JP7425443B2 - wrap tools - Google Patents

wrap tools Download PDF

Info

Publication number
JP7425443B2
JP7425443B2 JP2020106357A JP2020106357A JP7425443B2 JP 7425443 B2 JP7425443 B2 JP 7425443B2 JP 2020106357 A JP2020106357 A JP 2020106357A JP 2020106357 A JP2020106357 A JP 2020106357A JP 7425443 B2 JP7425443 B2 JP 7425443B2
Authority
JP
Japan
Prior art keywords
cast iron
graphite
fcv
lapping
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020106357A
Other languages
Japanese (ja)
Other versions
JP2022001389A (en
Inventor
尚己 大石
忠弥 石原
宙治 桐野
泰弘 谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Crystal Optics Inc
Original Assignee
Crystal Optics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Crystal Optics Inc filed Critical Crystal Optics Inc
Priority to JP2020106357A priority Critical patent/JP7425443B2/en
Publication of JP2022001389A publication Critical patent/JP2022001389A/en
Application granted granted Critical
Publication of JP7425443B2 publication Critical patent/JP7425443B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、FCV鋳鉄製のラップ工具に関するものである。尚、本明細書において、「FCV鋳鉄」とは、芋虫形状の黒鉛組織を含有する引張強度が300MPa以上のコンパクティッド・バーミキュラ鋳鉄をいう。 The present invention relates to a lap tool made of FCV cast iron. In this specification, "FCV cast iron" refers to compacted vermicular cast iron containing a caterpillar-shaped graphite structure and having a tensile strength of 300 MPa or more.

近年、電子機器の高機能化と省エネの観点からパワー半導体の普及が期待されており、ラッピング及びポリシングの研磨が行われている。ラッピングは、ポリシングの前加工として、直径が10μm程度の砥粒を用いて行われる。ラッピングには、乾式ラッピングと湿式ラッピングがある。 In recent years, power semiconductors are expected to become popular from the viewpoint of increasing the functionality of electronic devices and saving energy, and lapping and polishing are being performed. Lapping is performed as a pre-polishing process using abrasive grains with a diameter of about 10 μm. There are two types of wrapping: dry wrapping and wet wrapping.

乾式ラッピングは、砥粒を工具上に配置して工具に埋め込んで行われる。湿式ラッピングは、水中に分散させた砥粒を用いて行われるので砥粒の分散性が良く、工業的によく用いられている。 Dry lapping is performed by placing abrasive grains on the tool and embedding it in the tool. Wet lapping is performed using abrasive grains dispersed in water, so the dispersibility of the abrasive grains is good, and it is often used industrially.

そして、ラッピング工具として、従来から鋳鉄製のラップ工具が用いられており、そのうち7割程度が球状の黒鉛を晶出させた黒鉛鋳鉄(以下「FCD鋳鉄」と言う)製のラップ工具であり、その他は線片状の黒鉛組織を有する安価なねずみ鋳鉄(以下「FC鋳鉄」と言う)製のラップ工具である。 As lapping tools, cast iron lapping tools have traditionally been used, and about 70% of them are lapping tools made of graphite cast iron (hereinafter referred to as "FCD cast iron") made by crystallizing spherical graphite. The others are lap tools made of inexpensive gray cast iron (hereinafter referred to as "FC cast iron") having a flaky graphite structure.

殊に、FCD鋳鉄製のラップ工具は、引張強度が400MPa以上と高く、FC鋳鉄製のラップ工具よりも耐摩耗性に優れており、被加工材を非常に高精度な加工面に仕上げる場合などに用いられており(特許文献1)、FC鋳鉄製のラップ工具の引張強度は約400MPa未満であるが、反面、成形が容易なことから、レンズの球面の光学部品等のラッピングによく用いられている。 In particular, lap tools made of FCD cast iron have a high tensile strength of over 400 MPa, and have superior wear resistance than lap tools made of FC cast iron, making them ideal for finishing workpieces with extremely high-precision machined surfaces. (Patent Document 1), and the tensile strength of FC cast iron wrapping tools is less than about 400 MPa, but on the other hand, because it is easy to mold, it is often used for wrapping spherical optical components such as lenses. ing.

特開平06-212252号公報Japanese Patent Application Publication No. 06-212252

ところで、湿式ラッピングは工具と被加工材との間で砥粒が転動して研磨を行うものであり、工具にひっかかった砥粒が多ければ多いほど、工具との滑りがなくなるため除去量が増えるという現象が生じる。 By the way, in wet lapping, abrasive grains roll between the tool and the workpiece to perform polishing, and the more abrasive grains are caught on the tool, the less it will slip between the tool and the amount removed. A phenomenon of increase occurs.

FC鋳鉄製のラップ工具は、FCD鋳鉄製のラップ工具より研磨能率が高いが耐摩耗性が低く、それに対してFCD鋳鉄製のラップ工具は、耐摩耗性は高いが研磨能率が低い、という特徴がある。 FC cast iron lap tools have higher polishing efficiency but lower wear resistance than FCD cast iron lap tools, whereas FCD cast iron lap tools have higher wear resistance but lower polishing efficiency. There is.

そのため、LED基板に使用されるサファイアやパワー半導体に使用されるSiCやGaN等のような難削材をラッピングする場合、上記従来のFC鋳鉄製やFCD鋳鉄製のラップ工具では、ラッピングに時間がかかるか、あるいは耐摩耗性が低いため、コスト高の原因となっていた。 Therefore, when lapping difficult-to-cut materials such as sapphire used in LED boards and SiC and GaN used in power semiconductors, it takes a long time to wrap with the conventional lapping tools made of FC cast iron and FCD cast iron. This or the low abrasion resistance caused high costs.

本発明は、上記事情に鑑みてなされたものであり、LED基板に使用されるサファイアやパワー半導体に使用されるSiCやGaN等のような難削材をラッピングするのに適する、研磨能率が高く且つ耐摩耗性に優れたラップ工具を提供することを課題とする。 The present invention has been made in view of the above circumstances, and has high polishing efficiency and is suitable for lapping difficult-to-cut materials such as sapphire used in LED substrates and SiC and GaN used in power semiconductors. It is an object of the present invention to provide a lapping tool that also has excellent wear resistance.

前記課題を解決するためになされた本発明のラップ工具は、黒鉛を含有する引張強度が300MPa以上のFCV鋳鉄製のラップ工具であって、前記黒鉛が6~80μmの幅及び20~500μmの長さを有し、80個/mm2以上の密度で含有されることを特徴とする。一般に引張強度と硬度は相対的に正の相関を有するが、硬度が高くなると靭性が減り耐摩耗性が劣化するので、硬度はビッカース硬度で200以下であることが望ましい。 The wrap tool of the present invention, which was made to solve the above problems, is a wrap tool made of FCV cast iron containing graphite and having a tensile strength of 300 MPa or more, wherein the graphite has a width of 6 to 80 μm and a length of 20 to 500 μm. It is characterized by having a density of 80 pieces/mm 2 or more. Generally, tensile strength and hardness have a relatively positive correlation, but as hardness increases, toughness decreases and wear resistance deteriorates, so it is desirable that the hardness is 200 or less on the Vickers scale.

また、本発明において、前記FCV鋳鉄は、質量%で、3.0%以上4.0%以下のC[炭素]、2.0%以上3.0%以下のSi[ケイ素]、1.0%未満のMn[マンガン]、0.10%以下のP[リン]、0.01%以上0.02%以下のS[硫黄]、1.0%以下のCu[銅]、0.01%以上0.02%以下のMg[マグネシウム]及び0.03%以上0.08%以下のRE[希土類元素]を含有し、残部がFe[鉄]及び不可避不純物である、と好ましい。 Further, in the present invention, the FCV cast iron includes C [carbon] of 3.0% to 4.0%, Si [silicon] of 2.0% to 3.0%, and 1.0% by mass. % Mn [manganese], 0.10% or less P [phosphorus], 0.01% or more and 0.02% or less S [sulfur], 1.0% or less Cu [copper], 0.01% It is preferable that it contains 0.02% or more of Mg [magnesium] and 0.03% or more and 0.08% or less of RE [rare earth element], and the balance is Fe [iron] and inevitable impurities.

更に、本発明において、前記FCV鋳鉄が、Cr[クロム]、Ni[ニッケル]、及びMo[モリブデン]からなる群からなる選択される少なくとも一種を含む金属または合金である耐食性向上添加剤を含有する場合には耐食性の向上を図ることができる。 Furthermore, in the present invention, the FCV cast iron contains a corrosion resistance improving additive that is a metal or alloy containing at least one selected from the group consisting of Cr [chromium], Ni [nickel], and Mo [molybdenum]. In some cases, corrosion resistance can be improved.

本発明により、研磨能率が高く且つ耐摩耗性に優れたラップ工具を提供することが可能となる。殊に、基本的には球状黒鉛がなるべく少なく、芋虫状黒鉛が多いほど研磨特性は向上し、また、FCV鋳鉄はFCD鋳鉄よりも熱伝導率が高いために研磨中に生じる加工熱を早く除去して形状精度の高い研磨が可能になるばかりか、振動減衰性が高いために、研磨中に生じる振動を抑えるので仕上げ面粗さがよくなる傾向にあり、更に、FCV鋳鉄はFC鋳鉄よりも耐摩耗性が良いため、レンズ等の光学部品の研磨に使用した場合、工具の摩耗による形状が劣化した工具の形状修正を行う頻度が下がり、生産性を向上させることも期待できる。 According to the present invention, it is possible to provide a lapping tool with high polishing efficiency and excellent wear resistance. In particular, basically, the less spheroidal graphite is contained and the more caterpillar graphite is contained, the better the polishing properties will be.Also, since FCV cast iron has higher thermal conductivity than FCD cast iron, processing heat generated during polishing can be removed faster. Not only does it enable polishing with high shape accuracy, but its high vibration damping properties suppress the vibrations generated during polishing, which tends to improve the finished surface roughness.Furthermore, FCV cast iron is more durable than FC cast iron. Because of its good abrasion resistance, when used for polishing optical parts such as lenses, it is expected that productivity will be improved by reducing the frequency of correction of the shape of tools whose shape has deteriorated due to tool wear.

本発明のラップ工具を構成するFCV鋳鉄の表面の金属顕微鏡写真である。1 is a metallurgical micrograph of the surface of FCV cast iron constituting the lap tool of the present invention. 従来のFC鋳鉄の表面の金属顕微鏡写真である。This is a metallurgical micrograph of the surface of conventional FC cast iron. 従来のFCD鋳鉄の表面の金属顕微鏡写真である。This is a metallurgical micrograph of the surface of conventional FCD cast iron. 従来の一般的なFCV鋳鉄の表面の金属顕微鏡写真である。This is a metallurgical micrograph of the surface of conventional general FCV cast iron. Mg含有量を少なくすることで単に球状化率を小さくしたFCD鋳鉄の表面の金属顕微鏡写真である。This is a metallurgical micrograph of the surface of FCD cast iron whose spheroidization rate is simply reduced by reducing the Mg content. FCV鋳鉄(実施例1)及びFCD鋳鉄(比較例2)のラップ工具を用いてサファイア基板を湿式ラッピングしたときの、用いた砥粒B4Cの番手(粒径)による研磨能率及び仕上げ面粗さを示すグラフである。Polishing efficiency and finished surface roughness depending on the count (particle size) of the abrasive grains B 4 C used when wet lapping a sapphire substrate using FCV cast iron (Example 1) and FCD cast iron (Comparative Example 2) lapping tools This is a graph showing the ♯600のGCを用いてドレッシングを行い、次いでFCV鋳鉄(実施例1)、FCD鋳鉄(比較例2)、及びFC鋳鉄(比較例1)のラップ工具と♯2000のGCとを用いてソーダガラスを湿式ラッピングしたときの、ラッピング(研磨)時間と研磨能率の関係を示すグラフである。Dressing is performed using #600 GC, and then soda glass is applied using wrap tools for FCV cast iron (Example 1), FCD cast iron (Comparative example 2), and FC cast iron (Comparative example 1) and #2000 GC. 2 is a graph showing the relationship between lapping (polishing) time and polishing efficiency when wet lapping is performed. ソーダガラスの湿式ラッピングで用いる♯2000のGCの砥粒濃度を1質量%、3質量%、及び5質量%としたときのFCV鋳鉄(実施例)、FCD鋳鉄(比較例)、及びFC鋳鉄(比較例)のそれぞれのラップ工具の研磨能率及び仕上げ面粗さを示すグラフである。FCV cast iron (example), FCD cast iron (comparative example), and FC cast iron ( It is a graph showing the polishing efficiency and finished surface roughness of each lap tool of Comparative Example). FCV鋳鉄(実施例1)、FCD鋳鉄(比較例2)、及びFC鋳鉄(比較例1)のそれぞれのラップ工具の、ソーダガラスの湿式ラッピングで用いるGCの番手を、♯600、♯1000、及び♯2000としたときの研磨能率及び仕上げ面粗さを示すグラフである。The GC counts used in the wet lapping of soda glass for the lapping tools of FCV cast iron (Example 1), FCD cast iron (Comparative example 2), and FC cast iron (Comparative example 1) were #600, #1000, and It is a graph showing polishing efficiency and finished surface roughness when #2000 is used. 黒鉛幅が7.5μm、15μm、及び27.5μmのラップ定盤を用いてサファイア基板を湿式ラッピングしたときの研磨能率を示すグラフである。It is a graph showing the polishing efficiency when wet lapping a sapphire substrate using lapping plates with graphite widths of 7.5 μm, 15 μm, and 27.5 μm. 黒鉛長さが175μm、125μm、及び27.5μmのラップ定盤を用いてサファイア基板を湿式ラッピングしたときの研磨能率を示すグラフである。It is a graph showing polishing efficiency when wet lapping a sapphire substrate using lapping plates with graphite lengths of 175 μm, 125 μm, and 27.5 μm. 黒鉛密度が110個/mm2、230個/mm2、及び284個/mm2のラップ定盤を用いてサファイア基板を湿式ラッピングしたときの研磨能率を示すグラフである。2 is a graph showing the polishing efficiency when a sapphire substrate is wet lapped using lapping plates with graphite densities of 110 pieces/mm 2 , 230 pieces/mm 2 , and 284 pieces/mm 2 .

本発明は、黒鉛を含有する引張強度が300MPa以上のFCV(コンパクティッド・バーミキュラ)鋳鉄製のラップ工具であって、前記黒鉛は、6~80μmの幅及び20~500μmの長さを有し、前記FCV鋳鉄に80個/mm2以上の密度で含有される、ラップ工具である。FCV鋳鉄は、CV黒鉛鋳鉄ともいう。 The present invention is a wrap tool made of FCV (compact vermicular) cast iron containing graphite and having a tensile strength of 300 MPa or more, wherein the graphite has a width of 6 to 80 μm and a length of 20 to 500 μm, The wrap tool is contained in the FCV cast iron at a density of 80 pieces/mm 2 or more. FCV cast iron is also called CV graphite cast iron.

本発明のラップ工具を構成するFCV鋳鉄は、芋虫状の黒鉛組織を有し、FC鋳鉄(ねずみ鋳鉄)の優れた鋳造性、機械加工性、熱伝導性、及び減衰能と、FCD鋳鉄(球状黒鉛鋳鉄)の高強度及びヤング率とを兼ね備えた材料特性を有する。 The FCV cast iron that constitutes the wrap tool of the present invention has a caterpillar-like graphite structure, and has the excellent castability, machinability, thermal conductivity, and damping ability of FC cast iron (gray cast iron), and the excellent castability, machinability, thermal conductivity, and damping ability of FCD cast iron (spheroidal It has material properties that combine the high strength and Young's modulus of graphite cast iron.

図1乃至図3にそれぞれ、本発明のラップ工具を構成するFCV鋳鉄、従来のFC鋳鉄、及び従来のFCD鋳鉄の表面の金属顕微鏡写真を示す。 FIGS. 1 to 3 show metallographic micrographs of the surfaces of FCV cast iron, conventional FC cast iron, and conventional FCD cast iron, respectively, which constitute the lap tool of the present invention.

黒鉛が抜け落ちた部分に砥粒が保持され、その保持された砥粒がラップ工具上を転動している他の砥粒の動きを妨げることにより、単位時間当たりの除去量である研磨能率が向上する。 The abrasive grains are retained in the area where the graphite has fallen off, and by blocking the movement of other abrasive grains rolling on the lapping tool, the polishing efficiency, which is the amount removed per unit time, increases. improves.

本発明のラップ工具はFCV鋳鉄製であり、ラッピングに直接寄与するラップ工具の本体が実質的にFCV鋳鉄からなり、好ましくはラップ工具の全体がFCV鋳鉄からなる。 The lapping tool of the present invention is made of FCV cast iron, with the body of the lapping tool that directly contributes to lapping consisting essentially of FCV cast iron, and preferably the entire lapping tool consisting of FCV cast iron.

本発明のラップ工具を構成するFCV鋳鉄は、芋虫形状の黒鉛組織を含有する引張強度が300MPa以上のコンパクティッド・バーミキュラ鋳鉄である点で従来の一般的なFCV鋳鉄と共通するが、本発明のラップ工具を構成するFCV鋳鉄に含有される黒鉛は、6~80μmの幅及び20~500μmの長さを有する。黒鉛の幅は、好ましくは8~60μm、より好ましくは10~50μm、さらに好ましくは12~40μmである。黒鉛の長さは、好ましくは25~300μm、より好ましくは30~175μm、さらに好ましくは100~150μmである。黒鉛は、好ましくは30~65%の球状化率を有する。球状化率は、JIS G5505によって算出される。 The FCV cast iron constituting the wrap tool of the present invention is similar to conventional general FCV cast iron in that it is compacted vermicular cast iron containing a caterpillar-shaped graphite structure and having a tensile strength of 300 MPa or more. The graphite contained in the FCV cast iron constituting the lap tool has a width of 6 to 80 μm and a length of 20 to 500 μm. The width of the graphite is preferably 8 to 60 μm, more preferably 10 to 50 μm, and still more preferably 12 to 40 μm. The length of the graphite is preferably 25 to 300 μm, more preferably 30 to 175 μm, even more preferably 100 to 150 μm. Graphite preferably has a spheroidization rate of 30-65%. The spheroidization rate is calculated according to JIS G5505.

黒鉛が上記範囲の幅及び長さを有することにより、ラップ工具上を転動している他の砥粒の動きを妨げやすくなり、砥粒と被加工材との相対速度が大きくすることができ、高い研磨能率が得られる。上記黒鉛の幅はFC鋳鉄の黒鉛の幅よりも広く、本発明のFCV鋳鉄製のラップ工具は、FC鋳鉄製のラップ工具と比べて同等以上の研磨能率を示す。黒鉛が上記好ましい範囲の幅及び長さを有することにより、より高い研磨能率が得られる。尚、研磨能率とは、被加工材をラッピングするときの単位時間あたりの減少する厚みである。 When the graphite has a width and length within the above range, it becomes easier to block the movement of other abrasive grains rolling on the lapping tool, and the relative speed between the abrasive grains and the workpiece can be increased. , high polishing efficiency can be obtained. The width of the graphite is wider than the width of the graphite of FC cast iron, and the lap tool made of FCV cast iron of the present invention exhibits a polishing efficiency equal to or higher than that of the lap tool made of FC cast iron. When the graphite has a width and length within the above preferred range, higher polishing efficiency can be obtained. Note that the polishing efficiency is the decrease in thickness per unit time when lapping a workpiece.

黒鉛の幅及び長さは、ラップ工具の表面を金属顕微鏡で50倍の倍率で1.0mm×1.2mmの視野範囲について観察し、金属顕微鏡写真を母相の金属組織と黒鉛とに画像処理(二値化処理)して測定される。芋虫状の黒鉛の長さは、黒鉛の最大径での円の面積と対象となる黒鉛の面積比で求められる。 The width and length of the graphite can be determined by observing the surface of the lap tool with a metallurgical microscope at 50x magnification in a field of view of 1.0 mm x 1.2 mm, and processing the metallurgical micrograph to distinguish between the metal structure of the matrix and the graphite. (binary processing). The length of the caterpillar-shaped graphite is determined by the ratio of the area of a circle at the maximum diameter of the graphite to the area of the target graphite.

黒鉛の幅は、好ましくは、ラッピングを行う際に使用する砥粒の平均粒径の2~5倍である。黒鉛の長さは、好ましくは、ラッピングを行う際に使用する砥粒の平均粒径の5~20倍である。砥粒の平均粒径に対する黒鉛の幅及び長さが上記範囲にあることにより、研磨能率がより向上する。ラッピングを行う際に使用する砥粒の平均粒径は、好ましくは2~30μm、より好ましくは5~20μmである。砥粒の平均粒径とは、沈降試験法によって測定される累積高さ50%(d-50価)の値であり、粒の大きなものと小さなものを並べていったときに、双方が等量となる境目の径を表すものである。 The width of the graphite is preferably 2 to 5 times the average particle size of the abrasive grains used for lapping. The length of the graphite is preferably 5 to 20 times the average particle size of the abrasive grains used for lapping. When the width and length of the graphite relative to the average particle diameter of the abrasive grains are within the above range, polishing efficiency is further improved. The average particle size of the abrasive grains used for lapping is preferably 2 to 30 μm, more preferably 5 to 20 μm. The average grain size of abrasive grains is the value of 50% of the cumulative height (d-50 value) measured by the sedimentation test method, and when large grains and small grains are placed side by side, they are equal in size. It represents the diameter of the boundary.

ラッピングを行う際に本発明のラップ工具とともに用いる砥粒は特に限定されないが、GC、B4C、アルミナ等、従来ラッピングで用いられている砥粒を用いることができる。 The abrasive grains used with the lapping tool of the present invention when performing lapping are not particularly limited, but abrasive grains conventionally used in lapping, such as GC, B 4 C, and alumina, can be used.

また、黒鉛は、80個/mm2以上、好ましくは110個/mm2以上、より好ましくは150個/mm2以上、さらに好ましくは230個/mm2以上の密度で、FCV鋳鉄に含有されている。黒鉛の密度が高いほど研磨能率の観点で好ましいが、上記幅及び長さを有する黒鉛形状を得る観点で、黒鉛の体積割合は好ましくは9体積%以下であり、黒鉛の密度の上限は好ましくは350個/mm2以下でもよい。 Furthermore, graphite is contained in FCV cast iron at a density of 80 pieces/mm 2 or more, preferably 110 pieces/mm 2 or more, more preferably 150 pieces/mm 2 or more, and even more preferably 230 pieces/mm 2 or more. There is. The higher the density of graphite, the more preferable it is from the viewpoint of polishing efficiency, but from the viewpoint of obtaining a graphite shape having the above width and length, the volume ratio of graphite is preferably 9% by volume or less, and the upper limit of the density of graphite is preferably The number may be 350 pieces/mm 2 or less.

更に、黒鉛の密度は、ラップ工具の表面を金属顕微鏡で50倍の倍率で1.0mm×1.2mmの視野範囲について観察し、金属顕微鏡写真を母相の金属組織と黒鉛とに画像処理(二値化処理)して測定される。 Furthermore, the density of graphite was determined by observing the surface of the lap tool with a metallurgical microscope at 50x magnification in a field of view of 1.0 mm x 1.2 mm, and performing image processing ( (binarization processing).

ラップ工具を構成するFCV鋳鉄の引張強度は、300MPa以上、好ましくは400MPa以上である。 The tensile strength of the FCV cast iron constituting the lap tool is 300 MPa or more, preferably 400 MPa or more.

300MPa以上400MPa未満の引張強度を有するFCV鋳鉄は、比較的成形し易いため、300MPa以上400MPa未満の引張強度を有するFCV鋳鉄製のラップ工具は、レンズ等の球面の光学部品のラッピングに好適に用いられ、従来のFC鋳鉄製のラップ工具に代えて用いられ得る。 Since FCV cast iron having a tensile strength of 300 MPa or more and less than 400 MPa is relatively easy to shape, a wrapping tool made of FCV cast iron having a tensile strength of 300 MPa or more and less than 400 MPa is suitably used for wrapping spherical optical parts such as lenses. and can be used in place of conventional FC cast iron lap tools.

400MPa以上の引張強度を有するFCV鋳鉄は、耐摩耗性に優れているので一般用途として用いられる。400MPa以上の引張強度を有するFCV鋳鉄は、研磨時間が長くなっても研磨能率の低下が抑制され、研磨能率を実質的に維持することができる。400MPa以上の引張強度を有するFCV鋳鉄製のラップ工具は、従来の球状黒鉛鋳鉄製のラップ工具に代えて用いられる。FCV鋳鉄の引張強度の上限は特に限定されないが、実質的に600MPa程度である。 FCV cast iron, which has a tensile strength of 400 MPa or more, has excellent wear resistance and is therefore used for general purposes. FCV cast iron having a tensile strength of 400 MPa or more suppresses a decrease in polishing efficiency even if the polishing time becomes long, and can substantially maintain polishing efficiency. A wrap tool made of FCV cast iron having a tensile strength of 400 MPa or more is used in place of a conventional wrap tool made of spheroidal graphite cast iron. The upper limit of the tensile strength of FCV cast iron is not particularly limited, but is substantially about 600 MPa.

また、本発明において、前記FCV鋳鉄は、質量%で、3.0%以上4.0%以下のC[炭素]、2.0%以上3.0%以下のSi[ケイ素]、1.0%未満のMn[マンガン]、0.10%以下のP[リン]、0.01%以上0.02%以下のS[硫黄]、1.0%以下のCu[銅]、0.01%以上0.02%以下のMg[マグネシウム]及び0.03%以上0.08%以下のRE[希土類元素]を含有し、残部がFe[鉄]及び不可避不純物である、と好ましい。 Further, in the present invention, the FCV cast iron includes C [carbon] of 3.0% to 4.0%, Si [silicon] of 2.0% to 3.0%, and 1.0% by mass. % Mn [manganese], 0.10% or less P [phosphorus], 0.01% or more and 0.02% or less S [sulfur], 1.0% or less Cu [copper], 0.01% It is preferable that it contains 0.02% or more of Mg [magnesium] and 0.03% or more and 0.08% or less of RE [rare earth element], and the balance is Fe [iron] and inevitable impurities.

以下の説明において、各元素の含有量を表す「%」は特に断りがない限り質量%を意味する。 In the following description, "%" representing the content of each element means mass % unless otherwise specified.

(3.0%以上4.0%以下のC[炭素])について
本発明に用いられる前記FCV鋳鉄において、C[炭素]は、適宜な黒鉛形状を保障するために必要である。300MPa以上の引張強度を得て、且つ十分な量の黒鉛を晶出させるために、3.0%以上のCを含有することが好ましい。上記形状の黒鉛をより安定して得る観点から、C含有量の上限は好ましくは4.0%以下である。C[炭素]含有量の下限値は、より好ましくは3.1%以上、さらに好ましくは3.2%以上である。C[炭素]含有量の上限は、より好ましくは3.9%以下、より好ましくは3.8%以下である。尚、C[炭素]、Si[ケイ素]の組成の割合や、Cu[銅]、Sn[錫]などを添加し基地組織をパーライト化させることで引張強度を調整する。
(C [carbon] of 3.0% or more and 4.0% or less) In the FCV cast iron used in the present invention, C [carbon] is necessary to ensure an appropriate graphite shape. In order to obtain a tensile strength of 300 MPa or more and to crystallize a sufficient amount of graphite, it is preferable to contain 3.0% or more of C. From the viewpoint of more stably obtaining graphite having the above shape, the upper limit of the C content is preferably 4.0% or less. The lower limit of the C [carbon] content is more preferably 3.1% or more, still more preferably 3.2% or more. The upper limit of the C [carbon] content is more preferably 3.9% or less, more preferably 3.8% or less. Note that the tensile strength is adjusted by changing the composition ratio of C [carbon] and Si [silicon], and by adding Cu [copper], Sn [tin], etc. to make the base structure pearlite.

(2.0%以上3.0%以下のSi[ケイ素])について
本発明に用いられる前記FCV鋳鉄において、Si[ケイ素]は黒鉛化促進元素である。C[炭素]を黒鉛化させるために、2.0%以上のSiを含有することが好ましい。C[炭素]の黒鉛化量をより増やすために、Si[ケイ素]含有量の下限値は、より好ましくは2.1%以上、さらに好ましくは2.2%以上である。上記形状の黒鉛をより安定して得る観点から 、Si[ケイ素]含有量の上限は好ましくは3.0%以下である。Si[ケイ素]含有量の上限は、より好ましくは2.9%以下、さらに好ましくは2.8%以下である。
(Si [silicon] of 2.0% or more and 3.0% or less) In the FCV cast iron used in the present invention, Si [silicon] is an element that promotes graphitization. In order to graphitize C [carbon], it is preferable to contain 2.0% or more of Si. In order to further increase the graphitization amount of C [carbon], the lower limit of the Si [silicon] content is more preferably 2.1% or more, and still more preferably 2.2% or more. From the viewpoint of more stably obtaining graphite having the above shape, the upper limit of the Si content is preferably 3.0% or less. The upper limit of the Si [silicon] content is more preferably 2.9% or less, still more preferably 2.8% or less.

(1.0%未満のMn[マンガン])について
本発明に用いられる前記FCV鋳鉄において、Mn[マンガン]は、原料の銑鉄等から混入し得る成分で、フェライトの析出を抑制し、パーライト化を促進させる観点で、Mn[マンガン]含有量の上限は好ましくは1.0%未満である。また、Mn[マンガン]含有量の下限値は0.2%以上でもよい。
(Mn [manganese] less than 1.0%) In the FCV cast iron used in the present invention, Mn [manganese] is a component that can be mixed in from the raw material pig iron, etc., and suppresses the precipitation of ferrite and promotes pearlite formation. From the viewpoint of promotion, the upper limit of the Mn [manganese] content is preferably less than 1.0%. Further, the lower limit of the Mn [manganese] content may be 0.2% or more.

(0.10%以下のP[リン])について
本発明に用いられる前記FCV鋳鉄において、P[リン]は過剰に含有すると靭性及び伸びが低下する。したがって、P含有量の上限を好ましくは0.10%以下とする。また、P[リン]含有量の下限値は0.02%以上でもよい。
Regarding (0.10% or less of P [phosphorus]) In the FCV cast iron used in the present invention, if P [phosphorus] is contained in excess, the toughness and elongation will decrease. Therefore, the upper limit of the P content is preferably 0.10% or less. Further, the lower limit of the P [phosphorus] content may be 0.02% or more.

(0.01%以上0.02%以下のS[硫黄])について
S[硫黄]は上記形状の黒鉛を得る観点からS含有量の上限は0.02%以下であるが、安定して黒鉛を析出する観点から、S[硫黄]含有量の下限値は0.01%以上である。
(S [sulfur] of 0.01% to 0.02%) The upper limit of the S content of S [sulfur] is 0.02% or less from the viewpoint of obtaining graphite of the above shape. From the viewpoint of precipitating S [sulfur] content, the lower limit of the S [sulfur] content is 0.01% or more.

(1.0%以下のCu[銅])について
本発明に用いられる前記FCV鋳鉄において、Cu[銅]は、フェライトの析出を抑制し、パーライト化を促進させる観点で、Cu[銅]含有量の上限は好ましくは1.0%以下である。また、パーライト化を促進させる観点で、Cu[銅]含有量の下限は、0%超(不可避不純物を含む)である。
(1.0% or less of Cu [copper]) In the FCV cast iron used in the present invention, Cu [copper] is used to suppress the precipitation of ferrite and promote pearlitization. The upper limit of is preferably 1.0% or less. Further, from the viewpoint of promoting pearlitization, the lower limit of the Cu [copper] content is more than 0% (including unavoidable impurities).

(0.01%以上0.02%以下のMg[マグネシウム])について
本発明に用いられる前記FCV鋳鉄において、Mg[マグネシウム]は黒鉛球状化元素である。上記形状の黒鉛を得る観点からMg含有量の上限は好ましくは0.02%以下である。上記形状の黒鉛をより安定して得る観点から、Mg[マグネシウム]含有量の下限値は好ましくは0.01%以上である。
(Mg [magnesium] of 0.01% or more and 0.02% or less) In the FCV cast iron used in the present invention, Mg [magnesium] is a graphite nodularizing element. From the viewpoint of obtaining graphite having the above shape, the upper limit of the Mg content is preferably 0.02% or less. From the viewpoint of more stably obtaining graphite having the above shape, the lower limit of the Mg [magnesium] content is preferably 0.01% or more.

(0.03%以上0.08%以下のRE[希土類元素])について
本発明に用いられる前記FCV鋳鉄において、RE[希土類元素]は、上記形状の黒鉛を維持する効果を有する。上記形状の黒鉛を維持する観点からRE[希土類元素]含有量の下限値は好ましくは0.03%以上である。上記黒鉛を安定して維持する観点から、RE[希土類元素]含有量の上限は好ましくは0.08%以下である。RE[希土類元素]としては、Ce[セリウム]、La[ランタン]などが挙げられる。
(RE [Rare Earth Element] of 0.03% to 0.08%) In the FCV cast iron used in the present invention, RE [Rare Earth Element] has the effect of maintaining graphite in the above shape. From the viewpoint of maintaining graphite in the above-mentioned shape, the lower limit of the RE [rare earth element] content is preferably 0.03% or more. From the viewpoint of stably maintaining the graphite, the upper limit of the RE [rare earth element] content is preferably 0.08% or less. Examples of RE [rare earth element] include Ce [cerium] and La [lanthanum].

また、本発明に用いられるラップ工具を構成するFCV鋳鉄は、好ましくはCr、Ni、及びMoからなる群から選択される少なくとも一種を含む金属または合金である耐食性向上添加剤をさらに含有する。 Further, the FCV cast iron constituting the lap tool used in the present invention further contains a corrosion resistance improving additive, which is preferably a metal or alloy containing at least one selected from the group consisting of Cr, Ni, and Mo.

一般的に、水を用いてラッピングを行うと、鉄製のラップ工具は表面に錆びが発生する。錆びにより研磨能率が低下するため、錆びを取り除く必要がある。 Generally, when lapping is performed using water, rust occurs on the surface of iron lapping tools. Rust reduces polishing efficiency, so it is necessary to remove rust.

上記耐食性向上添加剤を含有することにより、ラップ工具の耐食性を向上することができる。耐食性を向上することにより錆びの発生を抑制することができるので、研磨能率の向上及び錆を取り除く作業時間を低減または無くすことができる。 By containing the above corrosion resistance improving additive, the corrosion resistance of the lap tool can be improved. Since the occurrence of rust can be suppressed by improving the corrosion resistance, polishing efficiency can be improved and the working time for removing rust can be reduced or eliminated.

本発明であるラップ工具は、従来と同様に好ましくはラップ定盤である。ラップ定盤は、好ましくは1~500mm、より好ましくは5~250mm、さらに好ましくは10~100mmの厚みを有する。ラップ定盤は、好ましくは1mm~3m、より好ましくは100mm~2.5m、さらに好ましくは200mm~2mの直径を有する。このような厚み及び/または直径を有するラップ定盤は、光学部品の研磨に特に好適に用いられる。 The lapping tool of the present invention is preferably a lapping surface plate as in the conventional one. The lap platen preferably has a thickness of 1 to 500 mm, more preferably 5 to 250 mm, and still more preferably 10 to 100 mm. The lap platen preferably has a diameter of 1 mm to 3 m, more preferably 100 mm to 2.5 m, even more preferably 200 mm to 2 m. A lapping plate having such a thickness and/or diameter is particularly suitable for polishing optical components.

本発明のラップ工具を構成するFCV鋳鉄は、従来のFCV鋳鉄の製造方法に対して、黒鉛生成に影響する元素であるS[硫黄]を0.01~0.02質量%、及びMg[マグネシウム]を0.01~0.02質量%として、より黒鉛が生成しやすい条件下で注湯直前に接種剤を添加することで製造される。これにより、黒鉛粒数を増加させ、組織を均一化させることができ、上記形状の黒鉛を含有する300MPa以上の引張強度を有するFCV鋳鉄を得ることができる。接種剤としては、従来より用いられているものでもできるが、好ましくは黒鉛化をより促進させるCa[カルシウム]、Ba[バリウム]、Zr[ジルコニウム]などを含有する接種剤が挙げられる。 The FCV cast iron constituting the lap tool of the present invention contains 0.01 to 0.02% by mass of S [sulfur], an element that affects graphite formation, and Mg [magnesium], compared to the conventional manufacturing method of FCV cast iron. ] is set at 0.01 to 0.02% by mass, and an inoculant is added immediately before pouring under conditions that facilitate the formation of graphite. Thereby, the number of graphite grains can be increased and the structure can be made uniform, and FCV cast iron containing graphite in the above shape and having a tensile strength of 300 MPa or more can be obtained. As the inoculant, conventionally used ones can be used, but preferably those containing Ca [calcium], Ba [barium], Zr [zirconium], etc., which promote graphitization, are used.

従来のFCV鋳鉄は、質量%で3.0%以上4.0%以下のC[炭素]、2.0%以上3.0%以下のSi[ケイ素]、1.0%未満のMn[マンガン]、0.10%以下のP[リン]、0.01%以上0.02%以下のS[硫黄]、1.0%以下のCu[銅]、0.01%以上0.02%以下のMg[マグネシウム]及び0.03%以上0.08%以下のRE[希土類元素]を含有し、残部がFe[鉄]及び不可避不純物からなる。図4に、従来の一般的なFCV鋳鉄の表面の金属顕微鏡写真を示す。 Conventional FCV cast iron contains C [carbon] of 3.0% to 4.0% by mass, Si [silicon] of 2.0% to 3.0%, and Mn [manganese] of less than 1.0%. ], 0.10% or less P [phosphorus], 0.01% or more and 0.02% or less S [sulfur], 1.0% or less Cu [copper], 0.01% or more and 0.02% or less of Mg [magnesium] and 0.03% or more and 0.08% or less of RE [rare earth element], and the remainder consists of Fe [iron] and inevitable impurities. FIG. 4 shows a metallurgical micrograph of the surface of conventional general FCV cast iron.

Mgは黒鉛の球状化に影響する元素であり、FCV鋳鉄においては、黒鉛形状を芋虫状にするためMg添加量はFCD鋳鉄より少ない。REについては、芋虫状の黒鉛を維持させるため、添加量はFCD鋳鉄より多い。これをCV化剤と呼ぶ。 Mg is an element that affects the spheroidization of graphite, and in FCV cast iron, the amount of Mg added is smaller than in FCD cast iron in order to make the graphite shape caterpillar-like. Regarding RE, in order to maintain caterpillar-like graphite, the amount added is greater than that of FCD cast iron. This is called a CV agent.

本発明のラップ工具を構成するFCV鋳鉄は、単にFCD鋳鉄の球状化率が低いものとも異なる。Mg含有量を少なくすることでFCD鋳鉄の球状化率の低いものを得ることができるが、この場合、黒鉛形状は、球状のもの、芋虫状のもの、及び片状のものが混在したものとなり、本発明のラップ工具を構成するFCV鋳鉄とは異なる。図5に、Mg含有量を少なくすることで単に球状化率を小さくしたFCD鋳鉄の表面の金属顕微鏡写真を示す。 The FCV cast iron constituting the lap tool of the present invention is also different from FCD cast iron, which simply has a low spheroidization rate. By reducing the Mg content, it is possible to obtain FCD cast iron with a low spheroidization rate, but in this case, the graphite shape will be a mixture of spherical, caterpillar-shaped, and flake-shaped graphite. , is different from the FCV cast iron that constitutes the lap tool of the present invention. FIG. 5 shows a metallurgical micrograph of the surface of FCD cast iron whose spheroidization rate was simply reduced by reducing the Mg content.

本発明のラップ工具を構成するFCV鋳鉄の製造に用いるCV化剤は、好ましくはC[炭素]、Si[ケイ素]、Mn[マンガン]、P[リン]、S[硫黄]を調整したFCV鋳鉄の元湯を注湯用取鍋に移し替え時に添加する。CV化剤の組成は、好ましくはSi[ケイ素]:45.0質量%、Mg[マグネシウム]:2.0~3.0質量%、RE[希土類元素]:3.0~10.0質量%、残部Fe[鉄]及び不可避不純物である。FCV鋳鉄の製造に用いるCV化剤の添加量は、主原料100に対して、好ましくは0.85~0.95質量%である。上記量のMgを含むCV化剤を主原料に含有させることで、FCV鋳鉄中に上記幅及び長さの芋虫状の黒鉛形状を形成することができる。上記添加量のREは、黒鉛の球状化率を低下させた芋虫状の黒鉛形状を維持させる効果を有する。 The CV agent used for manufacturing the FCV cast iron constituting the wrap tool of the present invention is preferably an FCV cast iron with adjusted C [carbon], Si [silicon], Mn [manganese], P [phosphorus], and S [sulfur]. Add this when transferring the original hot water to the pouring ladle. The composition of the CV agent is preferably Si [silicon]: 45.0 mass%, Mg [magnesium]: 2.0 to 3.0 mass%, RE [rare earth element]: 3.0 to 10.0 mass%. , the remainder is Fe [iron] and unavoidable impurities. The amount of the CV agent used in producing FCV cast iron is preferably 0.85 to 0.95% by mass based on 100% of the main raw material. By including the CV agent containing Mg in the above amount in the main raw material, a caterpillar-like graphite shape having the above width and length can be formed in the FCV cast iron. The above addition amount of RE has the effect of maintaining the caterpillar-like graphite shape with a reduced spheroidization rate of graphite.

(実施例1)
C[炭素]、Si[ケイ素]、Mn[マンガン]、P[リン]、及びS[硫黄]を調整したFCV鋳鉄の元湯に、CV化剤及び各種接種剤を添加し、鋳型に注湯した。溶湯成分はC[炭素]:3.75%、Si[ケイ素]:2.51%、Mn[マンガン]:0.23%、P[リン]:0.020%、S[硫黄]:0.011%、Cu[銅]:0.26%、Mg[マグネシウム]:0.011%、及びRE[希土類元素]:0.031%であった。
(Example 1)
A CV agent and various inoculants are added to the base water of FCV cast iron in which C [carbon], Si [silicon], Mn [manganese], P [phosphorus], and S [sulfur] have been adjusted, and the mixture is poured into a mold. did. Molten metal components are C [carbon]: 3.75%, Si [silicon]: 2.51%, Mn [manganese]: 0.23%, P [phosphorus]: 0.020%, S [sulfur]: 0. 011%, Cu [copper]: 0.26%, Mg [magnesium]: 0.011%, and RE [rare earth element]: 0.031%.

初期の溶湯温度は1402℃で注湯し、注湯完了後から24時間後に解枠して、直径が210mm及び厚みが35mmのFCV鋳鉄製のラップ定盤粗材を作製した。 The molten metal was poured at an initial temperature of 1402° C., and 24 hours after the completion of pouring, the frame was dismantled to produce a lap surface plate rough material made of FCV cast iron with a diameter of 210 mm and a thickness of 35 mm.

作製したラップ定盤には、幅が15μmであり黒鉛長さが40μmの黒鉛が100個/mm2の密度で含有されていた。ラップ定盤の引張強度は400MPaであった。黒鉛の球状化率は50%であった。黒鉛の幅、長さ、及び密度は、ラップ定盤の表面を金属顕微鏡で観察し、観察画像を金属組織と黒鉛とに二値化処理して測定した。引張強度は万能材料試験機で測定した。黒鉛の球状化率はJIS G5505にしたがって測定した。図1に、ラップ工具表面の金属顕微鏡写真を示す。 The produced lap surface plate contained graphite having a width of 15 μm and a graphite length of 40 μm at a density of 100 pieces/mm 2 . The tensile strength of the lap platen was 400 MPa. The spheroidization rate of graphite was 50%. The width, length, and density of graphite were measured by observing the surface of the lap surface plate with a metallurgical microscope and binarizing the observed image into metal structure and graphite. Tensile strength was measured with a universal material testing machine. The spheroidization rate of graphite was measured according to JIS G5505. Figure 1 shows a metallurgical micrograph of the surface of a lap tool.

(比較例3)
C[炭素]、Si[ケイ素]、Mn[マンガン]、P[リン]及びS[硫黄]を調整したFC鋳鉄の元湯に、各種接種剤を添加し、鋳型に注湯した。溶湯成分はC[炭素]:3.21%、Si[ケイ素]:1.96%、Mn[マンガン]:0.66%、P[リン]:0.029%、S[硫黄]:0.085%、及びCu[銅]:0.82%であった。初期の溶湯温度は1410℃で注湯した。上記以外は実施例1と同様に、幅が7.5μm、長さが175μm、及び黒鉛が250個/mm2の密度で含有される引張強度が354MPaのFC鋳鉄製のラップ定盤を作製した。
(Comparative example 3)
Various inoculants were added to the base water of FC cast iron in which C [carbon], Si [silicon], Mn [manganese], P [phosphorus], and S [sulfur] were adjusted, and the mixture was poured into a mold. Molten metal components are C [carbon]: 3.21%, Si [silicon]: 1.96%, Mn [manganese]: 0.66%, P [phosphorus]: 0.029%, S [sulfur]: 0. 085%, and Cu [copper]: 0.82%. The molten metal was poured at an initial temperature of 1410°C. Except for the above, a lap surface plate made of FC cast iron with a width of 7.5 μm, a length of 175 μm, and a tensile strength of 354 MPa containing graphite at a density of 250 pieces/mm 2 was produced in the same manner as in Example 1. .

(実施例2)
C[炭素]、Si[ケイ素]、Mn[マンガン]、P[リン]及びS[硫黄]を調整したFCV鋳鉄の元湯に、CV化剤及び各種接種剤を添加し、鋳型に注湯した。溶湯成分はC[炭素]:3.65%、Si[ケイ素]:2.51%、Mn[マンガン]:0.23%、P[リン]:0.020%、S[硫黄]:0.011%、Cu[銅]:0.264%、Mg[マグネシウム]:0.011%、及びRE[希土類元素]:0.041%であった。初期の溶湯温度は1402℃で注湯した。上記以外は実施例1と同様に、幅が15μm、長さが125μm、及び球状化率が46%の黒鉛が103個/mm2の密度で含有される引張強度が432MPaのFCV鋳鉄製のラップ定盤を作製した。
(Example 2)
A CV agent and various inoculants were added to the base water of FCV cast iron in which C [carbon], Si [silicon], Mn [manganese], P [phosphorus] and S [sulfur] were adjusted, and the mixture was poured into a mold. . Molten metal components are C [carbon]: 3.65%, Si [silicon]: 2.51%, Mn [manganese]: 0.23%, P [phosphorus]: 0.020%, S [sulfur]: 0. 011%, Cu [copper]: 0.264%, Mg [magnesium]: 0.011%, and RE [rare earth element]: 0.041%. The initial molten metal temperature was 1402°C. Other than the above, the wrap was made of FCV cast iron having a width of 15 μm, a length of 125 μm, and a tensile strength of 432 MPa, containing graphite at a density of 103 pieces/mm 2 with a spheroidization rate of 46%. A surface plate was made.

(比較例4)
C[炭素]、Si[ケイ素]、Mn[マンガン]、P[リン]及びS[硫黄]を調整したFCD鋳鉄の元湯に、球状化剤及び各種接種剤を添加し、鋳型に注湯した。溶湯成分はC[炭素]:3.55%、Si[ケイ素]:2.47%、Mn[マンガン]:0.26%、P[リン]:0.018%、S[硫黄]:0.010%、Cu[銅]:0.024%、Mg[マグネシウム]:0.036%、及びRE[希土類元素]:0.010%であった。初期の溶湯温度は1396℃で注湯した。上記以外は実施例1と同様に、幅が27.5μm、長さが27.5μm、及び球状化率が88%の黒鉛が150個/mm2の密度で含有される引張強度が491MPaのFCD鋳鉄製のラップ定盤を作製した。
(Comparative example 4)
A spheroidizing agent and various inoculants were added to the base water of FCD cast iron in which C [carbon], Si [silicon], Mn [manganese], P [phosphorus] and S [sulfur] were adjusted, and the mixture was poured into a mold. . Molten metal components are C [carbon]: 3.55%, Si [silicon]: 2.47%, Mn [manganese]: 0.26%, P [phosphorus]: 0.018%, S [sulfur]: 0. 010%, Cu [copper]: 0.024%, Mg [magnesium]: 0.036%, and RE [rare earth element]: 0.010%. The initial molten metal temperature was 1396°C. Except for the above, the FCD is the same as Example 1, with a width of 27.5 μm, a length of 27.5 μm, and a tensile strength of 491 MPa containing graphite with a spheroidization rate of 88% at a density of 150 pieces/mm 2 A cast iron lap surface plate was manufactured.

(実施例3)
C[炭素]、Si[ケイ素]、Mn[マンガン]、P[リン]及びS[硫黄]を調整したFCV鋳鉄の元湯に、CV化剤及び各種接種剤を添加し、鋳型に注湯した。溶湯成分はC[炭素]:3.37%、Si[ケイ素]:2.66%、Mn[マンガン]:0.30%、P[リン]:0.030%、S[硫黄]:0.013%、Cu[銅]:0.292%、Mg[マグネシウム]:0.011%、及びRE[希土類元素]:0.053%であった。初期の溶湯温度は1340℃で注湯した。上記以外は実施例1と同様に、幅が14μm、長さが37μm、及び球状化率が52%の黒鉛が110個/mm2の密度で含有される引張強度が431MPaのFCV鋳鉄製のラップ定盤を作製した。
(Example 3)
A CV agent and various inoculants were added to the base water of FCV cast iron in which C [carbon], Si [silicon], Mn [manganese], P [phosphorus] and S [sulfur] were adjusted, and the mixture was poured into a mold. . Molten metal components are C [carbon]: 3.37%, Si [silicon]: 2.66%, Mn [manganese]: 0.30%, P [phosphorus]: 0.030%, S [sulfur]: 0. 013%, Cu [copper]: 0.292%, Mg [magnesium]: 0.011%, and RE [rare earth element]: 0.053%. The initial molten metal temperature was 1340°C. Other than the above, the wrap was made of FCV cast iron having a width of 14 μm, a length of 37 μm, and a tensile strength of 431 MPa and containing graphite at a density of 110 pieces/mm 2 with a spheroidization rate of 52%. A surface plate was made.

(実施例4)
C[炭素]、Si[ケイ素]、Mn[マンガン]、P[リン]及びS[硫黄]を調整したFCV鋳鉄の元湯に、CV化剤及び各種接種剤を添加し、鋳型に注湯した。溶湯成分はC[炭素]:3.61%、Si[ケイ素]:2.61%、Mn[マンガン]:0.27%、P[リン]:0.023%、S[硫黄]:0.012%、Cu[銅]:0.022%、Mg[マグネシウム]:0.008%、及びRE[希土類元素]:0.024%であった。初期の溶湯温度は1357℃で注湯した。上記以外は実施例1と同様に、幅が13μm、長さが34μm、及び球状化率が56%の黒鉛が230個/mm2の密度で含有される引張強度が389MPaのFCV鋳鉄製のラップ定盤を作製した。
(Example 4)
A CV agent and various inoculants were added to the base water of FCV cast iron in which C [carbon], Si [silicon], Mn [manganese], P [phosphorus] and S [sulfur] were adjusted, and the mixture was poured into a mold. . Molten metal components are C [carbon]: 3.61%, Si [silicon]: 2.61%, Mn [manganese]: 0.27%, P [phosphorus]: 0.023%, S [sulfur]: 0. 012%, Cu [copper]: 0.022%, Mg [magnesium]: 0.008%, and RE [rare earth element]: 0.024%. The initial molten metal temperature was 1357°C. Other than the above, the wrap was made of FCV cast iron having a width of 13 μm, a length of 34 μm, and a tensile strength of 389 MPa and containing graphite at a density of 230 pieces/mm 2 with a spheroidization rate of 56%. A surface plate was made.

(実施例5)
C[炭素]、Si[ケイ素]、Mn[マンガン]、P[リン]及びS[硫黄]を調整したFCV鋳鉄の元湯に、CV化剤及び各種接種剤を添加し、鋳型に注湯した。溶湯成分はC[炭素]:3.53%、Si[ケイ素]:2.67%、Mn[マンガン]:0.32%、P[リン]:0.026%、S[硫黄]:0.012%、Cu[銅]:0.400%、Mg[マグネシウム]:0.008%、及びRE[希土類元素]:0.025%であった。初期の溶湯温度は1367℃で注湯した。上記以外は実施例1と同様に、幅が12μm、長さが35μm、及び球状化率が57%の黒鉛が284個/mm2の密度で含有される引張強度が473MPaのFCV鋳鉄製のラップ定盤を作製した。
(Example 5)
A CV agent and various inoculants were added to the base water of FCV cast iron in which C [carbon], Si [silicon], Mn [manganese], P [phosphorus] and S [sulfur] were adjusted, and the mixture was poured into a mold. . Molten metal components are C [carbon]: 3.53%, Si [silicon]: 2.67%, Mn [manganese]: 0.32%, P [phosphorus]: 0.026%, S [sulfur]: 0. 012%, Cu [copper]: 0.400%, Mg [magnesium]: 0.008%, and RE [rare earth element]: 0.025%. The initial molten metal temperature was 1367°C. Other than the above, the wrap was made of FCV cast iron having a width of 12 μm, a length of 35 μm, and a tensile strength of 473 MPa and containing graphite with a spheroidization rate of 57% at a density of 284 pieces/mm 2 . A surface plate was made.

(比較例1)
黒鉛の長さが100~200μm及び幅が10~15μmのFC鋳鉄製のラップ定盤(洲崎鋳工(株)社製、FC350、直径200mm、厚み30mm)を用意した。図2に、ラップ定盤表面の金属顕微鏡写真を示す。
(Comparative example 1)
An FC cast iron lap surface plate (manufactured by Susaki Casting Co., Ltd., FC350, diameter 200 mm, thickness 30 mm) with graphite length of 100 to 200 μm and width of 10 to 15 μm was prepared. Figure 2 shows a metallurgical micrograph of the surface of the lap platen.

(比較例2)
黒鉛の平均粒径が28μmのFCD製のラップ定盤(日立造船株式会社社製、FCD450、直径200mm、厚み30mm)を用意した。図3に、ラップ定盤表面の金属顕微鏡写真を示す。
(Comparative example 2)
An FCD lap surface plate (manufactured by Hitachi Zosen Corporation, FCD450, diameter 200 mm, thickness 30 mm) with graphite having an average particle size of 28 μm was prepared. Figure 3 shows a metallurgical micrograph of the surface of the lap platen.

(本発明のFCV鋳鉄及び従来のFCD鋳鉄と砥粒径との関係評価)
図6に、本発明のFCV鋳鉄(実施例1)及び従来のFCD鋳鉄(比較例2)のラップ工具を用いて、サファイア基板を湿式ラッピングしたときの研磨能率及び仕上げ面粗さを示す。仕上げ面粗さは算術平均粗さ(Ra)である。湿式ラッピングに用いた砥粒は、B4Cであり、平均粒径が17.3μmの番手F500、平均粒径が6.5μmの番手F800、及び平均粒径が3.0μmの番手F1200である。
(Evaluation of the relationship between the FCV cast iron of the present invention and conventional FCD cast iron and abrasive grain size)
FIG. 6 shows the polishing efficiency and finished surface roughness when a sapphire substrate was wet lapped using the lapping tools of the FCV cast iron of the present invention (Example 1) and the conventional FCD cast iron (Comparative Example 2). The finished surface roughness is the arithmetic mean roughness (Ra). The abrasive grains used for wet lapping were B4C , and they were F500 with an average particle size of 17.3 μm, F800 with an average particle size of 6.5 μm, and F1200 with an average particle size of 3.0 μm. .

ラッピングの結果、いずれの砥粒番手においても、本発明のFCV鋳鉄製のラップ工具は従来のFCD鋳鉄製のラップ工具よりも優れた研磨能率を示した。仕上げ面粗さについては、いずれの砥粒番手においても、本発明のFCV鋳鉄製のラップ工具は従来のFCD鋳鉄製のラップ工具と同等以上であった。 As a result of lapping, the lap tool made of FCV cast iron of the present invention showed superior polishing efficiency than the conventional lap tool made of FCD cast iron at any abrasive grain count. Regarding the finished surface roughness, the lap tool made of FCV cast iron of the present invention was equivalent to or better than the lap tool made of conventional FCD cast iron at any abrasive grain count.

(本発明のFCV鋳鉄、従来のFC鋳鉄、及び従来のFCD鋳鉄による研磨時間と研磨能率評価)
図7に、♯600のGCを用いてドレッシングを行い、次いで本発明のFCV鋳鉄(実施例1)、従来のFCD鋳鉄(比較例2)、及び従来のFC鋳鉄(比較例1)のラップ工具と♯2000のGCとを用いて湿式ラッピングを行ったときの、ラッピング(研磨)時間と研磨能率の関係を示す。
(Evaluation of polishing time and polishing efficiency using FCV cast iron of the present invention, conventional FC cast iron, and conventional FCD cast iron)
Fig. 7 shows dressing using #600 GC and then lapping tools for FCV cast iron of the present invention (Example 1), conventional FCD cast iron (Comparative example 2), and conventional FC cast iron (Comparative example 1). The relationship between lapping (polishing) time and polishing efficiency when wet lapping is performed using GC and #2000 is shown.

従来のFC鋳鉄(比較例1)は、研磨初期における研磨能率は比較的高いが研磨時間に応じて大幅に研磨能率が低下した。従来のFCD鋳鉄(比較例2)は、研磨時間によらず研磨能率はあまり変わらないが、研磨初期から研磨能率は低かった。本発明のFCV鋳鉄(実施例1)は、研磨初期から研磨能率が高く、研磨時間によらず研磨能率がほぼ一定であることが確認された。 Conventional FC cast iron (Comparative Example 1) had relatively high polishing efficiency at the initial stage of polishing, but the polishing efficiency significantly decreased as the polishing time increased. For conventional FCD cast iron (Comparative Example 2), the polishing efficiency did not change much regardless of the polishing time, but the polishing efficiency was low from the initial stage of polishing. It was confirmed that the FCV cast iron of the present invention (Example 1) had high polishing efficiency from the initial stage of polishing, and that the polishing efficiency was almost constant regardless of the polishing time.

(本発明のFCV鋳鉄、従来のFC鋳鉄、及び従来のFCD鋳鉄と砥粒濃度との関係評価)
図8に、湿式ラッピングで用いる♯2000のGCの砥粒濃度を1質量%、3質量%、及び5質量%としたときの本発明のFCV鋳鉄(実施例1)、従来のFC鋳鉄(比較例2)、及び従来のFCD鋳鉄(比較例1)のそれぞれのラップ工具の研磨能率及び仕上げ面粗さを示す。棒グラフが研磨能率を示し、丸印のプロットが仕上げ面粗さを示す。
(Evaluation of the relationship between the FCV cast iron of the present invention, conventional FC cast iron, and conventional FCD cast iron and abrasive grain concentration)
Figure 8 shows the FCV cast iron of the present invention (Example 1) and the conventional FC cast iron (comparison The polishing efficiency and finished surface roughness of lap tools for example 2) and conventional FCD cast iron (comparative example 1) are shown. The bar graph shows the polishing efficiency, and the circle plot shows the finished surface roughness.

図8によると、いずれの砥粒濃度においても、本発明のFCV鋳鉄を用いたラップ工具(実施例1)は、従来の従来のFC鋳鉄(比較例2)、及び従来のFCD鋳鉄(比較例1)を用いたラップ工具よりも研磨能率が優れていた。特に低砥粒濃度で、本発明のFCV鋳鉄を用いたラップ工具と従来のFCD鋳鉄及びFC鋳鉄を用いたラップ工具との研磨能率の差が顕著であった。本発明のFCV鋳鉄を用いたラップ工具の場合、砥粒濃度が3質量%の場合が最も高い研磨能率を示した。仕上げ面粗さは研磨能率が高いほど大きくなる傾向はあるが、研磨能率が大きくても仕上げ面粗さの劣化は同等またはわずかであった。 According to FIG. 8, at any abrasive grain concentration, the lap tool using the FCV cast iron of the present invention (Example 1) is superior to the conventional FC cast iron (Comparative example 2) and the conventional FCD cast iron (Comparative example The polishing efficiency was superior to that of the lap tool using method 1). Particularly at low abrasive grain concentrations, the difference in polishing efficiency between the lap tool using the FCV cast iron of the present invention and the lap tools using conventional FCD cast iron and FC cast iron was remarkable. In the case of the lap tool using FCV cast iron of the present invention, the highest polishing efficiency was shown when the abrasive grain concentration was 3% by mass. Although the finished surface roughness tends to increase as the polishing efficiency increases, the deterioration of the finished surface roughness was the same or slight even when the polishing efficiency was high.

(本発明のFCV鋳鉄、従来のFC鋳鉄、及び従来のFCD鋳鉄と砥粒径との関係評価)
図9に、本発明のFCV鋳鉄を用いたラップ工具(実施例1)、従来の従来のFC鋳鉄(比較例2)、及び従来のFCD鋳鉄(比較例1)を用いたラップ工具の、湿式ラッピングで用いるGCの番手を、♯600、♯1000、及び♯2000としたときの研磨能率及び仕上げ面粗さの結果を示す。砥粒濃度は3質量%であった。棒グラフが研磨能率を示し、丸印のプロットが仕上げ面粗さを示す。
(Evaluation of the relationship between the FCV cast iron of the present invention, conventional FC cast iron, and conventional FCD cast iron and abrasive grain size)
Fig. 9 shows wet-type lap tools using FCV cast iron of the present invention (Example 1), conventional FC cast iron (Comparative Example 2), and conventional FCD cast iron (Comparative Example 1). The results of polishing efficiency and finished surface roughness when the GC counts used in lapping are #600, #1000, and #2000 are shown. The abrasive grain concentration was 3% by mass. The bar graph shows the polishing efficiency, and the circle plot shows the finished surface roughness.

図9によると、いずれの番手においても、本発明のFCV鋳鉄を用いたラップ工具は、従来のFCD鋳鉄及びFC鋳鉄を用いたラップ工具よりも研磨能率が優れており、仕上げ面粗さは同等であることが確認できる。 According to Fig. 9, the lap tool using FCV cast iron of the present invention has better polishing efficiency than the lap tool using conventional FCD cast iron and FC cast iron, and the finished surface roughness is the same for all counts. It can be confirmed that

(黒鉛幅と研磨能率の関係評価)
図10に、黒鉛幅が7.5μm、15μm、及び27.5μmの比較例3、実施例2、及び比較例4で作製したラップ定盤を用いてサファイア基板を湿式ラッピングしたときの研磨能率を示す。湿式ラッピングに用いた砥粒は、GC♯1000であり、砥粒濃度は3質量%であった。黒鉛幅が7.5~27.5μmの範囲で黒鉛幅が15μmのラップ定盤が最も高い研磨能率を示した。
(Evaluation of the relationship between graphite width and polishing efficiency)
Figure 10 shows the polishing efficiency when wet lapping a sapphire substrate using the lapping platen prepared in Comparative Example 3, Example 2, and Comparative Example 4 with graphite widths of 7.5 μm, 15 μm, and 27.5 μm. show. The abrasive grains used for wet lapping were GC#1000, and the abrasive grain concentration was 3% by mass. In the graphite width range of 7.5 to 27.5 μm, the lapping surface plate with a graphite width of 15 μm showed the highest polishing efficiency.

(黒鉛長さと研磨能率の関係評価)
図11に、黒鉛長さが175μm、125μm、及び27.5μmの比較例3、実施例2、及び比較例4で作製したラップ定盤を用いてサファイア基板を湿式ラッピングしたときの研磨能率を示す。湿式ラッピングに用いた砥粒はGC♯1000であり、砥粒濃度は3質量%であった。黒鉛長さが27.5~175μmの範囲で黒鉛長さが125μmのラップ定盤が最も高い研磨能率を示した。
(Evaluation of the relationship between graphite length and polishing efficiency)
Figure 11 shows the polishing efficiency when wet lapping a sapphire substrate using the lapping platen prepared in Comparative Example 3, Example 2, and Comparative Example 4 with graphite lengths of 175 μm, 125 μm, and 27.5 μm. . The abrasive grains used for wet lapping were GC#1000, and the abrasive grain concentration was 3% by mass. In the graphite length range of 27.5 to 175 μm, the lapping surface plate with graphite length of 125 μm showed the highest polishing efficiency.

(黒鉛密度と研磨能率の関係評価)
図12に、黒鉛密度が110個/mm2、230個/mm2、及び284個/mm2の実施例3~5で作製したラップ定盤を用いてサファイア基板を湿式ラッピングしたときの研磨能率を示す。湿式ラッピングに用いた砥粒はGC♯1000であり、砥粒濃度は3質量%であった。黒鉛密度が大きいほど高い研磨能率を示した。
(Evaluation of the relationship between graphite density and polishing efficiency)
Figure 12 shows the polishing efficiency when wet lapping a sapphire substrate using the lapping plates prepared in Examples 3 to 5 with graphite densities of 110 pieces/mm 2 , 230 pieces/mm 2 , and 284 pieces/mm 2 . shows. The abrasive grains used for wet lapping were GC#1000, and the abrasive grain concentration was 3% by mass. The higher the graphite density, the higher the polishing efficiency.

Claims (3)

黒鉛を含有する引張強度が300MPa以上のFCV鋳鉄製のラップ工具であって、
前記黒鉛が6~80μmの幅及び20~500μmの長さを有し、80個/mm2以上の密度で含有されることを特徴とするラップ工具。
A wrap tool made of FCV cast iron containing graphite and having a tensile strength of 300 MPa or more,
A lap tool characterized in that the graphite has a width of 6 to 80 μm and a length of 20 to 500 μm, and is contained at a density of 80 pieces/mm 2 or more.
前記FCV鋳鉄が、質量%で、3.0%以上4.0%以下のC[炭素]、2.0%以上3.0%以下のSi[ケイ素]、1.0%未満のMn[マンガン]、0.10%以下のP[リン]、0.01%以上0.02%以下のS[硫黄]、1.0%以下のCu[銅]、0.01%以上0.02%以下のMg[マグネシウム]及び0.03%以上0.08%以下のRE[希土類元素]を含有し、残部がFe[鉄]及び不可避不純物からなることを特徴とする請求項1に記載のラップ工具。 The FCV cast iron contains 3.0% to 4.0% of C [carbon], 2.0% to 3.0% of Si [silicon], and less than 1.0% of Mn [manganese]. ], 0.10% or less P [phosphorus], 0.01% or more and 0.02% or less S [sulfur], 1.0% or less Cu [copper], 0.01% or more and 0.02% or less The lap tool according to claim 1, characterized in that it contains Mg [magnesium] and 0.03% or more and 0.08% or less RE [rare earth element], and the remainder consists of Fe [iron] and inevitable impurities . 前記FCV鋳鉄が、Cr[クロム]、Ni[ニッケル]、及びMo[モリブデン]からなる群から選択される少なくとも一種を含む金属または合金である耐食性向上添加剤を含有することを特徴とする請求項1または2に記載のラップ工具。 A claim characterized in that the FCV cast iron contains a corrosion resistance improving additive that is a metal or alloy containing at least one selected from the group consisting of Cr [chromium], Ni [nickel], and Mo [molybdenum]. The wrap tool according to item 1 or 2.
JP2020106357A 2020-06-19 2020-06-19 wrap tools Active JP7425443B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020106357A JP7425443B2 (en) 2020-06-19 2020-06-19 wrap tools

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020106357A JP7425443B2 (en) 2020-06-19 2020-06-19 wrap tools

Publications (2)

Publication Number Publication Date
JP2022001389A JP2022001389A (en) 2022-01-06
JP7425443B2 true JP7425443B2 (en) 2024-01-31

Family

ID=79244057

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020106357A Active JP7425443B2 (en) 2020-06-19 2020-06-19 wrap tools

Country Status (1)

Country Link
JP (1) JP7425443B2 (en)

Also Published As

Publication number Publication date
JP2022001389A (en) 2022-01-06

Similar Documents

Publication Publication Date Title
KR101214709B1 (en) Flaky graphite cast iron, and method for production thereof
JPS60247036A (en) Cv-cast iron cylinder liner
JPS61219566A (en) Material for polishing surface plate
JP4953377B2 (en) Cast iron containing A-type graphite, casting method of cast iron containing A-type graphite, and cylinder liner using the cast iron containing A-type graphite
CN108441752A (en) A kind of automobile brake disc spheroidal graphite cast-iron and preparation method thereof
JP2014185389A (en) Steel material for case hardening and gear excellent in surface fatigue strength and cold forgeability
JP5376302B2 (en) Die steel with excellent machinability
JP7425443B2 (en) wrap tools
EP1111071A2 (en) Method of manufacturing a compacted vermicular graphite cast iron for engine block
JP2002519518A (en) CV graphite cast iron alloy, its production method and its use
JP2003073767A (en) Outer layer material of roll for hot rolling and composite roll for hot rolling
JP3217661B2 (en) High strength ductile cast iron
JP4527304B2 (en) High strength high toughness spheroidal graphite cast iron
JP2007197747A (en) Cast iron containing spheroidal graphite
JP2001131678A (en) High strength spheroidal graphite cast iron and producing method therefor
JP5282546B2 (en) High-strength, thick-walled spheroidal graphite cast iron with excellent wear resistance
JPH02228448A (en) High strength and high toughness steel shot
JP3589619B2 (en) Steel for free-cutting plastic molds with excellent finished surface roughness
JP2005169427A (en) Outer layer material of rolling roll and rolling roll
JP2568038B2 (en) Method of manufacturing material for polishing surface plate
JPH03122252A (en) Steel for metal mold and metal mold
JP4383988B2 (en) Spheroidal graphite cast iron with excellent machinability and mechanical properties of fatigue strength, tensile strength, proof stress and elongation
JP2004323961A (en) Outer layer material for hot rolling roll, and composite roll for hot rolling
JP2002275575A (en) High strength spheroidal graphite cast iron and production method therefor
JP2908316B2 (en) Polishing surface plate for Si wafer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240104

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240111

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240111

R150 Certificate of patent or registration of utility model

Ref document number: 7425443

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150