배기가스의 저온 탈질 시스템 및 그 방법
US5906803A (en) Process for removing ammonia from gasification gas
JP2582139B2 (ja) 石炭ガス化燃料の低NOx化処理方法
KR100925242B1 (ko) 암모니아 생성 장치 및 방법
JP2002235556A (ja) 改質型ガス化ガス発電プラントおよびその運転方法
CN100434142C (zh) 利用乙醇实现烟气干法直接脱硝的方法
CN203281209U (zh) 燃煤锅炉sncr与scr联合法烟气脱硝系统
JP3947892B2 (ja) 硫黄分回収方法及びその硫黄分回収方法を適用したガス化プラント
JPS5858132B2 (ja) 排ガス中の窒素酸化物の低減法
KR101096317B1 (ko) 촉매 반응기를 이용한 배기가스의 대기 오염 물질 제거 시스템 및 그 방법
JPWO2011055500A1 (ja) ガス化設備のアンモニア処理方法及び装置
JP2587469B2 (ja) 石炭ガス化燃料の低NOx化処理方法
JPH0428039B2 (ja)
JPS5819928B2 (ja) 窒素酸化物低減燃焼法
JPS5925618B2 (ja) 排ガス中の窒素酸化物低減法
JPS5833019A (ja) 燃焼排ガス中の窒素酸化物低減法
FI83393C (fi) Foerfarande foer nedbrytning av ammoniak och cyanvaete i foergasningsprocess av kvaevehaltiga fasta och flytande braenslen
JPH066710B2 (ja) 石炭のガス化法
JP4519338B2 (ja) アンモニア含有ガスの処理方法及び石炭ガス化複合発電プラント