JP2908316B2 - Polishing surface plate for Si wafer - Google Patents

Polishing surface plate for Si wafer

Info

Publication number
JP2908316B2
JP2908316B2 JP15285996A JP15285996A JP2908316B2 JP 2908316 B2 JP2908316 B2 JP 2908316B2 JP 15285996 A JP15285996 A JP 15285996A JP 15285996 A JP15285996 A JP 15285996A JP 2908316 B2 JP2908316 B2 JP 2908316B2
Authority
JP
Japan
Prior art keywords
wafer
polishing
graphite
surface plate
platen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP15285996A
Other languages
Japanese (ja)
Other versions
JPH09103956A (en
Inventor
幸生 鹿田
博和 野老
隆宣 西村
正治 木下
則雄 益田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Toshiba Corp
Original Assignee
Toshiba Corp
Toshiba Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Ceramics Co Ltd filed Critical Toshiba Corp
Priority to JP15285996A priority Critical patent/JP2908316B2/en
Publication of JPH09103956A publication Critical patent/JPH09103956A/en
Application granted granted Critical
Publication of JP2908316B2 publication Critical patent/JP2908316B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、Siウエハ等のラ
ッピング等に使用する研磨定盤に関する。 【0002】 【従来の技術】一般に、Siウエハ等のラッピングにお
いては、スラリー状の砥粒を上下一対からなる研磨定盤
と被加工物の間に供給し、加工圧力を加えながら定盤の
回転運動を利用し研磨材のもつ切刃で被加工物から必要
量の取り代を除き、これにより定盤の持つ平坦度を被加
工物に転写する方法がとられる。このような研磨はSi
ウエハのみならず硝子、宝石、金属、セラミックスなど
の被加工物の表面を平坦にする目的で多く用いられてい
るが、特に最近、Siウエハはエレクトロニクスの発展
に関連してその需要は年々増加する傾向にある。 【0003】通常、Siウエハへの研磨においては、砥
粒としてAl2 3 、ZrO2 が用いられ、その粒径は
#1000メッシュ、平均粒径16ミクロンのものが用
いられている。この場合の研磨定盤としては、従来、球
状黒鉛を含む鋳鉄(JIS−FCD45)が多く用いら
れている。このJIS−FCD45の基地(母材)は、
フェライト組織で、硬さはHv(ビツカ−ス硬さ荷重5
00gで測定)140程度であり、黒鉛粒径100〜1
50μmの物性を有する材料である。この材料からなる
研磨定盤を用いてSiウエハを研磨する場合、研磨状態
においては砥粒であるAl2 3 、ZrO2 が黒鉛粒が
存在する部位に選択的に存在して分布し、この状態でS
iウエハに対し研磨が行なわれる。この場合、砥粒はS
iウエハを研磨すると共に、JIS−FCD45を基地
とする研磨定盤に対しても同時に研磨(摩耗)が行われ
ることになる。 【0004】すなわちフエライト組織のように比較的柔
かい基地の定盤では、硬い砥粒による摩耗が進みやすく
なり研磨定盤の平坦度が悪くなる。このように、研磨に
際しては研磨定盤の平坦度がそのまま被加工材の表面に
転写されるわけであるから、この結果被加工材物の平坦
度が劣化して高精度の研磨が出来なくなるという問題が
ある。 【0005】また、従来使用されているJIS−FCD
45定盤の黒鉛粒径は100〜150μmと大きく、砥
粒は選択的にこの黒鉛の部分に存在することになるので
比較的不均一に分布することになり、この結果研磨定盤
表面での砥粒の流れも不均一となり、加工速度が低下し
たり、定盤の不均一な摩耗が進み、その結果Siウエハ
表面にきずが生じやすくなるという問題がある。 【0006】 【発明が解決しようとする課題】本発明は上述した点に
鑑みてなされたものであり、研磨中における砥粒による
摩耗量をできる限り少なくすることにより平坦度、平滑
性を維持するとともに、砥粒の分布をできるだけ細かく
分散させて砥粒の流れを均一に促進させた研磨定盤を提
供することを目的とする。 【0007】 【課題を解決するための手段】上記目的を達成するた
め、本発明によるSiウェハ用研磨定盤は、ビッカ−ス
硬さ数200以上の母材中に、球状化率80%以上、
鉛粒径100μm以下、黒鉛粒数70個/mm2 以上の球
状黒鉛が分散状態で存在してなる球状黒鉛鋳鉄組織を表
面から少なくとも15mm深さ方向にわたって有してい
ことを特徴とするものである。 【0008】上述した球状黒鉛鋳鉄は、必須成分とし
て、炭素、ケイ素、マンガンおよびマグネシウムを含有
し、残部が実質的に鉄からなるものであることが好まし
く、さらに具体的には、重量比で、C:2.7 〜3.5%、S
i:2.0 〜2.7%、Mn:0.5 〜1.0%、P:0.03% 以下、
S:0.03% 以下、Mg:0.03〜0.07% 、Ni:0.2 〜0.
6%、Cu:0.3 〜0.7%、残部がFeからなることが好ま
しい。 【0009】本発明に係る研磨定盤は、砥粒による摩耗
量をできるだけ少なくするために定盤の基地の硬さを少
なくともHv200以上とすることが一つの特徴であ
り、この場合母材組織は、耐摩耗性の向上のため、熱処
理により、パーライト、ベイナイト、またはマルテンサ
イトあるいは焼戻しマルテンサイト組織とすることが好
ましい。 【0010】研磨は研磨定盤を介して被加工物表面に砥
粒を供給することにより行なわれるもので、研磨定盤の
平坦度および砥粒が均一で細かく分散し、流れがスムー
ズであることが肝要である。前者、即ち平坦度について
は研磨定盤基地の耐摩耗性、後者、即ち均一性、分散性
については黒鉛形状、粒径、粒分布が大きく影響する。
砥粒を均一に細かく分散させ砥粒の均一な流れを促進す
るためには、定盤の基地は片状黒鉛鋳鉄よりも球状黒鉛
鋳鉄にし、さらに黒鉛粒径は砥粒の寸法に適合させた寸
法であることが肝要である。また黒鉛粒もできるだけ小
さく均一に分布していることが好ましい。特に、Siウ
エハでは砥粒は平均粒径16μmを用いるため、黒鉛粒
径は砥粒よりも大きいこと、さらに均一に細かく分布さ
せるため、黒鉛粒径は100μm以下、望ましくは30
〜50μmの範囲とする。また、黒鉛粒の分布(断面密
度)は70個/mm2 以上、球状化率80%以上が好まし
い。ただし、球状化率については特にこの範囲に限定さ
れるものではない。 【0011】研磨定盤表面から少くとも15mm深さ方
向にわたって上記性状を有している必要がある。 【0012】以下、本発明の好ましい態様について説明
する。 【0013】本発明に係る研磨定盤は、重量比でC:2.
7 〜3.5%、Si:2.0 〜2.7%、Mn:0.5 〜1.0%、P、
S<0.03% 、Mg:0.03〜0.07% 、さらに望ましくはN
i:0.2 〜0.6%、Cu:0.3 〜0.7%、残部がFeからな
る組成からなることが好ましい。 【0014】すでに述べたように、研磨定盤としては、
Al2 3 、ZrO2 などの砥粒に対する耐摩耗性のよ
いことが要求される。このため従来の定盤材料JIS−
FCD45に対し、熱処理により耐摩耗性のよい金属組
織とし、所定の硬さ(Hv>200)を有するとともに
機械的性質にすぐれた球状黒鉛鋳鉄を用いることが肝要
である。 【0015】以下、各組成成分の添加目的ならびに組成
範囲の限定理由について説明する。 【0016】Cが3.5%を越えると、機械的性質、特に引
張り強さが目標の70Kgf/mm2以上にならず、一
方、C2.7%以下では黒鉛粒として70個/mm2 以上の分
布にならないので好ましくない。 【0017】Siは球状化率、鋳造性の向上のために添
加するが、Si2.7%以上になると熱処理によってもフェ
ライトが存在し、硬さが低下する傾向となりHv200
以上にすることは困難になる。また、オーステナイトに
なる温度が上昇し、熱処理温度が高くなり、結果として
酸化物が生成しやすくなり定盤からこれを除去すること
が必要となるので望ましくない。 【0018】Si2.0%以下では特に鋳造性が悪くなり、
定盤として望ましくない引け巣が発生しやすくなる。 【0019】Mn0.5%以下では、定盤(肉厚40〜60m
m)のように肉厚鋳物において中心部になるに従って空
気冷却の際にフェライトが発生しやすくなり耐摩耗性が
悪くなる。一方、1%を越えると粒界に硬化相が偏析し
やすくもろくなるので望ましくない。 【0020】PおよびSは介在物の生成を少くするた
め、できるだけ少なくする方が望ましい。介在物は硬
く、不規則に存在するのでSiウエハにきずをつけやす
い。このため、いずれも0.03% 以下がよい。0.03% 以上
になると砥粒よりも大きな介在物(Fe3 P、MnS、
MgSなど)が生成するため望ましくない。 【0021】Mgは黒鉛を球状化するために必要な合金
元素で、0.03% 以下では球状化率が好ましい範囲(たと
えば80%以上)になりにくくなり、一方、0.07% 程度
を越えると異形の炭化物が生成しやすくなるので好まし
くない。 【0022】NiおよびCuは、組織を均一にするた
め、例えば表面から深さ方向に組織を均一にして、硬さ
のバラツキをなくし、特に表面から20mmの領域にお
いてHv30〜50を保持するのに効果的な元素であ
る。またNiは熱処理における酸化物生成を防止する効
果がある。 【0023】Ni0.2%/ 以下ではこれらの効果が少な
く、また0.6%以上加えてもこれらの効果にそれ程有効で
なく、また経済的でもない。一方CuはNiと同様0.3%
以下では均一性に対する効果は少なく、逆にCuを0.7%
以上添加すると基地にCu相が析出し、組織が不均一に
なり耐摩耗性を悪くする傾向がみられる。 【0024】Ni,Cuは本発明では必ずしも不可欠の
元素ではないが、組織の均一性、スケールの防止にとっ
て望ましい合金成分である。 【0025】上記組成の場合、熱処理の場合、熱処理の
温度としては、組織をオーステナイトにし得る温度であ
ることが必要であり、約850℃以上、好ましくは約9
30℃前後である。 【0026】 【0027】 【発明の実施の形態】 【0028】 【実施例】 (実施例1)表1に示す成分の球状黒鉛鋳鉄を鋳造し研
磨材用定盤の鋳造品を製作した。スリットなどの機械加
工前に930℃に加熱し空冷処理を行った。この場合、
表面から20mm深さ方向にいて検鏡したが球状黒鉛化率
は90%、黒鉛粒径は30〜50μm、分布は150個
/mm2 であった。空冷処理により基地は微細なパ−ライ
ト組織で、硬さはHv250であった。この材料を機械
加工により定盤に仕上げた。これをSiウエハ研磨に実
用したが、その結果を下表2に示す。従来のFCD45
の研磨に比べ、きず不良は75%に減少(FCD45を
100%する)し、定盤寿命(以下、ライフともいう)
は150%向上した(FCD45を100%とする)。
また摩耗量は40%減少し(FCD45を100%とす
る)定盤として望ましい特性を示した。 (実施例2)表1に示す成分の球状黒鉛鋳鉄を鋳造し、
定盤を製作した。表面から20mm深さ方向での黒鉛球状
化率は85%、黒鉛粒径は30〜50μm、黒鉛粒は7
0個/mm2 の分布状態であった。 【0029】鋳造品は930℃に加熱し、次いで炉冷を
行い、基地をフェライト組織にし、スリットなどの機械
加工を行なった。機械加工後、930℃でオ−ステナイ
ト組織にし、300℃でオ−ステンパ−処理を施し、ベ
イナイト組織にした。硬さはHv350であった。オ−
ステンパ−処理により生じた表面の平坦度の変化は研磨
加工を施して平坦度を修正し研磨定盤とした。この研磨
定盤を用いてSiウエハを研磨したが、表2に示すよう
にSiウエハ表面のきずは65%に減少(FCD45を
100%とする)、ライフは170%向上(FCD45
を100%とする)、また摩耗量は50%減少(FCD
45を100%とする)するなど定盤として望ましい特
性を示した。 (実施例3)表1に示す球状黒鉛鋳鉄を用いて定盤を鋳
造した。鋳造品は表面から深さ方向20mmにおいて球状
化率90%、黒鉛粒径30〜50μm、黒鉛粒は70個
/mm2 分布していた。 【0030】この鋳造品は930℃に加熱し、炉冷して
基地をフェライト組織にして、スリットなどの機械加工
をした。加工後、930℃でオ−ステナイト組織にし
て、350℃でオ−ステンパ−に処理し、ベイナイト組
織にした。硬さはHv300であった。オ−ステンパ−
処理により生じた表面の平坦度変化は研磨加工により修
正した定盤とした。表2に示すようにSiウエハ表面の
きず不良は70%に減少し、ライフは160%向上し
た。摩耗量は50%減少するなど定盤として望ましい特
性を示した。 (実施例4)表1に示す組成の球状鋳鉄を鋳造し定盤を
製作した。鋳造品は表面から少くとも深さ方向20mmま
で球状化率は80%、黒鉛粒径は30〜50μm、黒鉛
粒は100個/mm2 分布させたものである。鋳造品は9
30℃に加熱し炉冷して基地をフェライト組織にして、
スリットなどの機械加工をした。機械加工後再び930
℃に加熱し、油中に焼入れた。硬さはHv550であっ
た。焼入れ後研磨して表面の平坦度を修正し定盤に仕上
げた。これを用いてSiウエハの研磨を行ったところ、
表2に示すように従来のFCD45の定盤に比べ、Si
ウエハ表面のきず不良は45%に減少、ライフは220
%上昇し、摩耗量も20%に減少し、定盤として望まし
い特性を示した。 (実施例5)表1に示す組成成分の球状黒鉛鋳鉄を用い
て定盤の鋳造品を製造した。鋳造品は表面から少くとも
深さ方向20mmまで球状化率は80%、黒鉛粒径50〜
1000μm、黒鉛粒は100個/mm2 分布させたもの
である。鋳造品は930℃に加熱し、炉冷して基地をフ
ェライト組織にして、スリットなどの定盤としての機械
加工をした。加工後再び930℃に加熱し、油中に焼入
れた。硬さはHv500であった。焼入れ後研磨して表
面の平坦度を修正し研磨定盤として仕上げた。 【0031】これを用いてSiウエハの研磨を行った。
表2に示すようSiウエハ表面のきず不良は50%に減
少、ライフは200%に向上し、摩耗量は25%に減少
し、定盤として望ましい特性を示した。 (実施例6)表1に示す組成成分の球状黒鉛鋳鉄を用い
て定盤の鋳造品を製造した。鋳造品は表面から少くとも
深さ方向20mmまで球状化率は73%、黒鉛粒径30〜
50μm、黒鉛粒は100個/mm2 分布させたものであ
る。鋳造品を930℃に加熱したのち焼入れしさらに4
50℃で焼戻して基地を焼戻しマルテンサイト組成にし
て、スリットなどの定盤として機械加工をした。硬さは
Hv386であった。その後研磨して表面の平坦度を修
正し研磨定盤として仕上げた。 【0032】これを用いてSiウエハの研磨を行った。
表2に示すようSiウエハ表面のきず不良は50%に減
少、ライフは200%に向上し、摩耗量は25%に減少
し、定盤として望ましい特性を示した。 (比較例)表1に示す組成の球状黒鉛鋳鉄を用いて定盤
の鋳造品を製作した。鋳造品は表面から少くとも深さ方
向20mmにおいて球状化率は75%、黒鉛粒径は100
〜150μmで黒鉛粒は60個/mm2 であった。鋳造品
は930℃に加熱して炉冷して基地をフェライト組織に
した。硬さはHv140であった。熱処理後、スリット
など定盤として機械加工した。この定盤を用いてSiウ
エハの研磨を行ったがは表2に示すように実施例の定盤
に比べSiウエハ表面のきず不良、定盤のライフ、摩耗
量など定盤として劣っていた。 【0033】 【表1】 【0034】 【表2】【0035】 【発明の効果】上記実施例、比較例の結果から明らかな
ように本発明の研磨定盤は、従来の定盤と比較して、定
盤自体の平坦度の変化、ライフ、摩耗量に関していずれ
も望ましい特性を示し、しかも被研磨部材表面にきずを
生じさせることがないというすぐれた効果を有してい
る。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polishing platen used for lapping of a Si wafer or the like. 2. Description of the Related Art Generally, in lapping of Si wafers or the like, slurry-like abrasive grains are supplied between a pair of upper and lower polishing platens and a workpiece, and the platen is rotated while applying a processing pressure. A method is used in which a required amount of removal is removed from a workpiece by using a cutting blade of an abrasive by using motion, and thereby the flatness of the surface plate is transferred to the workpiece. Such polishing is performed by Si
It is often used to flatten the surface of workpieces such as glass, jewelry, metal, and ceramics as well as wafers. In particular, recently, the demand for Si wafers has been increasing year by year in connection with the development of electronics. There is a tendency. Usually, in polishing a Si wafer, Al 2 O 3 and ZrO 2 are used as abrasive grains, the grain size of which is # 1000 mesh and the average grain size is 16 μm. Conventionally, cast iron (JIS-FCD45) containing spheroidal graphite is often used as a polishing platen in this case. This JIS-FCD45 base (base material)
Hardness is Hv (Vickers hardness load 5)
(Measured at 00 g) is about 140, and the graphite particle size is 100 to 1
It is a material having physical properties of 50 μm. When polishing a Si wafer using a polishing platen made of this material, in the polishing state, Al 2 O 3 and ZrO 2 , which are abrasive grains, are selectively present and distributed in a portion where graphite grains are present. S in state
Polishing is performed on the i-wafer. In this case, the abrasive grains are S
In addition to polishing the i-wafer, polishing (wear) is simultaneously performed on the polishing platen based on JIS-FCD45. That is, in the case of a base plate having a relatively soft base such as a ferrite structure, wear due to hard abrasive grains is likely to progress, and the flatness of the polishing base plate is deteriorated. As described above, during polishing, the flatness of the polishing platen is directly transferred to the surface of the workpiece, and as a result, the flatness of the workpiece is deteriorated and high-precision polishing cannot be performed. There's a problem. [0005] In addition, conventionally used JIS-FCD
The graphite particle size of the 45 platen is as large as 100 to 150 μm, and the abrasive particles are selectively present in the graphite portion, so that they are relatively unevenly distributed. There is also a problem that the flow of the abrasive grains becomes non-uniform, the processing speed is reduced, and the non-uniform wear of the surface plate is advanced, and as a result, the surface of the Si wafer is liable to be flawed. SUMMARY OF THE INVENTION The present invention has been made in view of the above points, and maintains flatness and smoothness by minimizing the amount of wear caused by abrasive grains during polishing. In addition, an object of the present invention is to provide a polishing platen in which the distribution of the abrasive grains is dispersed as finely as possible to promote the flow of the abrasive grains uniformly. In order to achieve the above object, a polishing plate for Si wafer according to the present invention comprises a base material having a Vickers hardness number of 200 or more in a base material having a spheroidization ratio of 80% or more. Table 1 shows a spheroidal graphite cast iron structure in which spheroidal graphite having a graphite particle size of 100 μm or less and graphite particles of 70 particles / mm 2 or more exists in a dispersed state.
At least 15 mm from the surface
It is characterized in that that. The above-mentioned spheroidal graphite cast iron preferably contains carbon, silicon, manganese and magnesium as essential components, and the balance substantially consists of iron. C: 2.7-3.5%, S
i: 2.0 to 2.7%, Mn: 0.5 to 1.0%, P: 0.03% or less,
S: 0.03% or less, Mg: 0.03 to 0.07%, Ni: 0.2 to 0.
It is preferable that 6%, Cu: 0.3 to 0.7%, and the balance be Fe. The polishing platen according to the present invention is characterized in that the base of the platen has a hardness of at least Hv 200 or more in order to minimize the amount of wear caused by the abrasive grains. In order to improve abrasion resistance, it is preferable to form pearlite, bainite, martensite or tempered martensite by heat treatment. Polishing is performed by supplying abrasive grains to the surface of a workpiece through a polishing platen, and the flatness of the polishing platen and the uniform and fine dispersion of the abrasive grains and the smooth flow. Is essential. The former, that is, the flatness, has a great influence on the wear resistance of the polishing platen base, and the latter, that is, the uniformity and dispersibility, are greatly affected by the graphite shape, particle size, and particle distribution.
In order to uniformly disperse the abrasive grains and promote uniform flow of the abrasive grains, the base of the surface plate was made of spheroidal graphite cast iron rather than flake graphite cast iron, and the graphite particle size was adapted to the size of the abrasive grains It is important to have dimensions. It is also preferable that the graphite particles are also distributed as small and uniformly as possible. In particular, in the case of Si wafers, the abrasive grains have an average grain size of 16 μm, so that the graphite grain size is larger than the abrasive grains, and the graphite grain size is 100 μm or less, preferably 30
5050 μm. The distribution (cross-sectional density) of the graphite particles is preferably 70 particles / mm 2 or more, and the spheroidization ratio is preferably 80% or more. However, the spheroidization rate is not particularly limited to this range. It is necessary to have the above properties over at least 15 mm depth direction from the surface of the polishing platen. Hereinafter, preferred embodiments of the present invention will be described. The polishing platen according to the present invention has a weight ratio of C: 2.
7 to 3.5%, Si: 2.0 to 2.7%, Mn: 0.5 to 1.0%, P,
S <0.03%, Mg: 0.03 to 0.07%, more preferably N
It is preferable that i: 0.2 to 0.6%, Cu: 0.3 to 0.7%, and the balance be Fe. As described above, the polishing platen includes:
Good wear resistance to abrasive grains such as Al 2 O 3 and ZrO 2 is required. For this reason, the conventional surface plate material JIS-
It is important to use a spheroidal graphite cast iron having a predetermined hardness (Hv> 200) and excellent mechanical properties for the FCD 45 by heat treatment to form a metal structure having good wear resistance. The purpose of addition of each composition component and the reason for limiting the composition range will be described below. [0016] C exceeds 3.5%, the mechanical properties, not particularly tensile strength to the target 70 kgf / mm 2 or more, whereas, 70 / mm 2 or more distributed as graphite grains in the following C2.7% It is not preferable because it does not become. Si is added to improve the spheroidization rate and castability. However, when Si exceeds 2.7%, ferrite is present even by heat treatment, and the hardness tends to decrease.
It becomes difficult to do so. Further, the temperature at which austenite is formed increases, and the heat treatment temperature increases. As a result, an oxide is easily formed, and it is necessary to remove the oxide from the surface plate, which is not desirable. If the content of Si is less than 2.0%, the castability is particularly deteriorated.
An undesired shrinkage cavity is likely to be generated as a surface plate. When the Mn is 0.5% or less, the surface plate (thickness: 40-60 m)
As in the case of m), ferrite is likely to be generated during air cooling toward the center of a thick casting, and wear resistance is deteriorated. On the other hand, if it exceeds 1%, the hardened phase tends to segregate at the grain boundaries and becomes brittle, which is not desirable. P and S are preferably reduced as much as possible in order to reduce the formation of inclusions. Since the inclusions are hard and irregularly present, they easily scratch the Si wafer. For this reason, 0.03% or less is good for all. When the content exceeds 0.03%, inclusions (Fe 3 P, MnS,
MgS, etc.) is undesirable. Mg is an alloying element necessary for spheroidizing graphite. If it is less than 0.03%, the spheroidization ratio is difficult to be in a preferable range (for example, 80% or more). Is not preferable because it is easy to generate. Ni and Cu are used to make the structure uniform, for example, to make the structure uniform in the depth direction from the surface to eliminate the variation in hardness, and particularly to maintain Hv 30 to 50 in a region 20 mm from the surface. It is an effective element. Ni has the effect of preventing oxide formation during heat treatment. If the content of Ni is 0.2% or less, these effects are small, and adding 0.6% or more is not so effective in these effects and is not economical. On the other hand, Cu is 0.3% like Ni
Below, the effect on uniformity is small, and conversely Cu is 0.7%
With the above addition, a Cu phase is precipitated on the matrix, the structure becomes uneven, and there is a tendency that the wear resistance is deteriorated. Ni and Cu are not necessarily indispensable elements in the present invention, but are desirable alloy components for uniformity of the structure and prevention of scale. In the case of the above composition, in the case of heat treatment, the temperature of the heat treatment needs to be a temperature capable of turning the structure into austenite, and is about 850 ° C. or higher, preferably about 9 ° C.
It is around 30 ° C. Embodiment 1 A spheroidal graphite cast iron having the components shown in Table 1 was cast to produce a casting of a surface plate for an abrasive. Prior to machining such as slitting, it was heated to 930 ° C. and air-cooled. in this case,
The microscope was inspected at a depth of 20 mm from the surface, but the spherical graphitization rate was 90%, the graphite particle size was 30 to 50 μm, and the distribution was 150 particles / mm 2 . The base had a fine pearlite structure and a hardness of Hv250 by air cooling. This material was finished into a platen by machining. This was used for polishing a Si wafer, and the results are shown in Table 2 below. Conventional FCD45
Defects are reduced to 75% (FCD45 is reduced to 100%) and the life of the platen (hereinafter, also referred to as life)
Was improved by 150% (FCD45 was set to 100%).
Further, the wear amount was reduced by 40% (the FCD45 was set to 100%), which showed desirable characteristics as a surface plate. (Example 2) Spheroidal graphite cast iron having the components shown in Table 1 was cast,
A platen was made. The spheroidization ratio of graphite in the depth direction of 20 mm from the surface is 85%, the graphite particle diameter is 30 to 50 μm, and the graphite particles are 7%.
The distribution was 0 / mm 2 . The cast product was heated to 930 ° C., then cooled in a furnace, the base was made into a ferrite structure, and machining such as slitting was performed. After the machining, an austenite structure was formed at 930 ° C., and an austempering treatment was performed at 300 ° C. to obtain a bainite structure. The hardness was Hv350. Oh
The change in the flatness of the surface caused by the tempering treatment was polished to correct the flatness, thereby obtaining a polished platen. The Si wafer was polished using this polishing platen. As shown in Table 2, the flaw on the Si wafer surface was reduced to 65% (FCD45 was set to 100%), and the life was improved by 170% (FCD45).
Is 100%), and the wear amount is reduced by 50% (FCD
45 is set to 100%). (Example 3) A platen was cast using the spheroidal graphite cast iron shown in Table 1. The cast product had a spheroidization ratio of 90% in a depth direction of 20 mm from the surface, a graphite particle size of 30 to 50 μm, and a distribution of 70 graphite particles / mm 2 . This cast product was heated to 930 ° C., cooled in a furnace, and the base was made into a ferrite structure. After the working, it was made to have an austenite structure at 930 ° C. and an austemper at 350 ° C. to have a bainite structure. The hardness was Hv300. Austemper
The surface flatness change caused by the treatment was used as a surface plate corrected by polishing. As shown in Table 2, the defects on the surface of the Si wafer were reduced to 70%, and the life was improved by 160%. It showed desirable characteristics as a surface plate, such as a 50% reduction in the amount of wear. Example 4 Spherical cast iron having the composition shown in Table 1 was cast to produce a surface plate. The cast product has a spheroidization ratio of 80% from the surface to at least 20 mm in the depth direction, a graphite particle size of 30 to 50 μm, and a distribution of 100 graphite particles / mm 2 . 9 for casting
Heated to 30 ° C and cooled in the furnace to make the base a ferrite structure,
Machined slits. 930 again after machining
C. and quenched in oil. Hardness was Hv550. After quenching, it was polished to correct the surface flatness and finished to a surface plate. When polishing a Si wafer using this,
As shown in Table 2, compared to the conventional FCD45 platen,
Defects on wafer surface reduced to 45%, life is 220
%, And the abrasion amount was also reduced to 20%, showing desirable characteristics as a surface plate. (Example 5) A casting of a surface plate was manufactured using spheroidal graphite cast iron having the composition shown in Table 1. The casting has a spheroidizing ratio of 80% from the surface to at least 20 mm in the depth direction, and a graphite particle size of 50 to 50 mm.
1000 μm, 100 graphite particles / mm 2 are distributed. The cast product was heated to 930 ° C. and cooled in a furnace to make the base into a ferrite structure, and machined as a surface plate such as a slit. After processing, it was heated again to 930 ° C. and quenched in oil. The hardness was Hv500. After quenching, it was polished to correct the surface flatness and finished as a polished platen. Using this, a Si wafer was polished.
As shown in Table 2, the defect on the surface of the Si wafer was reduced to 50%, the life was improved to 200%, and the abrasion was reduced to 25%. Example 6 A slab casting was manufactured using spheroidal graphite cast iron having the composition shown in Table 1. The casting has a spheroidizing ratio of 73% from the surface to at least 20 mm in the depth direction, and a graphite particle size of 30 to
50 μm, 100 graphite particles / mm 2 were distributed. The cast product is heated to 930 ° C. and then quenched.
The substrate was tempered at 50 ° C. to have a tempered martensite composition, and was machined as a platen such as a slit. Hardness was Hv386. Thereafter, polishing was performed to correct the flatness of the surface, and finished as a polished platen. Using this, a Si wafer was polished.
As shown in Table 2, the defect on the surface of the Si wafer was reduced to 50%, the life was improved to 200%, and the abrasion was reduced to 25%. (Comparative Example) A slab casting was manufactured using spheroidal graphite cast iron having the composition shown in Table 1. The cast product has a spheroidization ratio of 75% and a graphite particle size of 100 at least 20 mm in the depth direction from the surface.
The graphite particles were 60 particles / mm 2 at で 150 μm. The casting was heated to 930 ° C. and cooled in a furnace to make the base into a ferrite structure. The hardness was Hv140. After the heat treatment, it was machined as a surface plate such as a slit. Polishing of the Si wafer using this surface plate was inferior to the surface plate of the example, as shown in Table 2, in terms of defects such as scratches on the surface of the Si wafer, life of the surface plate, and abrasion loss. [Table 1] [Table 2] As is clear from the results of the above examples and comparative examples, the polishing platen of the present invention has a change in flatness, life and wear of the platen compared to the conventional platen. All of them show desirable characteristics in terms of the amount, and have an excellent effect that no flaw is formed on the surface of the member to be polished.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 西村 隆宣 神奈川県横浜市鶴見区末広町2の4 株 式会社東芝 京浜事業所内 (72)発明者 木下 正治 山形県西置賜郡小国町大字小国町378 東芝セラミックス株式会社小国製造所内 (72)発明者 益田 則雄 山形県西置賜郡小国町大字小国町378 東芝セラミックス株式会社小国製造所内 (56)参考文献 特開 昭59−43816(JP,A) (58)調査した分野(Int.Cl.6,DB名) B24B 37/04 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Takanori Nishimura 2-4 Suehirocho, Tsurumi-ku, Yokohama-shi, Kanagawa Prefecture Inside the Keihin Office of Toshiba Corporation (72) Inventor Masaharu Kinoshita 378 Ogunimachi, Ogunimachi, Ogunimachi, Nishiokitama-gun, Yamagata Prefecture Toshiba Ceramics Co., Ltd. Oguni Works (72) Inventor Norio Masuda 378 Ogunimachi, Oguni-machi, Nishiokitama-gun, Yamagata Prefecture Toshiba Ceramics Co., Ltd. Oguni Works (56) References JP-A-59-43816 (JP, A) (58) Survey Field (Int.Cl. 6 , DB name) B24B 37/04

Claims (1)

(57)【特許請求の範囲】 1.ビッカ−ス硬さ数200以上の母材中に、球状化率
80%以上、黒鉛粒径100μm以下、黒鉛粒数70個
/mm2 以上の球状黒鉛が分散状態で存在してなる球状黒
鉛鋳鉄組織を表面から少なくとも15mm深さ方向にわ
たって有していることを特徴とするSiウェハ用研磨定
盤。 2.前記球状黒鉛鋳鉄が、重量比で、C:2.7 〜3.5%、
Si:2.0 〜2.7%、Mn:0.5 〜1.0%、P:0.03% 以
下、S:0.03% 以下、Mg:0.03〜0.07% 、Ni:0.2
〜0.6%,Cu:0.3 〜0.7%、残部がFeおよび付随的不
純物からなる、特許請求の範囲第1項に記載のSiウェ
ハ用研磨定盤。
(57) [Claims] Vickers The spheroidization rate in a base material with a hardness of 200 or more
A spheroidal graphite cast iron structure in which spheroidal graphite having a graphite particle size of 80% or more, a graphite particle size of 100 μm or less and a graphite particle number of 70 particles / mm 2 or more exists in a dispersed state at least 15 mm from the surface.
A polishing surface plate for a Si wafer, characterized in that it has a standing surface. 2. The spheroidal graphite cast iron has a weight ratio of C: 2.7 to 3.5%,
Si: 2.0 to 2.7%, Mn: 0.5 to 1.0%, P: 0.03% or less, S: 0.03% or less, Mg: 0.03 to 0.07%, Ni: 0.2
2. The Si wafer according to claim 1, wherein the Si wafer comprises 0.3 to 0.7%, Cu: 0.3 to 0.7%, and the balance is Fe and incidental impurities.
Polishing surface plate for c .
JP15285996A 1996-05-27 1996-05-27 Polishing surface plate for Si wafer Expired - Lifetime JP2908316B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15285996A JP2908316B2 (en) 1996-05-27 1996-05-27 Polishing surface plate for Si wafer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15285996A JP2908316B2 (en) 1996-05-27 1996-05-27 Polishing surface plate for Si wafer

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP60059850A Division JPS61219566A (en) 1985-03-25 1985-03-25 Material for polishing surface plate

Publications (2)

Publication Number Publication Date
JPH09103956A JPH09103956A (en) 1997-04-22
JP2908316B2 true JP2908316B2 (en) 1999-06-21

Family

ID=15549690

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15285996A Expired - Lifetime JP2908316B2 (en) 1996-05-27 1996-05-27 Polishing surface plate for Si wafer

Country Status (1)

Country Link
JP (1) JP2908316B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11286739A (en) * 1998-04-03 1999-10-19 Speedfam-Ipec Co Ltd Lapping machine

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61219566A (en) * 1985-03-25 1986-09-29 Toshiba Corp Material for polishing surface plate

Also Published As

Publication number Publication date
JPH09103956A (en) 1997-04-22

Similar Documents

Publication Publication Date Title
JPH0480791B2 (en)
JP5400590B2 (en) Steel material with excellent rolling fatigue life
KR102126971B1 (en) Graphite steels excellent in machinability and soft magnetism and methods for manufacturing the same
JP2908316B2 (en) Polishing surface plate for Si wafer
JP3691913B2 (en) Polishing tool material and polishing surface plate using the same
JP2003073767A (en) Outer layer material of roll for hot rolling and composite roll for hot rolling
JP2568038B2 (en) Method of manufacturing material for polishing surface plate
JP3217661B2 (en) High strength ductile cast iron
JPH07188841A (en) Work roll for cold rolling
JP2001279367A (en) Roll for hot rolling made by centrifugal casting
JP4323778B2 (en) Manufacturing method of steel with excellent machinability
JP3589619B2 (en) Steel for free-cutting plastic molds with excellent finished surface roughness
KR20020046335A (en) Mill rolls having superior wear resistance and low surface roughness and method thereof
JP2000006012A (en) Polishing surface plate
JP3637159B2 (en) Polishing tool material and polishing surface plate using the same
JP4385921B2 (en) Bearing steel with excellent grindability
JP3338682B2 (en) roll
EP0947289A1 (en) Lapping machine
JPH09209072A (en) Wear resistant cast iron and its production
CN112011720A (en) Nodular cast iron material and its production process and use
JP2022001389A (en) Lap tool
JPH0480792B2 (en)
JPH0234747A (en) Sheave material
JPH0929623A (en) Lapping surface plate of high function
JPS60128239A (en) Cast alloy for sheel of composite roll for rolling steel section

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term