JP2568038B2 - Method of manufacturing material for polishing surface plate - Google Patents

Method of manufacturing material for polishing surface plate

Info

Publication number
JP2568038B2
JP2568038B2 JP30706993A JP30706993A JP2568038B2 JP 2568038 B2 JP2568038 B2 JP 2568038B2 JP 30706993 A JP30706993 A JP 30706993A JP 30706993 A JP30706993 A JP 30706993A JP 2568038 B2 JP2568038 B2 JP 2568038B2
Authority
JP
Japan
Prior art keywords
cast iron
spheroidal graphite
graphite cast
producing
polishing platen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP30706993A
Other languages
Japanese (ja)
Other versions
JPH06212252A (en
Inventor
幸生 鹿田
博和 野老
隆宣 西村
正治 木下
則雄 益田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Toshiba Corp
Original Assignee
Toshiba Corp
Toshiba Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Ceramics Co Ltd filed Critical Toshiba Corp
Priority to JP30706993A priority Critical patent/JP2568038B2/en
Publication of JPH06212252A publication Critical patent/JPH06212252A/en
Application granted granted Critical
Publication of JP2568038B2 publication Critical patent/JP2568038B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、Siウエハ等のラッピ
ング等に使用する研磨定盤用材料の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a polishing platen material used for lapping Si wafers and the like.

【0002】[0002]

【従来の技術】一般に、Siウエハ等のラッピングにお
いては、スラリー状の砥粒を上下一対からなる研磨定盤
と被加工物の間に供給し、加工圧力を加えながら定盤の
回転運動を利用し研磨材のもつ切刃で被加工物から必要
量の取り代を除き、これにより定盤の持つ平坦度を被加
工物に転写する方法がとられる。このような研磨はSi
ウエハのみならず硝子、宝石、金属、セラミックスなど
の被加工物の表面を平坦にする目的で多く用いられてい
るが、特に最近、Siウエハはエレクトロニクスの発展
に関連してその需要は年々増加する傾向にある。
2. Description of the Related Art Generally, in lapping a Si wafer or the like, slurry-like abrasive grains are supplied between a pair of upper and lower polishing platens and a workpiece, and the rotary motion of the platen is utilized while applying a processing pressure. Then, the cutting edge of the abrasive removes a necessary amount of stock from the work piece, and the flatness of the surface plate is transferred to the work piece. Such polishing is
Not only wafers but also many are used for the purpose of flattening the surface of workpieces such as glass, jewels, metals and ceramics. Especially, recently, the demand for Si wafers has been increasing year by year due to the development of electronics. There is a tendency.

【0003】通常、Siウエハへの研磨においては、砥
粒としてAl2 3 、ZrO2 が用いられ、その粒径は
#1000メッシュ、平均粒径16ミクロンのものが用
いられている。この場合の研磨定盤としては、従来、球
状黒鉛を含む鋳鉄(JIS−FCD45)が多く用いら
れている。このJIS−FCD45の基地(母材)は、
フェライト組織で、硬さはHv(ビツカ−ス硬さ荷重5
00gで測定)140程度であり、黒鉛粒径100〜1
50μmの物性を有する材料である。この材料からなる
研磨定盤を用いてSiウエハを研磨する場合、研磨状態
においては砥粒であるAl2 3 、ZrO2 が黒鉛粒が
存在する部位に選択的に存在して分布し、この状態でS
iウエハに対し研磨が行なわれる。この場合、砥粒はS
iウエハを研磨すると共に、研磨定盤材料(JIS−F
CD45)に対しても同時に研磨(摩耗)が行われるこ
とになる。
Usually, in polishing a Si wafer, Al 2 O 3 and ZrO 2 are used as abrasive grains, and their grain size is # 1000 mesh and average grain size is 16 microns. As the polishing platen in this case, cast iron (JIS-FCD45) containing spheroidal graphite has been often used conventionally. The base (base material) of this JIS-FCD45 is
It has a ferrite structure and hardness of Hv (Vitzkas hardness load of 5
(Measured at 00g) is about 140, and the graphite particle size is 100 to 1
It is a material having physical properties of 50 μm. When a Si wafer is polished using a polishing platen made of this material, in the polishing state, Al 2 O 3 and ZrO 2 as abrasive grains are selectively present and distributed at the site where graphite grains are present. S in the state
The i wafer is polished. In this case, the abrasive grains are S
While polishing i-wafer, polishing surface plate material (JIS-F
The CD45) is also polished (weared) at the same time.

【0004】すなわちフエライト組織のように比較的柔
かい基地の定盤では、硬い砥粒による摩耗が進みやすく
なり研磨定盤の平坦度が悪くなる。このように、研磨に
際しては研磨定盤の平坦度がそのまま被加工材の表面に
転写されるわけであるから、この結果被加工材物の平坦
度が劣化して高精度の研磨が出来なくなるという問題が
ある。
That is, in a base plate having a relatively soft base such as a ferrite structure, wear due to hard abrasive grains is likely to proceed, and the flatness of the polishing platen is deteriorated. As described above, during polishing, the flatness of the polishing platen is directly transferred to the surface of the work material, and as a result, the flatness of the work material is deteriorated and high-precision polishing cannot be performed. There's a problem.

【0005】また、従来使用されているJIS−FCD
45定盤の黒鉛粒径は100〜150μmと大きく、砥
粒は選択的にこの黒鉛の部分に存在することになるので
比較的不均一に分布することになり、この結果研磨定盤
表面での砥粒の流れも不均一となり、加工速度が低下し
たり、定盤の不均一な摩耗が進み、その結果Siウエハ
表面にきずが生じやすくなるという問題がある。
In addition, conventionally used JIS-FCD
The graphite particle size of the 45 platen is as large as 100 to 150 μm, and since the abrasive grains are selectively present in this graphite portion, they are relatively non-uniformly distributed. There are problems that the flow of the abrasive grains becomes non-uniform, the processing speed is reduced, and the surface plate is non-uniformly worn, and as a result, flaws are likely to occur on the surface of the Si wafer.

【0006】[0006]

【発明が解決しようとする課題】本発明は上述した点に
鑑みてなされたものであり、研磨中における砥粒による
摩耗量をできる限り少なくすることにより研磨定盤の平
坦度、平滑性を維持するとともに、砥粒の分布をできる
だけ細かく分散させて砥粒の流れが均一に促進されるよ
うな研磨定盤用材料の製造方法を提供することを目的と
する。
SUMMARY OF THE INVENTION The present invention has been made in view of the above points, and maintains the flatness and smoothness of a polishing platen by reducing the amount of wear of abrasive grains during polishing as much as possible. In addition, it is an object of the present invention to provide a method for producing a material for a polishing platen in which the distribution of abrasive grains is dispersed as finely as possible to uniformly promote the flow of abrasive grains.

【0007】[0007]

【課題を解決するための手段と作用】上記目的を達成す
るため、本発明による第1の研磨定盤用材料の製造方法
は、球状黒鉛鋳鉄にオ−ステナイト化加熱処理、ついで
空冷以上の速度で急冷処理を施すことにより、ビッカ−
ス硬さ数200以上の母材中に黒鉛粒径100μm以
下、黒鉛粒数70個/mm2 以上の球状黒鉛が分散した
状態とすることを特徴とするものである。また、本発明
による第2の研磨定盤用材料の製造方法は、球状黒鉛鋳
鉄にオ−ステンパ−処理を施すことにより、ビッカ−ス
硬さ数200以上の母材中に黒鉛粒径100μm以下、
黒鉛粒数70個/mm 2 以上の球状黒鉛が分散した状態
とすることを特徴とするものである。
In order to achieve the above-mentioned object, the first method for producing a material for a polishing platen according to the present invention comprises a spheroidal graphite cast iron, an austenitizing heat treatment, and
By applying a quenching process at a speed faster than air cooling ,
The spherical graphite having a graphite particle size of 100 μm or less and a graphite particle number of 70 / mm 2 or more is dispersed in a base material having a hardness of 200 or more. Also, the present invention
The second method of manufacturing the material for the polishing platen is
By applying an iron temper treatment to iron, the Vickers
Graphite particle size of 100 μm or less in a base material having a hardness of 200 or more,
Spherical graphite with 70 or more graphite particles / mm 2 dispersed
It is characterized by

【0008】上述した球状黒鉛鋳鉄は、必須成分とし
て、炭素、ケイ素、マンガンおよびマグネシウムを含有
し、残部が実質的に鉄からなるものであることが好まし
く、さらに具体的には、重量比で、C:2.7 〜3.5%、S
i:2.0 〜2.7%、Mn:0.5 〜1.0%、P:0.03% 以下、
S:0.03% 以下、Mg:0.03〜0.07% 、Ni:0.2 〜0.
6%、Cu:0.3 〜0.7%、残部がFeからなることが好ま
しい。
The above-mentioned spheroidal graphite cast iron preferably contains carbon, silicon, manganese, and magnesium as essential components, and the balance substantially consists of iron, and more specifically, by weight ratio, C: 2.7-3.5%, S
i: 2.0 to 2.7%, Mn: 0.5 to 1.0%, P: 0.03% or less,
S: 0.03% or less, Mg: 0.03 to 0.07%, Ni: 0.2 to 0.
6%, Cu: 0.3 to 0.7%, and the balance preferably Fe.

【0009】本発明に係る材料の製造方法は、研磨定盤
として、砥粒による摩耗量をできるだけ少なくすること
ができることが一つの特徴であり、このためには定盤の
基地の硬さを少なくともHv200以上とし、この場合
母材組織は、耐摩耗性の向上のため、熱処理により、パ
ーライト、ベイナイト、またはマルテンサイトあるいは
焼戻しマルテンサイト組織とすることが好ましい。
One of the features of the method for producing a material according to the present invention is that the amount of wear due to the abrasive grains can be reduced as much as possible as the polishing platen. For this purpose, the hardness of the base of the platen is at least It is preferably Hv 200 or more, and in this case, the base material structure is preferably a pearlite, bainite, or martensite or tempered martensite structure by heat treatment in order to improve wear resistance.

【0010】研磨は研磨定盤を介して被加工物表面に砥
粒を供給することにより行なわれるもので、研磨定盤の
平坦度および砥粒が均一で細かく分散し、流れがスムー
ズであることが肝要である。前者、即ち平坦度について
は研磨定盤材料の耐摩耗性、後者、即ち均一性、分散性
については黒鉛形状、粒径、粒分布が大きく影響する。
砥粒を均一に細かく分散させ砥粒の均一な流れを促進
するためには、材料は片状黒鉛鋳鉄よりも球状黒鉛鋳鉄
にし、さらに黒鉛粒径は砥粒の寸法に適合させた寸法で
あることが肝要である。また黒鉛粒もできるだけ小さく
均一に分布していることが好ましい。特に、Siウエハ
では砥粒は平均粒径16μmを用いるため、黒鉛粒径は
砥粒よりも大きいこと、さらに均一に細かく分布させる
ため、黒鉛粒径は100μm以下、望ましくは30〜5
0μmの範囲とする。また、黒鉛粒の分布(断面密度)
は70個/mm2 以上、球状化率80%以上が好ましい。
ただし、球状化率については特にこの範囲に限定される
ものではない。
Polishing is carried out by supplying abrasive grains to the surface of the workpiece through the polishing platen. The flatness and the abrasive grains of the polishing platen are uniformly and finely dispersed, and the flow is smooth. Is essential. The former, that is, the flatness, is greatly affected by the wear resistance of the polishing plate material, and the latter, that is, the uniformity, and the dispersibility are greatly influenced by the graphite shape, particle size, and particle distribution.
In order to uniformly disperse the abrasive grains and promote a uniform flow of the abrasive grains, the material is spheroidal graphite cast iron rather than flake graphite cast iron, and the graphite particle size is a dimension adapted to the size of the abrasive grain. It is essential. It is also preferable that the graphite particles are as small as possible and evenly distributed. In particular, since the average grain size of 16 μm is used for the Si wafer, the grain size of graphite is larger than that of the grain, and the grain size is 100 μm or less, preferably 30 to 5 in order to make the graphite particles more evenly distributed.
The range is 0 μm. Also, the distribution of graphite particles (cross-sectional density)
Is preferably 70 / mm 2 or more and the spheroidization rate is 80% or more.
However, the spheroidization rate is not particularly limited to this range.

【0011】研磨定盤表面から少くとも15mm深さ方
向にわたって上記性状を有している必要がある。
It is necessary to have the above-mentioned properties over the depth direction of at least 15 mm from the surface of the polishing platen.

【0012】以下、本発明の好ましい態様について説明
する。
The preferred embodiments of the present invention will be described below.

【0013】本発明に係る材料は、重量比でC:2.7 〜
3.5%、Si:2.0 〜2.7%、Mn:0.5 〜1.0%、P、S<
0.03% 、Mg:0.03〜0.07% 、さらに望ましくはNi:
0.2〜0.6%、Cu:0.3 〜0.7%、残部がFeからなる組
成からなることが好ましい。
The material according to the present invention has a weight ratio of C: 2.7-
3.5%, Si: 2.0 to 2.7%, Mn: 0.5 to 1.0%, P, S <
0.03%, Mg: 0.03 to 0.07%, more preferably Ni:
The composition is preferably 0.2 to 0.6%, Cu: 0.3 to 0.7%, and the balance being Fe.

【0014】すでに述べたように、研磨定盤材料として
は、Al2 3 、ZrO2 などの砥粒に対する耐摩耗性
のよいことが要求される。このため従来の定盤材料にJ
IS−FCD45に対し、熱処理により耐摩耗性のよい
金属組織とし、所定の硬さ(Hv>200)を有すると
ともに機械的性質にすぐれた球状黒鉛鋳鉄であることが
肝要である。
As already mentioned, the polishing platen material is required to have good wear resistance against abrasive grains such as Al 2 O 3 and ZrO 2 . For this reason, J
It is important for IS-FCD45 to be a spheroidal graphite cast iron that has a metal structure with good wear resistance by heat treatment, has a predetermined hardness (Hv> 200), and has excellent mechanical properties.

【0015】以下、各組成成分の添加目的ならびに組成
範囲の限定理由について説明する。
The purpose of adding each composition component and the reason for limiting the composition range will be described below.

【0016】Cが3.5%を越えると、機械的性質、特に引
張り強さが目標の70Kgf/mm2以上にならず、一
方、C2.7%以下では黒鉛粒として70個/mm2 以上の分
布にならないので好ましくない。
When C exceeds 3.5%, the mechanical properties, particularly tensile strength, do not exceed the target of 70 Kgf / mm 2 , while when C is less than 2.7%, the distribution of graphite particles is 70 particles / mm 2 or more. It is not preferable because it does not become.

【0017】Siは球状化率、鋳造性の向上のために添
加するが、Si2.7%以上になると熱処理によってもフェ
ライトが存在し、硬さが低下する傾向となりHv200
以上にすることは困難になる。また、オーステナイトに
なる温度が上昇し、熱処理温度が高くなり、結果として
酸化物が生成しやすくなり定盤材料としてはこれを除去
することが必要となるので望ましくない。
Si is added to improve the spheroidization rate and castability, but if Si is 2.7% or more, ferrite is present due to heat treatment and the hardness tends to decrease, so that Hv200
It becomes difficult to do the above. In addition, the temperature at which austenite is formed rises, the heat treatment temperature rises, and as a result, oxides are easily generated, and it is necessary to remove this as a platen material, which is not desirable.

【0018】Si2.0%以下では特に鋳造性が悪くなり、
定盤として望ましくない引け巣が発生しやすくなる。
If the Si content is 2.0% or less, the castability becomes particularly poor,
Undesirable shrinkage cavities are likely to occur as a surface plate.

【0019】Mn0.5%以下では、定盤(肉厚40〜60m
m)のように肉厚鋳物において中心部になるに従って空
気冷却の際にフェライトが発生しやすくなり耐摩耗性が
悪くなる。一方、1%を越えると粒界に硬化相が偏析し
やすくもろくなるので望ましくない。
When the Mn is 0.5% or less, the surface plate (wall thickness 40 to 60 m
As in the case of m), in the thick casting, the ferrite tends to be generated at the time of air cooling in the central part, and the wear resistance is deteriorated. On the other hand, if it exceeds 1%, the hardened phase tends to segregate at the grain boundaries and becomes brittle, which is not desirable.

【0020】PおよびSは介在物の生成を少くするた
め、できるだけ少なくする方が望ましい。介在物は硬
く、不規則に存在するのでSiウエハにきずをつけやす
い。このため、いずれも0.03% 以下がよい。0.03% 以上
になると砥粒よりも大きな介在物(Fe3 P、MnS、
MgSなど)が生成するため望ましくない。
Since P and S reduce the formation of inclusions, it is desirable to reduce them as much as possible. Since the inclusions are hard and irregularly present, it is easy to scratch the Si wafer. Therefore, in each case, 0.03% or less is preferable. When the content is 0.03% or more, inclusions (Fe 3 P, MnS,
(MgS, etc.) is generated, which is not desirable.

【0021】Mgは黒鉛を球状化するために必要な合金
元素で、0.03% 以下では球状化率が好ましい範囲(たと
えば80%以上)になりにくくなり、一方、0.07% 程度
を越えると異形の炭化物が生成しやすくなるので好まし
くない。
Mg is an alloying element necessary for spheroidizing graphite, and if it is 0.03% or less, the spheroidization rate is unlikely to be in a preferable range (for example, 80% or more), while if it exceeds 0.07%, atypical carbides are formed. Is easily generated, which is not preferable.

【0022】NiおよびCuは、組織を均一にするた
め、例えば表面から深さ方向に組織を均一にして、硬さ
のバラツキをなくし、特に表面から20mmの領域にお
いてHv30〜50を保持するのに効果的な元素であ
る。またNiは熱処理における酸化物生成を防止する効
果がある。
Ni and Cu are used to make the structure uniform, for example, to make the structure uniform in the depth direction from the surface to eliminate hardness variations, and particularly to maintain Hv30 to 50 in a region of 20 mm from the surface. It is an effective element. Further, Ni has an effect of preventing oxide formation during heat treatment.

【0023】Ni0.2%/ 以下ではこれらの効果が少な
く、また0.6%以上加えてもこれらの効果にそれ程有効で
なく、また経済的でもない。一方CuはNiと同様0.3%
以下では均一性に対する効果は少なく、逆にCuを0.7%
以上添加すると基地にCu相が析出し、組織が不均一に
なり耐摩耗性を悪くする傾向がみられる。
When Ni is 0.2% / or less, these effects are small, and when 0.6% or more is added, it is not so effective for these effects and it is not economical. On the other hand, Cu is 0.3% like Ni.
Below, there is little effect on the uniformity, and on the contrary, 0.7% Cu
When added above, Cu phase is precipitated in the matrix, the structure becomes non-uniform, and the wear resistance tends to deteriorate.

【0024】Ni,Cuは本発明では必ずしも不可欠の
元素ではないが、組織の均一性、スケールの防止にとっ
て望ましい合金成分である。
Ni and Cu are not necessarily essential elements in the present invention, but they are desirable alloy components for the uniformity of the structure and the prevention of scale.

【0025】上記組成の場合、熱処理の場合、熱処理の
温度としては、組織をオーステナイトにし得る温度であ
ることが必要であり、約850℃以上、好ましくは約9
30℃前後である。
In the case of the above composition, in the case of heat treatment, the temperature of heat treatment needs to be a temperature at which the structure can be austenite, and is about 850 ° C. or higher, preferably about 9
It is around 30 ° C.

【0026】本発明の製造方法により得られた研磨定盤
材料は、Siウエハ以外の例えば宝石、金属材料、硝
子、セラミックスなど砥粒を用いて研磨する研磨定盤材
料についても効果的に適用できることはいうまでもな
い。
The polishing platen material obtained by the manufacturing method of the present invention can be effectively applied to a polishing platen material other than a Si wafer, which is polished by using abrasive grains such as jewelry, metal materials, glass and ceramics. Needless to say.

【0027】[0027]

【実施例】【Example】

(実施例1)表1に示す成分の球状黒鉛鋳鉄を鋳造し研
磨材用定盤の鋳造品を製作した。スリットなどの機械加
工前に930℃に加熱し空冷処理を行った。この場合、
表面から20mm深さ方向にいて検鏡したが球状黒鉛化率
は90%、黒鉛粒径は30〜50μm、分布は150個
/mm2 であった。空冷処理により基地は微細なパ−ライ
ト組織で、硬さはHv250であった。この材料を機械
加工により定盤に仕上げた。これをSiウエハ研磨に実
用したが、その結果を下表2に示す。従来のFCD45
の研磨に比べ、きず不良は75%に減少(FCD45を
100%する)し、定盤寿命(以下、ライフともいう)
は150%向上した(FCD45を100%とする)。
また摩耗量は40%減少し(FCD45を100%とす
る)定盤材料として望ましい特性を示した。 (実施例2)表1に示す成分の球状黒鉛鋳鉄を鋳造し、
定盤を製作した。表面から20mm深さ方向での黒鉛球状
化率は85%、黒鉛粒径は30〜50μm、黒鉛粒は7
0個/mm2 の分布状態であった。
(Example 1) A spheroidal graphite cast iron having the components shown in Table 1 was cast to manufacture a cast surface plate for abrasives. Before machining such as slitting, it was heated to 930 ° C. and air-cooled. in this case,
Microscopic examination was conducted at a depth of 20 mm from the surface, whereupon the spherical graphitization ratio was 90%, the graphite particle size was 30 to 50 μm, and the distribution was 150 particles / mm 2 . The base had a fine pearlite structure and the hardness was Hv250 by the air cooling treatment. This material was machined into a surface plate. This was put to practical use for polishing Si wafers, and the results are shown in Table 2 below. Conventional FCD45
Defects in defects are reduced to 75% (100% for FCD45) compared with polishing of No. 1, and platen life (hereinafter also referred to as life)
Was improved by 150% (FCD45 is set to 100%).
Further, the amount of wear was reduced by 40% (100% for FCD45), which showed desirable characteristics as a platen material. (Example 2) Spheroidal graphite cast iron having the components shown in Table 1 was cast,
I made a surface plate. The spheroidization rate of graphite in the depth direction of 20 mm from the surface is 85%, the grain size of graphite is 30 to 50 μm, and the grain size of graphite is 7
The distribution was 0 / mm 2 .

【0028】鋳造品は930℃に加熱し、次いで炉冷を
行い、基地をフェライト組織にし、スリットなどの機械
加工を行なった。機械加工後、930℃でオ−ステナイ
ト組織にし、300℃でオ−ステンパ−処理を施し、ベ
イナイト組織にした。硬さはHv350であった。オ−
ステンパ−処理により生じた表面の平坦度の変化は研磨
加工を施して平坦度を修正し研磨定盤とした。この研磨
定盤を用いてSiウエハを研磨したが、表2に示すよう
にSiウエハ表面のきずは65%に減少(FCD45を
100%とする)、ライフは170%向上(FCD45
を100%とする)、また摩耗量は50%減少(FCD
45を100%とする)するなど定盤材料として望まし
い特性を示した。 (実施例3)表1に示す球状黒鉛鋳鉄を用いて定盤を鋳
造した。鋳造品は表面から深さ方向20mmにおいて球状
化率90%、黒鉛粒径30〜50μm、黒鉛粒は70個
/mm2 分布していた。
The cast product was heated to 930.degree. C., then cooled in a furnace to form a ferrite structure in the matrix and machined into slits. After machining, an austenite structure was formed at 930 ° C, and an austempering treatment was performed at 300 ° C to form a bainite structure. The hardness was Hv350. Oh
A change in the flatness of the surface caused by the tempering treatment was subjected to polishing to correct the flatness, and used as a polishing platen. Si wafers were polished using this polishing platen, and as shown in Table 2, flaws on the surface of the Si wafer were reduced to 65% (FCD45 is 100%), and life was improved by 170% (FCD45
Is 100%), and the amount of wear is reduced by 50% (FCD
45 was set to 100%) to show desirable characteristics as a platen material. (Example 3) A slab was cast using the spheroidal graphite cast iron shown in Table 1. The cast product had a spheroidization rate of 90% in a depth direction of 20 mm, a graphite particle size of 30 to 50 μm, and a distribution of 70 graphite particles / mm 2 .

【0029】この鋳造品は930℃に加熱し、炉冷して
基地をフェライト組織にして、スリットなどの機械加工
をした。加工後、930℃でオ−ステナイト組織にし
て、350℃でオ−ステンパ−に処理し、ベイナイト組
織にした。硬さはHv300であった。オ−ステンパ−
処理により生じた表面の平坦度変化は研磨加工により修
正した定盤とした。表2に示すようにSiウエハ表面の
きず不良は70%に減少し、ライフは160%向上し
た。摩耗量は50%減少するなど定盤材料として望まし
い特性を示した。 (実施例4)表1に示す組成の球状鋳鉄を鋳造し定盤を
製作した。鋳造品は表面から少くとも深さ方向20mmま
で球状化率は80%、黒鉛粒径は30〜50μm、黒鉛
粒は100個/mm2 分布させたものである。鋳造品は9
30℃に加熱し炉冷して基地をフェライト組織にして、
スリットなどの機械加工をした。機械加工後再び930
℃に加熱し、油中に焼入れた。硬さはHv550であっ
た。焼入れ後研磨して表面の平坦度を修正し定盤に仕上
げた。これを用いてSiウエハの研磨を行ったところ、
表2に示すように従来のFCD45の定盤に比べ、Si
ウエハ表面のきず不良は45%に減少、ライフは220
%上昇し、摩耗量も20%に減少し、定盤材料として望
ましい特性を示した。 (実施例5)表1に示す組成成分の球状黒鉛鋳鉄を用い
て定盤の鋳造品を製造した。鋳造品は表面から少くとも
深さ方向20mmまで球状化率は80%、黒鉛粒径50〜
1000μm、黒鉛粒は100個/mm2 分布させたもの
である。鋳造品は930℃に加熱し、炉冷して基地をフ
ェライト組織にして、スリットなどの定盤としての機械
加工をした。加工後再び930℃に加熱し、油中に焼入
れた。硬さはHv500であった。焼入れ後研磨して表
面の平坦度を修正し研磨定盤として仕上げた。
This cast product was heated to 930 ° C. and cooled in a furnace to form a ferrite structure in the matrix and machined into slits. After processing, it was made into an austenite structure at 930 ° C. and processed into an austemper at 350 ° C. to form a bainite structure. The hardness was Hv300. Austemper
The change in the flatness of the surface caused by the treatment was corrected on the surface plate by polishing. As shown in Table 2, defects on the surface of the Si wafer were reduced to 70% and the life was improved by 160%. The amount of wear was reduced by 50%, which showed desirable characteristics as a platen material. (Example 4) Spherical cast iron having the composition shown in Table 1 was cast to produce a surface plate. The cast product has a spheroidization rate of 80% from the surface to at least 20 mm in the depth direction, a graphite particle size of 30 to 50 μm, and 100 graphite particles / mm 2 distribution. 9 for casting
Heat to 30 ° C and cool in a furnace to make the matrix a ferrite structure,
Machined such as slits. After machining 930 again
Heated to 0 ° C and quenched in oil. The hardness was Hv550. After quenching, polishing was performed to correct the flatness of the surface, and the surface plate was finished. When the Si wafer was polished using this,
As shown in Table 2, compared to the conventional FCD45 surface plate, Si
Defects on the wafer surface are reduced to 45%, life is 220
%, And the amount of wear decreased to 20%, showing desirable characteristics as a platen material. (Example 5) A slab cast product was manufactured using the spheroidal graphite cast iron having the composition components shown in Table 1. The cast product has a spheroidization rate of 80% and a graphite particle size of 50 to at least 20 mm in the depth direction from the surface.
1000 μm, 100 graphite particles / mm 2 are distributed. The cast product was heated to 930 ° C. and cooled in a furnace to form a ferrite structure in the matrix, and machined as a surface plate such as a slit. After processing, it was heated again to 930 ° C. and quenched in oil. The hardness was Hv500. After quenching, polishing was carried out to correct the flatness of the surface and finished as a polishing platen.

【0030】これを用いてSiウエハの研磨を行った。
表2に示すようSiウエハ表面のきず不良は50%に減
少、ライフは200%に向上し、摩耗量は25%に減少
し、定盤材料として望ましい特性を示した。 (実施例6)表1に示す組成成分の球状黒鉛鋳鉄を用い
て定盤の鋳造品を製造した。鋳造品は表面から少くとも
深さ方向20mmまで球状化率は73%、黒鉛粒径30〜
50μm、黒鉛粒は100個/mm2 分布させたものであ
る。鋳造品を930℃に加熱したのち焼入れしさらに4
50℃で焼戻して基地を焼戻しマルテンサイト組成にし
て、スリットなどの定盤として機械加工をした。硬さは
Hv386であった。その後研磨して表面の平坦度を修
正し研磨定盤として仕上げた。
Using this, the Si wafer was polished.
As shown in Table 2, defects on the surface of the Si wafer were reduced to 50%, the life was improved to 200%, and the wear amount was reduced to 25%, which showed desirable characteristics as a surface plate material. Example 6 A slab cast product was manufactured using the spheroidal graphite cast iron having the compositional components shown in Table 1. The cast product has a spheroidization rate of 73% from the surface to at least 20 mm in the depth direction and a graphite particle size of 30-
50 μm, graphite particles are distributed in 100 particles / mm 2 . The casting is heated to 930 ° C and then quenched and further 4
The base was tempered at 50 ° C. to have a tempered martensite composition and machined as a surface plate such as a slit. The hardness was Hv386. After that, polishing was performed to correct the flatness of the surface, and the polishing plate was finished.

【0031】これを用いてSiウエハの研磨を行った。
表2に示すようSiウエハ表面のきず不良は50%に減
少、ライフは200%に向上し、摩耗量は25%に減少
し、定盤材料として望ましい特性を示した。 (比較例)表1に示す組成の球状黒鉛鋳鉄を用いて定盤
の鋳造品を製作した。鋳造品は表面から少くとも深さ方
向20mmにおいて球状化率は75%、黒鉛粒径は100
〜150μmで黒鉛粒は60個/mm2 であった。鋳造品
は930℃に加熱して炉冷して基地をフェライト組織に
した。硬さはHv140であった。熱処理後、スリット
など定盤として機械加工した。この定盤を用いてSiウ
エハの研磨を行ったがは表2に示すように実施例の定盤
に比べSiウエハ表面のきず不良、定盤のライフ、摩耗
量など定盤材料として劣っていた。
Using this, a Si wafer was polished.
As shown in Table 2, defects on the surface of the Si wafer were reduced to 50%, the life was improved to 200%, and the wear amount was reduced to 25%, which showed desirable characteristics as a surface plate material. (Comparative Example) A slab cast product was produced using spheroidal graphite cast iron having the composition shown in Table 1. The cast product has a spheroidization rate of 75% and a graphite particle size of 100 at least 20 mm from the surface in the depth direction.
The number of graphite particles was 60 particles / mm 2 at ˜150 μm. The cast product was heated to 930 ° C. and cooled in the furnace to make the matrix a ferrite structure. The hardness was Hv140. After heat treatment, it was machined as a surface plate such as slits. Although the Si wafer was polished using this surface plate, as shown in Table 2, it was inferior to the surface plate of the embodiment as a surface plate material such as flaw defects on the surface of the Si wafer, life of the surface plate, and wear amount. .

【0032】[0032]

【表1】 [Table 1]

【0033】[0033]

【表2】 [Table 2]

【0034】[0034]

【発明の効果】上記実施例、比較例の結果から明らかな
ように本発明の製造方法により得られた研磨定盤用材料
は、従来の材料と比較して、定盤自体の平坦度の変化、
ライフ、摩耗量に関していずれも望ましい特性を示し、
しかも被研磨部材表面にきずを生じさせることがないと
いうすぐれた効果を有している。
As is clear from the results of the above Examples and Comparative Examples, the polishing platen material obtained by the manufacturing method of the present invention is different in flatness of the platen itself from the conventional materials. ,
Both show desirable characteristics in terms of life and wear amount,
Moreover, it has an excellent effect that the surface of the member to be polished is not scratched.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 西村 隆宣 神奈川県横浜市鶴見区末広町2の4 株 式会社東芝 京浜事業所内 (72)発明者 木下 正治 山形県西置賜郡小国町大字小国町378 東芝セラミックス株式会社小国製造所内 (72)発明者 益田 則雄 山形県西置賜郡小国町大字小国町378 東芝セラミックス株式会社小国製造所内 (56)参考文献 特開 昭56−114570(JP,A) 「機械の研究」第19巻・第11号 (1967)P.71−76 第5回鋳物協会シンポジウムテキスト 「鋳鉄の摩耗現象と耐摩耗性」社団法人 日本鋳物協会(昭53−10−12)P.18− 25 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Takanobu Nishimura Inventor Takanobu 4 Keio Works, Toshiba Corp. 2-4 Suehiro-cho, Tsurumi-ku, Yokohama-shi, Kanagawa (72) Inventor Shoji Kinoshita 378 Oguni-machi, Oguni-machi, Nishiokitama-gun, Yamagata 378 Toshiba Ceramics Co., Ltd. Oguni Factory (72) Inventor Norio Masuda 378 Oguni Town, Oguni Town, Nishiokitama District, Yamagata Prefecture Toshiba Ceramics Co., Ltd. Oguni Factory (56) Reference JP-A-56-114570 (JP, A) 19/11 (1967) p. 71-76 5th Foundry Society Symposium Text "Abrasion Phenomena and Wear Resistance of Cast Iron" Japan Foundry Association (Sho 53-10-12) 18-25

Claims (10)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】球状黒鉛鋳鉄からなる研磨定盤用材料の製
造方法において、該球状黒鉛鋳鉄にオ−ステナイト化加
熱処理、ついで空冷以上の速度で急冷処理を施すことに
より、ビッカ−ス硬さ数200以上の母材中に黒鉛粒径
100μm以下、黒鉛粒数70個/mm2 以上の球状黒
鉛が分散した状態とすることを特徴とする球状黒鉛鋳鉄
からなる研磨定盤用材料の製造方法。
1. A method for producing a polishing platen material made of spheroidal graphite cast iron, wherein the spheroidal graphite cast iron is subjected to an austenitizing heat treatment and then to a quenching treatment at a rate of air cooling or higher to obtain a Vickers hardness. A method for producing a material for a polishing platen made of spheroidal graphite cast iron, characterized in that a spheroidal graphite having a graphite particle size of 100 μm or less and a graphite particle number of 70 / mm 2 or more is dispersed in a base material of several 200 or more. .
【請求項2】前記球状黒鉛鋳鉄の球状化率が、80%以
上である、特許請求の範囲第1項に記載の研磨定盤用材
料の製造方法。
2. The method for producing a polishing platen material according to claim 1, wherein the spheroidal graphite cast iron has a spheroidization rate of 80% or more.
【請求項3】前記球状黒鉛鋳鉄が、必須成分として、炭
素、ケイ素、マンガンおよびマグネシウムを含有し、残
部が実質的に鉄からなる、特許請求の範囲第1項に記載
の研磨定盤用材料の製造方法。
3. The polishing plate material according to claim 1, wherein the spheroidal graphite cast iron contains carbon, silicon, manganese, and magnesium as essential components, and the balance is substantially iron. Manufacturing method.
【請求項4】前記球状黒鉛鋳鉄が、さらに、ニッケル、
および銅を含有する、特許請求の範囲第3項に記載の研
磨定盤用材料の製造方法。
4. The spheroidal graphite cast iron further comprises nickel,
The method for producing a material for a polishing platen according to claim 3, further comprising: and copper.
【請求項5】前記球状黒鉛鋳鉄が、重量比で、C:2.
7〜3.5%、Si:2〜2.7%、Mn:0.5〜1
%、P:0.03%以下、S:0.03%以下、Mg:
0.03〜0.07%、Ni:0.2〜0.6%、C
u:0.3〜0.7%、残部がFeおよび付随的不純物
からなる、特許請求の範囲第1項に記載の研磨定盤用材
料の製造方法。
5. The spheroidal graphite cast iron in a weight ratio of C: 2.
7-3.5%, Si: 2-2.7%, Mn: 0.5-1
%, P: 0.03% or less, S: 0.03% or less, Mg:
0.03 to 0.07%, Ni: 0.2 to 0.6%, C
The method for producing a material for a polishing platen according to claim 1, wherein u: 0.3 to 0.7% , the balance being Fe and incidental impurities.
【請求項6】球状黒鉛鋳鉄からなる研磨定盤用材料の製
造方法において、該球状黒鉛鋳鉄にオ−ステンパ−処理
を施すことにより、ビッカ−ス硬さ数200以上の母材
中に黒鉛粒径100μm以下、黒鉛粒数70個/mm2
以上の球状黒鉛が分散した状態とすることを特徴とする
球状黒鉛鋳鉄からなる研磨定盤用材料の製造方法。
6. A method for producing a material for a polishing platen comprising spheroidal graphite cast iron, wherein the spheroidal graphite cast iron is subjected to an au-temper treatment to obtain graphite particles in a base material having a Vickers hardness of 200 or more. Diameter 100 μm or less, number of graphite particles 70 / mm 2
A method for producing a material for a polishing platen comprising spheroidal graphite cast iron, characterized in that the spheroidal graphite is dispersed.
【請求項7】前記球状黒鉛鋳鉄の球状化率が、80%以
上である、特許請求の範囲第6項に記載の研磨定盤用材
料の製造方法。
7. The method for producing a material for a polishing platen according to claim 6, wherein the spheroidization ratio of the spheroidal graphite cast iron is 80% or more.
【請求項8】前記球状黒鉛鋳鉄が、必須成分として、炭
素、ケイ素、マンガンおよびマグネシウムを含有し、残
部が実質的に鉄からなる、特許請求の範囲第6項に記載
の研磨定盤用材料の製造方法。
8. The polishing plate material according to claim 6, wherein the spheroidal graphite cast iron contains carbon, silicon, manganese, and magnesium as essential components, and the balance is substantially iron. Manufacturing method.
【請求項9】前記球状黒鉛鋳鉄が、さらに、ニッケル、
および銅を含有する、特許請求の範囲第8項に記載の研
磨定盤用材料の製造方法。
9. The spheroidal graphite cast iron further comprises nickel,
The method for producing a material for a polishing platen according to claim 8, further comprising: and copper.
【請求項10】前記球状黒鉛鋳鉄が、重量比で、C:
2.7〜3.5%、Si:2〜2.7%、Mn:0.5
〜1%、P:0.03%以下、S:0.03%以下、M
g:0.03〜0.07%、Ni:0.2〜0.6%、
Cu:0.3〜0.7%、残部がFeおよび付随的不純
物からなる、特許請求の範囲第6項に記載の研磨定盤用
材料の製造方法。
10. The spheroidal graphite cast iron in a weight ratio of C:
2.7-3.5%, Si: 2-2.7%, Mn: 0.5
~ 1%, P: 0.03% or less, S: 0.03% or less, M
g: 0.03 to 0.07%, Ni: 0.2 to 0.6%,
The method for producing a material for a polishing platen according to claim 6, wherein Cu: 0.3 to 0.7% , the balance being Fe and incidental impurities.
JP30706993A 1993-11-15 1993-11-15 Method of manufacturing material for polishing surface plate Expired - Lifetime JP2568038B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30706993A JP2568038B2 (en) 1993-11-15 1993-11-15 Method of manufacturing material for polishing surface plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30706993A JP2568038B2 (en) 1993-11-15 1993-11-15 Method of manufacturing material for polishing surface plate

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP60059850A Division JPS61219566A (en) 1985-03-25 1985-03-25 Material for polishing surface plate

Publications (2)

Publication Number Publication Date
JPH06212252A JPH06212252A (en) 1994-08-02
JP2568038B2 true JP2568038B2 (en) 1996-12-25

Family

ID=17964674

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30706993A Expired - Lifetime JP2568038B2 (en) 1993-11-15 1993-11-15 Method of manufacturing material for polishing surface plate

Country Status (1)

Country Link
JP (1) JP2568038B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11286739A (en) * 1998-04-03 1999-10-19 Speedfam-Ipec Co Ltd Lapping machine
JP5317552B2 (en) * 2008-06-26 2013-10-16 オーエスジー株式会社 Rolling dies

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
「機械の研究」第19巻・第11号(1967)P.71−76
第5回鋳物協会シンポジウムテキスト「鋳鉄の摩耗現象と耐摩耗性」社団法人日本鋳物協会(昭53−10−12)P.18−25

Also Published As

Publication number Publication date
JPH06212252A (en) 1994-08-02

Similar Documents

Publication Publication Date Title
JPH0480791B2 (en)
JPH05132890A (en) Roll preparation and roll
JPH05339673A (en) Roll external layer material and composite roll
JP2568038B2 (en) Method of manufacturing material for polishing surface plate
JP2003073767A (en) Outer layer material of roll for hot rolling and composite roll for hot rolling
JP3691913B2 (en) Polishing tool material and polishing surface plate using the same
JP2001279367A (en) Roll for hot rolling made by centrifugal casting
KR100530043B1 (en) Mill roll and method for manufacturing the roll
JP2908316B2 (en) Polishing surface plate for Si wafer
WO2018047444A1 (en) Roll outer layer material for hot rolling and composite roll for hot rolling
JP3360926B2 (en) Prehardened steel for plastic molding and method for producing the same
JP4323778B2 (en) Manufacturing method of steel with excellent machinability
JP3779473B2 (en) Polishing surface plate
JP7425443B2 (en) wrap tools
JP4385921B2 (en) Bearing steel with excellent grindability
JPH0768304A (en) Rolling roll for bar steel
JPS62112761A (en) Tool steel for warm and hot working
JP3637159B2 (en) Polishing tool material and polishing surface plate using the same
JP2716441B2 (en) High speed tool steel
JPH04308059A (en) Tool steel for hot working
KR910000015B1 (en) Super heat resisting and wear resisting alloy
CN112011720A (en) Nodular cast iron material and its production process and use
JPH04301030A (en) Production of steel member
JPH04301031A (en) Steel member excellent in wear resistance and its production
JPH1060596A (en) Cold tool steel with high hardness and high toughness

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term