JP2569408B2 - 多数の微小弱結合からなるジョセフソン素子 - Google Patents

多数の微小弱結合からなるジョセフソン素子

Info

Publication number
JP2569408B2
JP2569408B2 JP1247986A JP24798689A JP2569408B2 JP 2569408 B2 JP2569408 B2 JP 2569408B2 JP 1247986 A JP1247986 A JP 1247986A JP 24798689 A JP24798689 A JP 24798689A JP 2569408 B2 JP2569408 B2 JP 2569408B2
Authority
JP
Japan
Prior art keywords
josephson
weak
superconducting
large number
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1247986A
Other languages
English (en)
Other versions
JPH03110877A (ja
Inventor
敏明 松井
Original Assignee
郵政省通信総合研究所長
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 郵政省通信総合研究所長 filed Critical 郵政省通信総合研究所長
Priority to JP1247986A priority Critical patent/JP2569408B2/ja
Priority to US07/533,797 priority patent/US5109164A/en
Publication of JPH03110877A publication Critical patent/JPH03110877A/ja
Application granted granted Critical
Publication of JP2569408B2 publication Critical patent/JP2569408B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/92Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of superconductive devices
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K3/00Circuits for generating electric pulses; Monostable, bistable or multistable circuits
    • H03K3/02Generators characterised by the type of circuit or by the means used for producing pulses
    • H03K3/38Generators characterised by the type of circuit or by the means used for producing pulses by the use, as active elements, of superconductive devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/10Junction-based devices
    • H10N60/12Josephson-effect devices
    • H10N60/124Josephson-effect devices comprising high-Tc ceramic materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S505/00Superconductor technology: apparatus, material, process
    • Y10S505/70High TC, above 30 k, superconducting device, article, or structured stock
    • Y10S505/701Coated or thin film device, i.e. active or passive
    • Y10S505/702Josephson junction present
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S505/00Superconductor technology: apparatus, material, process
    • Y10S505/725Process of making or treating high tc, above 30 k, superconducting shaped material, article, or device
    • Y10S505/729Growing single crystal, e.g. epitaxy, bulk
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S505/00Superconductor technology: apparatus, material, process
    • Y10S505/825Apparatus per se, device per se, or process of making or operating same
    • Y10S505/873Active solid-state device
    • Y10S505/874Active solid-state device with josephson junction, e.g. squid

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Measuring Magnetic Variables (AREA)

Description

【発明の詳細な説明】 技術分野 この発明は、勅並列に多数接続された微小電極の間に
形成される超電導の微小弱結合からなるブリッジが全体
として単一のジョセフソン素子の様に振舞い得ることを
示す超電導電子対トンネルの隣合う微小弱結合間の強い
相互作用を考慮した新しい理論に関するもので、その原
理に基づく現象を利用したジョセフソン素子と、このジ
ョセフソン素子の電磁波検出器への応用、および高い超
電導転移温度を持つ超電導薄膜を用いた場合に可能とな
る高い温度で利用できる交流ジョセフソン効果に基づく
高精度な電圧基準発生への応用に関するものである。
従来の技術 ジョセフソン効果は、1962年に英国のB.D.ジョセフソ
ンによる理論的な予言として世に現れ、その後間もなく
実験的検証がなされた。ジョセフソン効果は、当初第1
図(a)に示す様な二つの超電導体1が薄い絶縁膜2に
よって隔てられているいわゆるトンネル型ジョセフソン
接合で起こる超電導電子対のトンネルと考えられてい
た。その後、二つの超電導体3を点接触させた第1図
(b)の様な点接触型接合の場合にも、さらに超電導薄
膜4に細く短い弱結合5を設けた第1図(c)のような
弱結合型接合の場合にも同様なジョセフソン効果が観測
され、多くの変形が工夫が開発されている。第1図
(a)のトンネル型接合素子をトンネル型ジョセフソン
接合と呼ぶのに対し、第1図(b)(c)の弱結合素子
は、弱結合型ジョセフソン接合とも呼ばれる。この両者
のI−V(電流−電圧)特性には第2図(a)(b)に
示す様な特徴的な違いがある。第1図(a)のトンネル
型接合のI−V特性が第2図(a)のように大きなヒス
テリシスを描くのに対し、第1図(b)(c)の弱結合
素子は第2図(b)のようなヒステリシスのないI−V
特性で特徴づけられる。いづれの場合にも、電磁波を照
射すると交流ジョセフソン効果と呼ばれるステップ状の
I−V特性が得られる。ここで、hはプランク定数であ
り、eは素電荷である。そのステップは、一定不変の基
礎定数からなるジョセフソン係数2e/hの逆数と電磁波の
周波数fの積で表されるhf/2eの電圧間隔で現れる。こ
のステップ電圧は、理論的には周波数fの精度で得られ
ることから、この交流ジョセフソン効果は現在の電圧標
準技術に実用化されている。また電磁波に対する鋭い非
線形効果は高感度な電磁波検出への応用が有望であり研
究開発が進められている。
ジョセフソン接合をM段直列に接続した素子の場合、
第3図(a)に示すようにアレー中の各接合は接合抵抗
Pk、臨界電流IK(ここでk=1,2,3...)に関して少しづ
つ異なった値を持っていると考えるべきである。(ここ
でk=1,2,3,...M)素子抵抗に比較し、十分大きなイン
ピーダンスの電流源を用いて直流バイアスをすれば、共
通の直流電流Iは電流源によって決定される。臨界電流
より大きい電流Iに対しては有限電圧VKが発生し、交流
ジョセフソン効果に基づく周波数fk=2eVK/hの振動電流
が生じ全体として第3図(b)のようにM個の発振器の
直列接続のようになる。この交流電流成分も共通の電流
として流れるのに対し、直流的にはVKは電流Iと接合抵
抗RKとで決まるため隣接する接合の周波数fk-1,fK,fK+1
との間の瞬時値に、ずれが生じる。同じ接合パラメータ
でゆらぎがない場合には位相差θ1…θは同じに
なるが、外部の摂動に対しては回復作用が無く、一般に
直列接続されたジョセフソン素子は互いに独立であると
考えられている。
同じような接合特性の素子を直列に接続し、高周波的
な結合による同期作用がある場合、第3図(b)のよう
なM段直列の弱結合での交流ジョセフソン効果による発
振が、ほぼ同位相で重ね合わされることが報告されてい
る。この場合、交流電圧はM倍となり、発振電力はM2
となる。ここでは、接合を横切る電圧VKは長い時間では
等しく、摂動は低い周波数である。そして、短時間内で
は、各接合の周波数は等しく であり、すなわちf1=f2=・・・=fMである。
このようなコヒーレントな状態にあるジョセフソン素
子に外部から周波数fのマイクロ波が照射された場合の
定電圧電流ステップは第3図(c)のようにI−V特性
上のMhf/2eの電圧ごとに現れる。しかし、この場合もそ
れぞれの発振が同位相で重ね合わさっている状態であり
M段の量子過程は、それぞれ独立しており、バイアス電
圧はM倍の単位となってあらわれている。これは、第2
図(b)に示した単一の弱結合の場合の電磁波応答特性
と区別される。
一般に高い超電導転移温度(臨界温度TC)を持つ超電
導体のコヒーレンス長ξは短いため第1図(a)のトン
ネル型ジョセフソン接合を形成する場合、薄膜表面の状
態や界面の性質に依る接合特性への影響が大きく、特に
酸化物高温超電導薄膜を用いる場合、コヒーレンス長が
短く単位格子のサイズと同程度であることから超電導体
1に挟まれた薄い絶縁膜2に依って良好なトンネル障壁
を実現するのは非常に困難な問題となる。
また、第1図(c)で代表される弱結合型ジョセフソ
ン接合の場合、理想に近いジョセフソン効果が期待でき
るためには、弱結合5の長さLの条件として L<3.49ξ〜5.30ξ (2) が要求され、各種の薄膜接合形成プロセスを考慮しても
初期成長膜、薄膜表面、界面の性質にかかわる接合特性
への影響が大きく、トンネル型接合の場合と同様に技術
的な多くの困難に直面している。
特に最近の酸化物系超電導薄膜を用いたジョセフソン
接合の開発は、超電導エレクトロニクス応用の面から重
要視されている。しかし、酸化物高温超電導体が多数原
子からなる酸化物であり、多くの結晶構造が可能である
ことから酸素量やその他の原子の素成比における微妙な
差や、結晶構造や界面のでき具合いに各種の違いが生じ
易く、それらが超電導特性に大きく影響するため薄膜表
面や接合界面の制御が非常に困難である。そのため上述
のような人為的な薄膜接合の形成により良好な特性を示
すジョセフソン素子を実現した例は報告されていない。
発明が解決しようとする問題点 最新の薄膜微細加工技術をもってしても微小な弱結合
部分の極微細加工により弱結合型ジョセフソン接合の特
性を再現性よく制御することは非常に難しく、特に短い
コヒーレンス長ξを持つ高温超伝導体の弱結合素子の特
性を制御することは現実に不可能である。本発明では、
従来技術のねらいと異なった視点に立ち、多数の微小弱
結合からなる超伝導弱結合(ブリッジ部)の長さDと幅
Wを通常の微細加工技術の精度で特性が制御できる製作
加工が容易なジョセフソン素子を供給することにある。
問題を解決するための手段 具体的には、二つの超伝導体を接合する超伝導弱結合
であって、互いに隣接して配置されている複数の微小超
伝導領域と、上記微小超伝導領域を相互に直列的及び並
列的に接続する複数の導電性ブリッジと、該ブリッジの
長さはそれぞれがジョセフソン効果を生じる弱結合とし
て作用するようにコヒーレンス長に対して1〜5.31倍の
範囲であり、該微小超伝導領域は、10-18〜2×20-12cm
3の極微小な実効体積であって、その結果、電子配置の
定常状態からの僅かなずれが非常に高い表面電荷密度を
生じさせるため、たとえ該微小超伝導領域間の電子配置
を定常状態からずらそうとする作用が働いた場合にも静
電エネルギーを一定に保とうとする強い復元作用が働き
電子配置を定常状態に保持することから成る。
作用 上記構成の多数の微小弱結合からなるジョセフソン素
子の構成は、第4図(a)及び(b)で表現でき、第4
図(a)は二つの超伝導体6と該二つの超伝導体6を接
合する超伝導弱結合(ブリッジ部)7を示し、該ブリッ
ジ部の長さをD、幅をWで示している。第4図(b)は
複数の微小超伝導領域8と、該微小超伝導領域8を相互
に直列的及び並列的に接続する複数の導電性ブリッジ9
からなる当該ブリッジ部7の構成を示す図である。この
ように複数の微小超伝導領域8とそれらを相互に接続す
る導電性ブリッジ9は微小超伝導電極間のジョセフソン
効果を生じる弱結合として作用する。一般に、特性の異
なる微小弱結合が多数直並列に連なって形成されている
場合、各弱結合の抵抗Rkや臨界電流Ikに差があるためブ
リッジを流れる電流は、一様な電流とはならず第5図に
示すようにブリッジ全体を貫く複数の電流路11と、その
他の電流ループ12で構成されると考えられる。ブリッジ
全体を貫く電流路11に含まれる接合は基本的に有限電圧
状態で生じる交流ジョセフソン効果による振動電流の電
流路となり、直流的にも交流的にも共通の電流が流れる
必要がある。多数の微小電極10の間に形成される電流ル
ープには、全体を貫く電流路11上に直列になる微小電極
10の間に形成される弱結合の異なる接合抵抗Rkと臨界電
流Ik(k=1,2,3...)を補い電位差全体を等しく保つよ
うな電流配置を形成することができる。並列の接合はま
とめて考えることができるので、ブリッジ全体が少し接
合パラメータに違いのあるM段直列の微小弱結合からな
るとし第6図のような等価回路で考えることができる。
第6図は、k番目の等価回路13とその前後k−1,k+1
番目の等価回路を表しており、ここでは微小弱結合の小
さい容量は省略してある。ここで補償電流ループ14はk
番目の接合から見た多数の電流ループ12および電極とな
っている微結晶粒の中の電流ループも含めた周辺との結
合を表すもので、これらの補償電流IK-1 ,IK ,IK+1
による接合パラメータの補正効果により各接合間に等分
された電位分布Vk-1=Vk=Vk+1が実現し、振動電流の周
波数fK-1,fK,fK+1はほぼ共通の位相で重ね合される。
ここまでの説明で、微小な弱結合の直並列回路では、
接合特性の多少なずれにもかかわらず無数に可能な微小
電流ループにより、ほぼ特性のそろった接合を接続した
ときのようにコヒーレントな動作期待できることを述べ
た。
次に、微小電極による接合が連なる効果を考える。第
7図は、微小電極間に形成される弱結合が一次元的に連
なった素子での電子対トンネルを考えるためのモデルを
表す図で、k−1番目の電極15、k番目の電極16、k+
1番目の電極17とその前後を表している。
φはk番目の電極の波動関係の位相で である。ここでμはk番目の電極の電気化学ポテンシ
ャルである。
k番目とk+1番目の電極の位相差 を θ=φk+1−φとすれば、k→k+1への超伝導電
流Ik(t)は Ik(t)=Iksinθ (4) と表される。この場合Ik-1≒Ik≒Ik+1である位相差θ
の時間変化は(3)式を用いて となる。またk−1番目とk番目の電極中の電子対の数
をNK-1 Nk とすれば、それらの時間変化は、 となる。
従って、電流が乱れること無く連続的に流れる限りす
なわちIk-1=Ik=Ik+1ならば(6)式より各電極内の電
子数に変化はない、ここで、他から絶縁された直径1μ
mの微小金属球に素電荷 e=1.6×1019クーロンの電荷が与えられた場合の表面
電位を試算すると2.9mVとなる。この値はジョセフソン
接合の電極ポテンシャルとしては極めて大きな変化であ
る。実際の弱結合型の直並列アレーでは短い時間にもっ
と広い領域の全体として中和されると考えられるが、微
小電極にとって非常に大きな作用が生じることを示して
いる。ここで実際に想定される微小弱結合の電極は同じ
程度がさらに小さいと考えられ、各微小電極間に弱結合
型ジョセフソン接合相互間を流れる電流は相互に強く拘
束し合い瞬時値としてのIk(t)(k=1,2,3,…)は実
質的に自由度を持ち得ない。
従って電流は乱れることなく、連続的に流れ、どの瞬
間にも Ik-1=Ik=Ik+1を保つような力が働く。これは(4)式
から、位相θ(k=1,2,3,…)に対する自由度の拘束
と等化でありθ=θ=…=θ=…が要求され、振
動電流の成分についても全く同様であることから が要求される。
この関係を、電気化学ポテンシャルμk-1、μ、μ
k+1、μk+2の変動との関係を示したのが第8図である。
第8図(a)は、直流的な電位差がない場合の定常状態
18の各電極のポテンシャルを実線で示す。
ここで位相差θに他の接合部分と異なる微小変化が
生じると(4)式により電流値Ik(t)が全体の中で微
小変動を生じ、もし他に比較して小さい場合(6)式に
より、k番目の電極では電子対の密度が上昇し、k+1
番目の電極では電子対の密度が減少する非定常状態19と
なり破線で示すようなポテンシャルの変移がおきる。
第8図(b)は直流的なポテンシャル差がある場合に
ついて同様に示しており、実線は定常状態20でのポテン
シャル配置、破線は非定常状態21である。しかし、いず
れの場合も位相差θ(k=1,2,3,…)に対する強い相
互作用で、第8図(a)では18の状態第8図(b)では
20の状態をとると考えられる。
第9図(a)は3段の量子遷移過程が直列に連なった
場合を示している。通常は最も高いポテンシャル位置に
ある電子対22が、電子対23の位置に遷移する過程、また
それと同じポテンシャル位置にある電子対が、電子対24
の位置に遷移する過程、さらにそれと同じポテンシャル
位置の電子対が、電子対25の位置に遷移する過程はそれ
ぞれ独立である。しかし、以上に述べたように、超伝導
電子対のトンネル位相に強い拘束がある本発明の多数
の、微小弱結合からなるジョセフソン素子では、それぞ
れの遷移過程は独立でなく連続的につながり、第9図
(b)に示す様な中間の弱結合の段数に関係せず二つの
超伝導電極間を遷移する現象が現れる。その結果、本発
明による多数の微小弱結合からなるジョセフソン素子
は、全体として単一のジョセフソン素子として用いるこ
とができる。
実施例 第12図は、超伝導薄膜形成過程と薄膜微細加工工程を
組み合わせて構成する本発明による多数の微小弱結合素
子からなるジョセフソン素子の部分拡大図である。具体
的なこの素子の製造方法を述べると、まず、下部電極を
形成するための超伝導薄膜を基板上に成長させ、薄膜リ
ソグラフィ技術により微小な下部微小超伝導領域45を形
成する。次に絶縁薄膜を下部電極の上に成長させ、その
上に超伝導薄膜を重ねて成長させ、更にフォトレジスト
又は電子ビームレジストを選択露光し、上部微小超伝導
領域46とすべき領域を保護し、後にその他の扶養部分を
選択エッチング除去する。このようにして基板上に形成
した下部領域45と上部領域46は絶縁膜による電気的に分
離された状態で形成する。次に、下部領域45と上部領域
46間を導電性の結合物質で弱く結合するために薄い超伝
導薄膜又は金属薄膜等で全面を被覆し、電子ビーム露光
技術と選択エッチング除去技術を用いて微細な薄膜状の
導電性弱結合部44を形成する。この方法では、導電性ブ
リッジの長さは実質的に上下の超伝導薄膜間の絶縁膜の
厚さで設定でき短い超伝導弱結合を形成するのに好適で
ある。超伝導薄膜材料としてニオブ薄膜を用いて上記方
法により超伝導弱結合素子を製造すると、超伝導領域の
寸法は幅2μm、長さ4μm、厚さ0.1μmの超伝導領
域を形成することができ、導電性ブリッジは幅50〜200n
m、長さ4〜20nm、厚さ10〜15nm程度となる。
次に、強い異方性と層状構造、短いコヒーレンス長等
が問題となる酸化物系高温超伝導体を素材として用いる
場合の本発明による多数の微小弱結合からなるジョセフ
ソン素子の具体的実現方法について述べる。酸化物系高
温超伝導薄膜の場合、現時点の成膜技術では多層膜化を
必要とする素子の製作過程は不可能であり、一方で平面
的な微細加工の極限に頼る製作方法では高温超伝導体の
短いコヒーレンス長ξからして達成不可能であり非現実
的である。そこで、考えられる方法は、超伝導薄膜の形
成過程(あるいは成膜の前後)で膜中一面に二次元的に
分布する欠陥を形成させる方法である。
第13図に示した様に、二次元的に分布する膜中の欠陥
47は、磁束の強いピン止め中心として作用し、周囲に常
伝導部分48を生じさせ、その結果として二次元的な小さ
な超伝導部分49を島状分布を形成させその境界には弱い
超伝導の部分50が存在し短い超伝導弱結合として作用す
ると考えられる。
本発明による超伝導弱結合素子を、ここで示す膜中欠
陥を二次元的に分布させる方式により実現するために
は、超伝導部分49が微小超伝導領域であること、及び欠
陥の分布が、ほぼ一様であること、欠陥が強い磁束のピ
ン止め中心として作用することが重要である。欠陥形成
の種類としては、 (a)基本組成から意図的にずれた成分比で成膜を行う
ことにより過剰元素又はその化合物の析出を起こさせ薄
膜中にほぼ一様な原子又はその化合物の塊として分布さ
せる。この種の欠陥は、原子単位の欠陥に比べ、はるか
に強い磁束ピン止め効果により液体窒素温度付近までも
磁束を安定に保持し、微小超伝導領域を安定に保持する
ことが期待でき、各種の高温超伝導材料に対して利用で
きる。他の有力な方法として、 (b)単結晶に近い薄膜を成長させた後、二次元的な欠
陥分布ができるように不純物の注入を行い、第13図に示
した超伝導薄膜中の欠陥47の様な分布を、設計された形
状分布でより規則正しく形成させる方法が可能である。
この目的には半導体技術で用いられているイオン注入技
術と描画技術が有効に利用できる。
第12図に示した素子にしても、第13図の欠陥47の分布
を上記の(a)(b)或いはその他により形成する方法
のいずれに依っても基本的に同じ機能が期待でき、本発
明の多数の微小弱結合からなるジョセフソン素子が実現
できる。
次に、MOCVD法により製造したYBCO酸化物高温超伝導
薄膜により本発明の多数の微小弱結合からなるジョセフ
ソン素子を形成した実験結果について述べる。このYBCO
膜は強いC軸配向の膜であり、析出した過剰な銅の微小
粒子が膜中一面に分布しており、この膜中の欠陥が磁束
の強いピン止め中心となり、超伝導領域の島状分布とそ
れらの間を弱くつなぐジョセフソン結合の二次元アレー
を形成されている。MOCVD法によるYBa2Cu3O7-xの酸化物
高温超電導膜を用いて幅約10μm長さ約20μmのくびれ
部分を構成し、1つのブリッジとしたもので、この膜厚
は3μm程度である。
ブリッジ全体の抵抗Rjは約0.1Ω、臨界電流Icは60K付
近で約1.5mAである。第10図では、液体窒素を減圧し、
素子部の温度が約58KのときのI−V特性を示してあ
る。101GHzのミリ波照射に対して、超電導膜ブリッジの
I−V特性を四端子法により測定したもので、交流ジョ
セフソン効果による鮮明なステップ応答が表されてい
る。周波数f=101GHzのミリ波照射に対し電流ステップ
はhf/2eの電圧間隔で表れており多数の微小弱結合から
なるブリッジのI−V特性が第2図(b)に示したよう
な単一の弱結合のI−V特性と全く同様に表れている。
これらのことから、第5〜8図を用いて説明した効果
により、微小電極を連ねて形成された直列並列の弱結合
アレーが、全体として単一のジョセフソン素子のように
振る舞う原理が実証されたことになる。
このMOCVD法による、YBCO膜は、強いC軸配向の膜で
あり顕微鏡で観察できるような明確な粒界は少ない、6
カ月以上安定に熱サイクルに耐え化学的にも安定である
事実を考え、さらにブリッジの臨界電流密度は、104〜1
05A/cm2と高い値が得られており、従って弱結合として
は内部のより小さな結晶粒内のどこか、たとえば双晶の
境界に存在し高密度に形成されている可能性も考えられ
る。
一方、ブリッジ部の長さDとブリッジ幅Wはコヒーレ
ンス長ξに比べ3桁大きな寸法であり、もし内部に何ら
かの弱結合を形成する微細な構造を持たない限り、これ
はただの超電導線であり、ジョセフソン効果が明確な形
で観測され得ない。
ブリッジの長さと幅を変えれば抵抗Rjと臨界電流Ic
変化するが、マイクロ波照射に対しては同様に明確なジ
ョセフソン効果が観測された。
顕微鏡で容易に確認できるような粒界膜中の大きな粒
界が接続されている場合、大きな結晶粒界の界面のどこ
かで弱結合が形成されていると考えられる。しかし、こ
の場合の結晶粒界の弱結合の多くは熱サイクルで容易に
破壊され実用にはならない。
薄膜中の弱結合には、いくつかの可能性が考えられて
いるが実用上の安定性から考え高い均一度の薄膜の結晶
内部に形成される弱結合を使用する必要がある。
MOCVD法によるYBCO膜を用いた場合、高い臨界電流密
度と、極めて安定な特性が得られており十分実用可能で
あることが明らかになっている。
第11図は、高温超電導膜ジョセフソン素子の優れた高
周波特性を生かし交流ジョセフソン効果に基づく精密基
準電圧の発生法の、例を示す図である。26は本発明によ
るジョセフソン素子であり電流源バイアス回路27から直
流電流を供給される。素子の両端の電圧は差動増幅器28
で、バイアス回路27からの電流値と合わせてI−V特性
を29のX−Yレコーダまたはオシロスコーブ上でモニタ
ーできる。一方PLLミリ波発振器30は参照周波数源31と
高周波ミキサー用局発信号源32とにより所望の周波数で
高安定なミリ波出力を発生できる。
また信号発生器33により局発信号源32にFM変調を加え
ることができる。34は電力を調整するための減衰器であ
り、35は導波管スイッチ、36はホーンアンテナである。
ホーンアンテナ36から出たミリ波ビーム37は集光用凹面
鏡38により、素子26を冷却するためのデュワー39に取り
付けた窓40を通して素子26上に集光され29のX−Yレコ
ーダまたはオシロスコープ上でI−V特性をモニターし
ながら交流ジョセフソン効果によるステップを発生させ
る。
電流源バイアス回路27の電流値を適当なm番目のステ
ップの中央の電流値を選び設定することにより、バイア
ス電流のゆらぎに無関係に電圧出力値mhf/2eを精密基準
電圧出力41として得ることができる。ここでmは整数で
あり、周波数fを変化させれば微小電圧を連続的に変化
できる。
第10図に示した素子の場合101GHzの照射に対する5番
目のステップで100μA以上のステップ電流幅が得られ
ており、1mv付近の調精密な基準電圧を発生できる。
42はミリ波電力を計測するための電力検知器であり43
は電力計である。
発明の効果 超高速応答特性を持つキャパシタンスの小さな単一の
短い弱結合型ジョセフソン接合を実現しようとする場
合、微細加工による導電性ブリッジの仕上がり状態が接
合パラメータに大きく影響するため均質な接合特性を再
現性良く確保するのが困難となるのに対し、本発明によ
る多数の微小弱結合からなるジョセフソン素子では、個
々の接合パラメータは平均化されるため、たとえ非常に
短いコヒーレンス長を持つ高温超伝導体の場合にも均質
な接合特性が達成できる大きな利点がある。また、本発
明による高温超電導薄膜のジョセフソン素子の精密基準
電圧の発生への応用は、液体ヘリウムを使用しない簡便
な冷却方法を利用できることから、現在、二次標準とし
て用いられている標準電池に代わり、交流ジョセフソン
効果に基づく高い精度の実用的な電圧基準を供給でき
る。
【図面の簡単な説明】
第1図は従来のジョセフソン素子の種類を説明する図で
あり、第2図はジョセフソン素子のうちトンネル型の弱
結合型のI−V特性を対比して示す図、第3図は従来知
られている直列接続のジョセフソン素子の等価回路とコ
ヒーレントに動作する場合の外部マイクロ波照射に対す
る応答特性の説明図、第4図は本発明によるブリッジの
構成例を示す説明図、第5図は、本発明による多数の微
小弱結合が直並列に接続されたブリッジ中での電流分布
を説明する図、第6図は、本発明による多数の微小弱結
合からなるブリッジを直列接続のジョセフソン素子とし
て扱うための等価回路、第7図は、微小電極間に形成さ
れる弱結合が一次元的に連なった素子中での電子対トン
ネルのモデルを表す図、第8図は、一次元的に連なった
微小電極とその間に形成された弱結合中を流れる超電導
電流IKの位相が相対的にゆらいだ場合に誘起される微小
電極の電気化学ポテンシャルμの変動を説明する図、
第9図は、複数の量子過程が連なったポテンシャルの関
係に配置されている場合に、超電導電子対の位相が相互
に強く拘束しあう結果、全体として連続的な量子過程が
現れることの説明図、第10図は、本発明の実施例であっ
てYBCO系高温超電導膜ブリッジの101GHzミリ波照射に対
する交流ジョセフソン効果を示すI−V特性の図、第11
図は、本発明によるジョセフソン素子として、高温超電
導膜を用いて形成したブリッジを用い、交流ジョセフソ
ン効果に基づく精密基準電圧の発生法の例を示す図。 (2)図の簡単な説明を次のように訂正する。 第1図(a)は、公知のトンネル型ジョセフソン接合の
構成を示す説明図、第1図(b)は、公知の点接触型ジ
ョセフソン接合の構成を示す説明図、第1図(c)は、
公知の弱結合型ジョセフソン接合の構成を示す説明図、
第2図(a)は、公知のトンネル型ジョセフソン素子の
I−V特性について電磁波照射が有る場合と無い場合の
変化を示す概略説明図、第2図(b)は、公知の弱結合
型ジョセフソン素子のI−V特性について電磁波照射が
有る場合と無い場合の変化を示す概略説明図、第3図
(a)は、公知の直列接続されたジョセフソン素子の等
価回路を示す説明図、第3図(b)は、公知の直列接続
されたジョセフソン素子で生じるジョセフソン発振の直
列接続を模式的に示す説明図、第3図(c)は、公知の
直列接続されたM段のジョセフソン素子で同じ周波数の
発振を生じている場合のマイクロ波応答を示す説明図、
第4図(a)は、本発明による多数の微小弱結合からな
るジョセフソン素子の構成を示す説明図、第4図(b)
は、本発明による多数の微小弱結合からなるジョセフソ
ン素子の二つの超伝導体を結ぶブリッジ部の構成を示す
説明図、第5図は、本発明による多数の微小弱結合から
なるジョセフソン素子のブリッジ部での電流分布の概念
を示す説明図、第6図は、本発明によるジョセフソン素
子を直列接続型の等価回路で表した説明図、第7図は、
本発明による多数の微小弱結合からなるジョセフソン素
子における電子対トンネルの一次元モデルによる説明
図、第8図(a)は、本発明による多数の微小弱結合か
らなるジョセフソン素子において両端に直流的なポテン
シャル差が無く、超伝導電流分布にゆらぎが生じた場合
の電気化学ポテンシャルの変動の様子を一次元的に示す
説明図、第8図(b)は、本発明による多数の微小弱結
合からなるジョセフソン素子において両端に直流的なポ
テンシャル差があり、電流分布にゆらぎが生じた場合の
電気化学ポテンシャルの変動の様子を一次元的に示す説
明図、第9図(a)は、本発明による多数の微小弱結合
からなるジョセフソン素子が直列的なポテンシャル配置
にある多数の量子過程を含むことを示す説明図、第9図
(b)は、本発明による多数の微小弱結合からなるジョ
セフソン素子では直列的なポテンシャル配置にある多数
の量子過程が連動し単一の過程として現れることを示す
説明図、第10図は、本発明によるYBCO高温超伝導膜を用
いた多数の微小弱結合からなるジョセフソン素子の101G
Hzミリ波照射に対する交流ジョセフソン効果を示すI−
V特性の説明図、第11図は、本発明による多数の微小弱
結合からなるジョセフソン素子を用いた交流ジョセフソ
ン効果に基づく精密基準電圧発生装置の構成を示す説明
図、第12図は、本発明による多数の微小弱結合からなる
ジョセフソン素子の具体的な実現方法の一例を示す説明
図、第13図は、本発明による多数の微小弱結合からなる
ジョセフソン素子の具体的な実現方法の他の一例を示す
説明図、 符号の説明 1……超伝導体、2……薄い絶縁膜、3……超伝導体、
4……超伝導膜、5……弱結合、6……超伝導体、7…
…超伝導弱結合、8……微小超伝導領域、9……導電性
ブリッジ、10……微小電極、11……電流路、12……電流
ループ、13……接合の等価回路、14……補償電流ルー
プ、15……k−1番目の電極、16……k番目の電極、17
……k+1番目の電極、18……定常状態のポテンシャ
ル、19……非定常状態のポテンシャル、20……定常状態
のポテンシャル、21……非定常状態のポテンシャル、22
……遷移前の超伝導電子対、23……遷移後の超伝導電子
対、24……遷移後の超伝導電子対、25……遷移後の超伝
導電子対、26……本発明による多数の微小弱結合からな
るジョセフソン素子、27……バイアス回路、28……差動
増幅器、29……X−Yレコーダ、30……PLLミリ波発振
器、31……参照周波数源、32……局発信号源、33……信
号発生器、34……減衰器、35……導波管スイッチ、36…
…ホーンアンテナ、37……ミリ波ビーム、38……集光用
凹面鏡、39……デュワー、40……窓、41……精密基準電
圧出力、42……電力検知器、43……電力計、44……弱結
合部、45,46……微小超伝導領域、47……膜中の欠陥、4
8……常伝導部分、49……超伝導部分、50……弱い超伝
導の部分、
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭57−153482(JP,A) 特開 昭64−89479(JP,A) 5th International Workshop on Fuiur e Electron Devices −High−Temperature Superconducting El ectron Devices−[FE D Hitcsc−ED WORKSH OP],June2−4,1988,Miy agi−Zao,PP.161−170

Claims (7)

    (57)【特許請求の範囲】
  1. 【請求項1】二つの超伝導体を結合する超伝導弱結合で
    あって、互いに隣接して配置されている複数の微小超伝
    導領域と、該微小超伝導領域を相互に直列的及び並列的
    に接続する複数の導電性ブリッジとから成り、該導電性
    ブリッジの長さはそれぞれがジョセフソン効果を生じる
    弱結合として作用するようにコヒーレンス長に対して1
    〜5.31倍の範囲にすると共に、上記微小超伝導領域は10
    -18〜2×20-12cm3の極微小な実効体積としたことを特
    徴とする多数の微小弱結合からなるジョセフソン素子。
  2. 【請求項2】上記微小超伝導領域は酸化物超伝導体によ
    って形成することを特徴とする請求項1に記載の多数の
    弱結合からなるジョセフソン素子。
  3. 【請求項3】請求項1に記載の多数の微小弱結合からな
    るジョセフソン素子を用いた基準電圧発生装置。
  4. 【請求項4】請求項1に記載の多数の微小弱結合からな
    るジョセフソン素子を用いた電磁波検出器。
  5. 【請求項5】請求項1に記載の多数の微小弱結合からな
    るジョセフソン素子を用いたヘテロダイン・ミキサー。
  6. 【請求項6】請求項1に記載の多数の微小弱結合からな
    るジョセフソン素子を用いたミリ波サブミリ波信号発生
    器。
  7. 【請求項7】請求項1に記載の多数の微小弱結合からな
    るジョセフソン素子を用いた超伝導量子干渉素子(SQUI
    D)。
JP1247986A 1989-09-26 1989-09-26 多数の微小弱結合からなるジョセフソン素子 Expired - Lifetime JP2569408B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP1247986A JP2569408B2 (ja) 1989-09-26 1989-09-26 多数の微小弱結合からなるジョセフソン素子
US07/533,797 US5109164A (en) 1989-09-26 1990-06-06 Superconducting weak link device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1247986A JP2569408B2 (ja) 1989-09-26 1989-09-26 多数の微小弱結合からなるジョセフソン素子

Publications (2)

Publication Number Publication Date
JPH03110877A JPH03110877A (ja) 1991-05-10
JP2569408B2 true JP2569408B2 (ja) 1997-01-08

Family

ID=17171494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1247986A Expired - Lifetime JP2569408B2 (ja) 1989-09-26 1989-09-26 多数の微小弱結合からなるジョセフソン素子

Country Status (2)

Country Link
US (1) US5109164A (ja)
JP (1) JP2569408B2 (ja)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5298875A (en) * 1991-05-22 1994-03-29 International Business Machines Corporation Controllable levitation device
US5401980A (en) * 1991-09-04 1995-03-28 International Business Machines Corporation 2D/1D junction device as a Coulomb blockade gate
US5229655A (en) * 1991-12-26 1993-07-20 Wisconsin Alumni Research Foundation Dual control active superconductive devices
US5389837A (en) * 1993-04-21 1995-02-14 The United States Of America As Represented By The United States Department Of Energy Superconducting flux flow digital circuits
US5411937A (en) * 1993-05-17 1995-05-02 Sandia Corporation Josephson junction
USH2066H1 (en) * 1995-05-26 2003-06-03 The United States Of America As Represented By The Secretary Of The Navy Superconductor and noble metal composite films
DE19629583C2 (de) * 1996-07-23 2001-04-19 Oxxel Oxide Electronics Techno Emitter- und/oder Detektorbauelement für Submillimeterwellen-Strahlung mit einer Vielzahl von Josephson-Kontakten, Verfahren zu seiner Herstellung und Verwendungen des Bauelements
EP0823734A1 (en) 1996-07-23 1998-02-11 DORNIER GmbH Josephson junction array device, and manufacture thereof
US5742073A (en) * 1996-09-27 1998-04-21 The United States Of America As Represented By The Secretary Of The Air Force Superconducting weak link array switch
FR2772188B1 (fr) * 1997-12-05 2000-02-11 Agence Spatiale Europeenne Cellule de detection supraconductrice a effet tunnel
US7979101B2 (en) 2004-10-05 2011-07-12 National Institute Of Information And Communications Technology, Incorporated Administrative Agency Electromagnetic wave detection element and electromagnetic wave detection device using the same
US7615385B2 (en) 2006-09-20 2009-11-10 Hypres, Inc Double-masking technique for increasing fabrication yield in superconducting electronics
US8571614B1 (en) 2009-10-12 2013-10-29 Hypres, Inc. Low-power biasing networks for superconducting integrated circuits
DE102012013142B4 (de) * 2012-07-03 2015-04-02 Bundesrepublik Deutschland, endvertreten durch den Präsidenten der Physikalisch-Technischen Bundesanstalt (PTB) Wechselstromquelle
WO2016003626A2 (en) 2014-06-11 2016-01-07 The Regents Of The University Of California Method for fabricating superconducting devices using a focused ion beam
US9559284B2 (en) * 2015-03-17 2017-01-31 Globalfoundries Inc. Silicided nanowires for nanobridge weak links
US10222416B1 (en) 2015-04-14 2019-03-05 Hypres, Inc. System and method for array diagnostics in superconducting integrated circuit
US10896803B2 (en) 2016-08-19 2021-01-19 The Regents Of The University Of California Ion beam mill etch depth monitoring with nanometer-scale resolution
EP4195303B1 (en) * 2021-12-13 2024-05-01 Karlsruher Institut für Technologie Nonlinear element device manufactured by using single layer evaporation

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3522492A (en) * 1967-10-23 1970-08-04 Texas Instruments Inc Superconductive barrier devices
US3553694A (en) * 1969-02-24 1971-01-05 Philips Corp Wave generator
US3824457A (en) * 1973-04-04 1974-07-16 Atomic Energy Commission Method of making a solid-state superconducting electromagnetic radiation detector
US4366494A (en) * 1980-05-20 1982-12-28 Rikagaku Kenkyusho Josephson junction and a method of making the same
US4344052A (en) * 1980-09-29 1982-08-10 International Business Machines Corporation Distributed array of Josephson devices with coherence
US4358783A (en) * 1980-09-30 1982-11-09 Bell Telephone Laboratories, Incorporated Superconducting thin films
JPS57153482A (en) * 1981-03-17 1982-09-22 Nippon Telegr & Teleph Corp <Ntt> Josephson element
US4608296A (en) * 1983-12-06 1986-08-26 Energy Conversion Devices, Inc. Superconducting films and devices exhibiting AC to DC conversion
US4904882A (en) * 1988-09-30 1990-02-27 The United States Of America As Represented By The Secretary Of The Navy Superconducting optical switch

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
5th International Workshop on Fuiure Electron Devices−High−Temperature Superconducting Electron Devices−[FED Hitcsc−ED WORKSHOP],June2−4,1988,Miyagi−Zao,PP.161−170

Also Published As

Publication number Publication date
US5109164A (en) 1992-04-28
JPH03110877A (ja) 1991-05-10

Similar Documents

Publication Publication Date Title
JP2569408B2 (ja) 多数の微小弱結合からなるジョセフソン素子
US8200304B2 (en) Josephson junction and Josephson device
US4608296A (en) Superconducting films and devices exhibiting AC to DC conversion
US5321004A (en) Method for forming Josephson break junctions
JP2003519927A (ja) s波超伝導体とd波超伝導体との間のジョセフソン接合を用いた量子ビット
EP0523725B1 (en) Josephson contacts in high temperature superconductors and method of fabrication thereof
JP2023016729A (ja) 高温超伝導量子ビットおよび製造方法
US5462762A (en) Fabrication method of superconducting quantum interference device constructed from short weak links with ultrafine metallic wires
US3778893A (en) Method of fabricating a coherent superconducting oscillator
US4055847A (en) Germanium coated microbridge and method
US4227096A (en) Microwave integrated circuit for Josephson voltage standards
JP2674680B2 (ja) 超伝導超格子結晶デバイス
Scherbel et al. Texture and electrical dynamics of micrometer and submicrometer bridges in misaligned Tl 2 Ba 2 CaCu 2 O 8 films
Niemeyer et al. Microwave-induced constant voltage steps at series arrays of Josephson tunnel junctions with near-zero current bias
RU2133525C1 (ru) Сверхпроводящий квантовый интерференционный датчик и способ его изготовления
RU2599904C1 (ru) СПОСОБ ИЗГОТОВЛЕНИЯ УСТРОЙСТВА С СУБМИКРОННЫМ ДЖОЗЕФСОНОВСКИМ π-КОНТАКТОМ
US3697826A (en) Josephson junction having an intermediate layer of a hard superconducting material
Stern et al. Fabrication and characterization of high current-density, submicron, NbN/MgO/NbN tunnel junctions
JP3215021B2 (ja) 周波数変換装置
JPS6175575A (ja) 超電導デバイス
Kohjiro et al. Fabrication of niobium-carbonitride Josephson junctions on magnesium-oxide substrates using chemical-mechanical polishing
Feuer et al. Properties of high-resistance superconducting microbridges based on lead alloy films
Abe et al. Fabrication of thin film Nb‐(fine Nb wires)‐NbN weak links for superconducting quantum interference device applications
Mercereau et al. Thin film superconducting devices
JPH04332180A (ja) ジョセフソン素子

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term