JP4953377B2 - Cast iron containing A-type graphite, casting method of cast iron containing A-type graphite, and cylinder liner using the cast iron containing A-type graphite - Google Patents

Cast iron containing A-type graphite, casting method of cast iron containing A-type graphite, and cylinder liner using the cast iron containing A-type graphite Download PDF

Info

Publication number
JP4953377B2
JP4953377B2 JP2007253894A JP2007253894A JP4953377B2 JP 4953377 B2 JP4953377 B2 JP 4953377B2 JP 2007253894 A JP2007253894 A JP 2007253894A JP 2007253894 A JP2007253894 A JP 2007253894A JP 4953377 B2 JP4953377 B2 JP 4953377B2
Authority
JP
Japan
Prior art keywords
mass
cast iron
type graphite
iron containing
area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007253894A
Other languages
Japanese (ja)
Other versions
JP2008106357A (en
Inventor
佳樹 石川
功隆 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Piston Ring Co Ltd
Original Assignee
Nippon Piston Ring Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Piston Ring Co Ltd filed Critical Nippon Piston Ring Co Ltd
Priority to JP2007253894A priority Critical patent/JP4953377B2/en
Publication of JP2008106357A publication Critical patent/JP2008106357A/en
Application granted granted Critical
Publication of JP4953377B2 publication Critical patent/JP4953377B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Cylinder Crankcases Of Internal Combustion Engines (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)

Description

本件発明は、A型黒鉛を含む鋳鉄並びにそのA型黒鉛を含む鋳鉄の鋳造方法及びそのA型黒鉛を含む鋳鉄を用いたシリンダライナに関する。   The present invention relates to a cast iron containing A-type graphite, a casting method for cast iron containing the A-type graphite, and a cylinder liner using the cast iron containing the A-type graphite.

鋳鉄は、炭素、ケイ素、マンガン、リン、硫黄の各成分を基本的に含有した鉄合金と歴史的に知られてきた。そして、鋳鉄は、その組織内の炭素の存在状態により片状黒鉛鋳鉄(ねずみ鋳鉄)、球状黒鉛鋳鉄等に分類され、用途に応じて使い分けられてきた。   Cast iron has historically been known as an iron alloy that basically contains carbon, silicon, manganese, phosphorus, and sulfur components. And cast iron is classified into flake graphite cast iron (gray cast iron), spheroidal graphite cast iron, etc. according to the presence state of carbon in the structure, and has been used properly according to the use.

特に、片状黒鉛鋳鉄は、その強度と振動減衰特性とのバランスに優れるため、自動車のエンジンに代表される内燃機関のシリンダライナの形成に用いられてきた。このシリンダライナは、内燃機関のシリンダの内周壁面に設けられる。そして、このシリンダライナは、ピストン及びピストンリングと摺動接触し、一定の気密性を保持することが求められる。従って、シリンダライナには、ガソリン等の燃料の連続的気化爆発により形成される高温環境下での、強度、耐摩耗性、耐焼付性等の諸特性の他に、その表面仕上げ精度が重要となる。   In particular, flake graphite cast iron has been used to form a cylinder liner of an internal combustion engine typified by an automobile engine because of its excellent balance between strength and vibration damping characteristics. The cylinder liner is provided on the inner peripheral wall surface of the cylinder of the internal combustion engine. The cylinder liner is required to be in sliding contact with the piston and the piston ring and maintain a certain airtightness. Therefore, the surface finish accuracy of a cylinder liner is important in addition to various properties such as strength, wear resistance, and seizure resistance in a high-temperature environment formed by continuous vaporization and explosion of fuel such as gasoline. Become.

高温環境下での、耐摩耗性及び耐焼付性を考慮した鋳鉄としては、組織中にA型黒鉛を有し、耐摩耗性向上元素としてCr、B、Pなどを含有する特殊鋳鉄が一般的に用いられており、特許文献1には、化学組成が重量%で、C:3.3 〜3.7 %、Si:1.8〜2.4%、Mn:0.5〜1.0%、P:0.1〜0.4%、Cr:0.15〜0.5%、Cu:0.4〜1.0%、Mo:0.2〜0.8%、B:0.02〜0.06%、及び残部が実質的にFeからなる鋳鉄組成が開示されている。   As cast iron considering wear resistance and seizure resistance in a high temperature environment, special cast iron having A-type graphite in the structure and containing Cr, B, P, etc. as wear resistance improving elements is generally used. In Patent Document 1, the chemical composition is expressed by weight%, C: 3.3 to 3.7%, Si: 1.8 to 2.4%, and Mn: 0.5 to 1.0. %, P: 0.1 to 0.4%, Cr: 0.15 to 0.5%, Cu: 0.4 to 1.0%, Mo: 0.2 to 0.8%, B: 0.0. There is disclosed a cast iron composition of 02-0.06% and the balance substantially consisting of Fe.

例えば、表面仕上げ精度は、加工方法として研削又はホーニング加工を施すことを考えると、鋳鉄組織によって切削加工性能が定まることを考慮すべきである。そして、切削加工性能が劣ると、被加工表面が粗く形成される。この鋳鉄組織は、鋳造方法により異なるものとする事ができる。例えば、シリンダライナ用の鋳鉄鋳造法としては、砂型を用いた重力鋳造法と金型を用いた遠心鋳造法とが多用される傾向があり、選択した鋳鉄組成に応じた鋳造方法の選択が重要となる。なお、研削条件又はホーニング条件によっても、被加工表面の粗さが大きく影響を受けるのは当然であることを明記しておく。   For example, the surface finishing accuracy should be considered that the cutting performance is determined by the cast iron structure in consideration of performing grinding or honing as a processing method. If the cutting performance is inferior, the surface to be processed is formed rough. This cast iron structure can be different depending on the casting method. For example, as cast iron casting methods for cylinder liners, gravity casting methods using sand molds and centrifugal casting methods using molds tend to be frequently used, and it is important to select a casting method according to the selected cast iron composition It becomes. It should be noted that it is natural that the roughness of the surface to be processed is greatly affected by the grinding conditions or the honing conditions.

そして、従来からシリンダライナとして使用されてきた鋳鉄材料の多くは、遠心鋳造法により製造されている。その結果、重力鋳造法に比べ、その結晶組織内には炭素が細くて多数の片状黒鉛として分散しているため黒鉛間距離が短くなり、研削又はホーニング加工時に黒鉛相の欠落頻度が増え、加工後のシリンダライナの内周面が粗くなる傾向が顕著であった。この鋳造方法に関しては、特許文献2において言及しているが、鋳鉄組成に応じて考慮すべき問題であり、採用した鋳鉄組成に応じて検討を要する要因である。   And most of the cast iron materials conventionally used as a cylinder liner are manufactured by the centrifugal casting method. As a result, compared to the gravity casting method, the distance between graphite is shortened because carbon is thin and dispersed as a number of flake graphite in the crystal structure, and the frequency of missing graphite phases increases during grinding or honing. The tendency of the inner peripheral surface of the cylinder liner after processing to become rough was remarkable. Although this casting method is referred to in Patent Document 2, it is a problem to be considered according to the cast iron composition, and is a factor that needs to be examined according to the adopted cast iron composition.

そこで、従前から存在した上記問題を解決するため、本件発明者等は、特許文献3(特開平9−209072)に開示のように、化学組成が重量%で、C:2.9〜3.5%、Si:2.0〜2.5%、Mn:0.5〜1.0%、P:0.1〜0.3%、S:0.01〜0.13%、Cu:0.3〜0.6%、Cr:0.1〜0.3%を含み、残部がFe及び不可避的不純物からなり、かつミクロ組織が面積率で、フェライト相を3%以下、ステダイト相を1%以上、黒鉛相を10〜18%含むパーライト基地からなり、かつ基地硬さがHV330以上であることを特徴とする耐摩耗性鋳鉄の提供を行い、摺動部材としての特性を満たし、加工表面を従来以上に滑らかなものとしてきた。即ち、鋳鉄組織、基地硬さを所定の範囲に規定することで、摺動部材として耐摩耗性能、強度等の特性を満足すると共に、ホーニング加工を行った場合の加工性能を向上させ、被加工表面の粗さを低減することでの顕著な効果を発揮してきた。   Therefore, in order to solve the above-mentioned problems that have existed in the past, the inventors of the present invention, as disclosed in Patent Document 3 (Japanese Patent Laid-Open No. 9-209072), have a chemical composition of wt% and C: 2.9-3. 5%, Si: 2.0 to 2.5%, Mn: 0.5 to 1.0%, P: 0.1 to 0.3%, S: 0.01 to 0.13%, Cu: 0 0.3 to 0.6%, Cr: 0.1 to 0.3%, the balance is made of Fe and inevitable impurities, the microstructure is the area ratio, the ferrite phase is 3% or less, and the steadite phase is 1 % Of pearlite base containing 10 to 18% of graphite phase, and providing a wear-resistant cast iron characterized in that the base hardness is HV330 or higher, satisfying the characteristics as a sliding member, and processed surface Has been made smoother than before. That is, by defining the cast iron structure and the base hardness within a predetermined range, the sliding member satisfies the characteristics such as wear resistance and strength, and improves the processing performance when the honing is performed. Remarkable effects have been demonstrated by reducing the surface roughness.

特開平6−49583号公報JP-A-6-49583 特公昭58−36664号公報Japanese Patent Publication No. 58-36664 特開平9−209072号公報Japanese Patent Laid-Open No. 9-209072

しかしながら、世の中に存在する一般的工業製品には、品質上の一定のバラツキが存在することも事実である。即ち、上記特許文献3に開示の組成の鋳鉄をもって工業的生産性を追求する中で、鋳造を行うときの溶湯組成及び鋳造条件が変動したときの影響を大きく受ける場合があり、得られた鋳鉄組織を面積率で見たとき、フェライト相3%以下、ステダイト相1%以上、黒鉛相10〜18%含むパーライト基地とすることが出来ず、結果として良好な加工性能が得られない場合があった。   However, it is also true that there is a certain quality variation in general industrial products that exist in the world. That is, while pursuing industrial productivity with cast iron having the composition disclosed in Patent Document 3, the cast iron obtained may be greatly affected by fluctuations in the composition of the molten metal and the casting conditions during casting. When the structure is viewed by area ratio, it cannot be a pearlite base containing 3% or less of the ferrite phase, 1% or more of the steadite phase, and 10 to 18% of the graphite phase, and as a result, good processing performance may not be obtained. It was.

以上のことから、本件発明者等は、上記特許文献3に開示の鋳鉄材料に比べ、より優れた切削加工性能(以下、ホーニング加工性能及び研削加工性能を含む)を有し、より高歩留まりでの生産が可能で、特にシリンダライナの用途に好適な鋳鉄材料の提供を目的とする。   From the above, the present inventors have superior cutting performance (hereinafter including honing performance and grinding performance) compared with the cast iron material disclosed in Patent Document 3, and higher yield. It is an object of the present invention to provide a cast iron material that is particularly suitable for cylinder liner applications.

そこで、本件発明者等は、鋭意研究の結果、以下に示す組成の鋳鉄を採用することで、上記課題を解決できることに想到したのである。   Thus, as a result of intensive studies, the present inventors have come up with the idea that the above problem can be solved by adopting cast iron having the composition shown below.

本件発明に係るA型黒鉛を含む鋳鉄: 本件発明に係るA型黒鉛を含む鋳鉄は、黒鉛が方向性を持たず無秩序で且つ均一に分布した存在形態を備えるA型黒鉛を含む鋳鉄であって、炭素が2.9質量%〜3.6質量%、ケイ素が2.0質量%〜2.5質量%、マンガンが0.5質量%〜1.0質量%、リンが0.03質量%〜0.3質量%、硫黄が0.01質量%〜0.13質量%、銅が0.03質量%〜0.6質量%、クロムが0.03質量%〜0.3質量%、スズが0.001質量%〜0.3質量%及び/又はアンチモンが0.001質量%〜0.2質量%であり、残部が鉄及び不可避的不純物からなる化学組成を備えることを特徴としたものである。 Cast iron containing A-type graphite according to the present invention: A cast iron containing A-type graphite according to the present invention is a cast iron containing A-type graphite having a non-directional and non-directional and uniformly distributed form. , Carbon is 2.9 mass% to 3.6 mass%, silicon is 2.0 mass% to 2.5 mass%, manganese is 0.5 mass% to 1.0 mass%, and phosphorus is 0.03 mass%. ~ 0.3 mass%, sulfur 0.01 mass% to 0.13 mass%, copper 0.03 mass% to 0.6 mass%, chromium 0.03 mass% to 0.3 mass%, tin Is 0.001 mass% to 0.3 mass% and / or antimony is 0.001 mass% to 0.2 mass%, with the balance comprising a chemical composition consisting of iron and inevitable impurities It is.

そして、本件発明に係るA型黒鉛を含む鋳鉄は、モリブデンを0.1質量%〜0.6質量%含む組成とすることも好ましい。   And it is also preferable that the cast iron containing A-type graphite according to the present invention has a composition containing 0.1% by mass to 0.6% by mass of molybdenum.

更に、本件発明に係るA型黒鉛を含む鋳鉄は、その鋳造組織が、金属顕微鏡により観察可能な金属組織の観察領域面積の全体を100面積%として、フェライト相の占有面積が1.5面積%以下、ステダイト相の占有面積が0.05面積%以上、黒鉛相の占有面積が10面積%〜18面積%のパーライト基地を備えることが好ましい。   Furthermore, the cast iron containing A-type graphite according to the present invention has a cast structure of 100 area% of the entire observation area of the metal structure that can be observed with a metal microscope, and the area occupied by the ferrite phase is 1.5 area%. Hereinafter, it is preferable to provide a pearlite base having an area occupied by the steadite phase of 0.05 area% or more and an area occupied by the graphite phase of 10 area% to 18 area%.

また、本件発明に係るA型黒鉛を含む鋳鉄は、ビッカース硬度250HV0.1以上である硬さを示すものであることが好ましい。   Moreover, it is preferable that the cast iron containing A-type graphite according to the present invention has a Vickers hardness of 250HV0.1 or more.

本件発明に係るA型黒鉛を含む鋳鉄の鋳造方法: 本件発明に係るA型黒鉛を含む鋳鉄の鋳造方法は、炭素が2.9質量%〜3.6質量%、ケイ素が2.0質量%〜2.5質量%、マンガンが0.5質量%〜1.0質量%、リンが0.03質量%〜0.3質量%、硫黄が0.01質量%〜0.13質量%、銅が0.03質量%〜0.3質量%、クロムが0.03質量%〜0.3質量%、スズが0.001質量%〜0.3質量%及び/又はアンチモンが0.001質量%〜0.2質量%であり、残部が鉄及び不可避的不純物からなる化学組成の溶湯を調製し、重力鋳造法又は遠心鋳造法を用いて、当該溶湯を鋳型内に鋳込むことを特徴としたものである。 Casting method of cast iron containing A-type graphite according to the present invention: The cast iron containing A-type graphite according to the present invention has a casting method of 2.9 mass% to 3.6 mass% carbon and 2.0 mass% silicon. ~ 2.5 mass%, manganese 0.5 mass% to 1.0 mass%, phosphorus 0.03 mass% to 0.3 mass%, sulfur 0.01 mass% to 0.13 mass%, copper Is 0.03 mass% to 0.3 mass%, chromium is 0.03 mass% to 0.3 mass%, tin is 0.001 mass% to 0.3 mass%, and / or antimony is 0.001 mass%. It is characterized by preparing a molten metal having a chemical composition consisting of iron and inevitable impurities, and casting the molten metal in a mold using a gravity casting method or a centrifugal casting method. Is.

本件発明に係るシリンダライナ: 本件発明に係るシリンダライナは、内燃機関のピストンを収容するシリンダの内壁部に設けるものであって、上述の本件発明に係るA型黒鉛を含む鋳鉄を用いて形成したことを特徴とするものである。 Cylinder liner according to the present invention: A cylinder liner according to the present invention is provided on an inner wall portion of a cylinder that accommodates a piston of an internal combustion engine, and is formed using cast iron containing A-type graphite according to the present invention described above. It is characterized by this.

本件発明に係るA型黒鉛を含む鋳鉄は、上述の鋳鉄組成とすることで、摺動部材として求められる耐摩耗性を備えると同時に、従来の耐摩耗性鋳鉄を超える良好な切削性能を示すようになる。しかも、本件発明に係るA型黒鉛を含む鋳鉄の製造にあたっては、その鋳込み方法として重力鋳造法及び遠心鋳造法のいずれの方法を採用しても、同レベルの耐摩耗性能と切削性能とを示すようになる。従って、鋳造方法の選択幅が広がり好ましい。また、本件発明に係るA型黒鉛を含む鋳鉄は、内燃機関のピストンを収容するシリンダの内壁部に設けるシリンダライナ用に好適であり、高品質のシリンダライナの提供を可能とする。   The cast iron containing A-type graphite according to the present invention has the above-described cast iron composition, so that it has wear resistance required as a sliding member, and at the same time, exhibits good cutting performance exceeding conventional wear-resistant cast iron. become. Moreover, in the production of cast iron containing A-type graphite according to the present invention, the same level of wear resistance and cutting performance are exhibited no matter which of the gravity casting method and the centrifugal casting method is used as the casting method. It becomes like this. Therefore, the selection range of the casting method is widened, which is preferable. The cast iron containing A-type graphite according to the present invention is suitable for a cylinder liner provided on an inner wall portion of a cylinder that accommodates a piston of an internal combustion engine, and can provide a high-quality cylinder liner.

以下、本件発明に係るA型黒鉛を含む鋳鉄、当該A型黒鉛を含む鋳鉄の製造方法、本件発明に係るシリンダライナの各々に関する形態に関して詳細に説明し、その後、本件発明に関する実施例を述べる。   Hereinafter, embodiments relating to each of the cast iron containing A-type graphite according to the present invention, the method for producing the cast iron containing the A-type graphite, and the cylinder liner according to the present invention will be described in detail, and then examples relating to the present invention will be described.

組成から見た本件発明に係るA型黒鉛を含む鋳鉄の形態: 本件発明に係るA型黒鉛を含む鋳鉄は、通常の鋳鉄組成の中に、銅及びクロムを添加した組成である点に特徴を有する。ここで、「A型黒鉛を含む鋳鉄」とは、その鋳造組織内に黒鉛が方向性を持たず無秩序、且つ、均等に分布して存在しているものであり、黒鉛のサイズを適正に保ち、基地をパーライト化することで、いわゆる強靱鋳鉄となり、摺動部材に要求される良好な耐摩耗性及び良好な耐スカッフ性を示すものである。また、本件発明に係るA型黒鉛を含む鋳鉄を組織的側面から見れば、フェライト相及びステダイト相を、ある一定レベル以下に制御したものである。なお、誤解の無きように明記しておくが、本件発明に言う「A型黒鉛を含む鋳鉄」とは、鋳鉄組織中に観察可能な黒鉛形態が、全てA型黒鉛形状でないことを明確にするために用いた用語である。即ち、本件発明に係るA型黒鉛を含む鋳鉄は、A型黒鉛だけでなく、一定量のB型黒鉛、D型黒鉛、E型黒鉛等を含むものである。以下、その組成中に含まれる各成分ごとに説明する。 Form of cast iron containing A-type graphite according to the present invention as seen from the composition: Cast iron containing A-type graphite according to the present invention is characterized in that it is a composition in which copper and chromium are added to a normal cast iron composition. Have. Here, “cast iron containing A-type graphite” means that the graphite does not have directionality in the cast structure and is distributed in a disorderly and even manner, and the size of the graphite is maintained appropriately. By making the base pearlite, it becomes so-called tough cast iron, and exhibits good wear resistance and good scuff resistance required for the sliding member. Further, when the cast iron containing A-type graphite according to the present invention is viewed from a structural aspect, the ferrite phase and the steadite phase are controlled to a certain level or less. It should be noted that there is no misunderstanding, but the “cast iron containing A-type graphite” in the present invention clearly indicates that the graphite forms observable in the cast iron structure are not all A-type graphite shapes. It is a term used for this purpose. That is, the cast iron containing A-type graphite according to the present invention includes not only A-type graphite but also a certain amount of B-type graphite, D-type graphite, E-type graphite and the like. Hereinafter, each component contained in the composition will be described.

本件発明に係るA型黒鉛を含む鋳鉄の炭素含有量は、2.9質量%〜3.6質量%の範囲であることが好ましい。目的とする黒鉛組織を得るためには、炭素量の管理が重要であり、適正な範囲に無ければならない。当該炭素含有量が2.9%未満の場合には、鋳鉄組織内での黒鉛の析出量が少なくなる。そのため、シリンダライナに接触して摺動するピストン表面との適正な滑り性能が得られず、良好な耐摩耗性及び良好な耐スカッフ性が得られなくなる。このとき、鋳鉄組織における黒鉛相は、その面積率が10面積%に満たないものとして観察されるものとなり、後述する好ましい鋳造組織が得られなくなる。一方、当該炭素含有量が3.6%を超えるものとすると、鉄−炭素系状態図における過共晶領域になり、鋳鉄組織内での黒鉛の析出量が過大になり、フェライトの随伴析出が顕著となる。その結果、耐摩耗性及び耐スカッフ性において優れるものとなっても、脆弱な組織となり内燃機関での用途に耐えるような強度が得られなくなる。そして、この鋳鉄組織における黒鉛相は、その面積率が18面積%を超えるものとして観察されるものとなり、後述する好ましい鋳造組織が得られなくなる。   The carbon content of the cast iron containing A-type graphite according to the present invention is preferably in the range of 2.9 mass% to 3.6 mass%. In order to obtain the target graphite structure, the control of the carbon content is important and must be within an appropriate range. When the carbon content is less than 2.9%, the amount of graphite precipitated in the cast iron structure decreases. Therefore, an appropriate sliding performance with the piston surface that slides in contact with the cylinder liner cannot be obtained, and good wear resistance and good scuff resistance cannot be obtained. At this time, the graphite phase in the cast iron structure is observed as an area ratio of less than 10 area%, and a preferable cast structure described later cannot be obtained. On the other hand, if the carbon content exceeds 3.6%, it becomes a hypereutectic region in the iron-carbon phase diagram, the precipitation amount of graphite in the cast iron structure becomes excessive, and the accompanying precipitation of ferrite occurs. Become prominent. As a result, even if it is excellent in wear resistance and scuff resistance, it becomes a brittle structure and it is impossible to obtain a strength that can withstand use in an internal combustion engine. And the graphite phase in this cast iron structure will be observed as the area ratio exceeds 18 area%, and the preferable cast structure mentioned later cannot be obtained.

本件発明に係るA型黒鉛を含む鋳鉄のケイ素含有量は、2.0質量%〜2.5質量%の範囲であることが好ましい。ここに記載したケイ素含有量は、上述の炭素含有量と密接な関係を持っている。即ち、ケイ素は、溶湯中から鋳鉄に凝固する過程において、炭素の黒鉛化を促進するための炭素化促進剤として機能する。一般的には、炭素量が一定とすれば、ケイ素量が多くなるほど、ネズミ鋳鉄と成りやすくなる。従って、ケイ素含有量の範囲の数値限定の意味合いも、上述の炭素含有量の範囲を前提としたものである。ここで、当該ケイ素含有量が2.0%未満の場合には、鋳鉄組織内にA型黒鉛が析出しにくくなり、内燃機関のシリンダライナ等の摺動部材に求められるレベルの耐摩耗性及び耐スカッフ性が損なわれる。一方、当該ケイ素含有量が2.5%を超える場合には、遊離フェライトが増加して軟鋳鉄化するため、基地が軟化し強度が不足するため好ましくない。このとき、鋳鉄組織におけるフェライト相の面積率が、1.5面積%を超えるものとして観察される。   The silicon content of the cast iron containing A-type graphite according to the present invention is preferably in the range of 2.0 mass% to 2.5 mass%. The silicon content described here is closely related to the carbon content described above. That is, silicon functions as a carbonization promoter for promoting graphitization of carbon in the process of solidifying from molten metal to cast iron. In general, if the amount of carbon is constant, the greater the amount of silicon, the more likely it is to become gray cast iron. Therefore, the meaning of limiting the numerical value of the silicon content range is also based on the above-described carbon content range. Here, when the silicon content is less than 2.0%, it is difficult for A-type graphite to precipitate in the cast iron structure, and the level of wear resistance required for a sliding member such as a cylinder liner of an internal combustion engine and Scuff resistance is impaired. On the other hand, when the silicon content exceeds 2.5%, free ferrite increases and soft cast iron is formed, which is not preferable because the base is softened and the strength is insufficient. At this time, the area ratio of the ferrite phase in the cast iron structure is observed as exceeding 1.5 area%.

本件発明に係るA型黒鉛を含む鋳鉄のマンガン含有量は、0.5質量%〜1.0質量%の範囲であることが好ましい。鋳鉄組成の中でのマンガンは、いわゆるパーライト安定化元素であり、フェライトの析出を抑制し、微細化したパーライト組織を得易くする。また、当該マンガンは、ケイ素含有量が高い場合には黒鉛の生成を抑制する成分として機能する。しかし、上記ケイ素含有量レベルを考えると、本件発明に係るA型黒鉛を含む鋳鉄におけるマンガンの場合には、鋳鉄組織におけるフェライト相の面積率を1.5面積%以下にするためのフェライトの析出抑制機能と、同時に快削元素として機能している。即ち、ここで言うマンガンは、後述する硫黄とマンガンとが結合し、硫化マンガン(MnS)を形成し、本件発明に係るA型黒鉛を含む鋳鉄の切削性を向上させている。従って、当該マンガン含有量が0.5質量%未満の場合には、切削性を向上させる効果が不十分となる。一方、当該マンガン含有量が1.0質量%を超えるようにしても、パーライトの安定化効果は飽和してしまい、資源の無駄遣いとなる。   The manganese content of the cast iron containing A-type graphite according to the present invention is preferably in the range of 0.5 mass% to 1.0 mass%. Manganese in the cast iron composition is a so-called pearlite stabilizing element, which suppresses the precipitation of ferrite and makes it easy to obtain a refined pearlite structure. Moreover, the said manganese functions as a component which suppresses the production | generation of graphite, when silicon content is high. However, considering the above silicon content level, in the case of manganese in cast iron containing A-type graphite according to the present invention, ferrite precipitation to make the area ratio of the ferrite phase in the cast iron structure 1.5 area% or less It functions as a free-cutting element as well as a restraining function. That is, the manganese mentioned here combines sulfur and manganese described later to form manganese sulfide (MnS), and improves the machinability of cast iron containing A-type graphite according to the present invention. Therefore, when the manganese content is less than 0.5% by mass, the effect of improving the machinability becomes insufficient. On the other hand, even if the manganese content exceeds 1.0% by mass, the stabilization effect of pearlite is saturated, and resources are wasted.

本件発明に係るA型黒鉛を含む鋳鉄のリン含有量は、0.03質量%〜0.3質量%の範囲であることが好ましい。このリンは、鋳鉄組織中でリン化鉄が混じったセメンタイトとなり、いわゆるステダイト(リン化鉄共晶)相を形成する機能を果たす。このステダイト相は、非常に硬く脆いものであるが、適正な量のステダイト相が鋳鉄組織中に存在すると、耐摩耗性が顕著に向上し、同時に良好な切削性が得られるが、過剰になると切削加工後の被加工表面の仕上げ精度が問題となる。従って、当該リン含有量が0.03質量%未満の場合には、耐摩耗性及び耐スカッフ性を向上させることは出来ず、良好な切削性も得られない。一方、当該リン含有量が0.3質量%を超える場合には、耐摩耗性及び耐スカッフ性を向上させることはできても、良好な切削性が得られなくなる。係る場合、鋳鉄組成内でステダイト相の面積率は、0.05面積%を超えるものとして観察される。   The phosphorus content of the cast iron containing A-type graphite according to the present invention is preferably in the range of 0.03% by mass to 0.3% by mass. This phosphorus becomes cementite in which iron phosphide is mixed in the cast iron structure, and functions to form a so-called steadite (iron phosphide eutectic) phase. This steadite phase is very hard and brittle, but if an appropriate amount of steadite phase is present in the cast iron structure, the wear resistance is significantly improved and at the same time good machinability is obtained, but if it becomes excessive, The finishing accuracy of the surface to be processed after cutting becomes a problem. Therefore, when the phosphorus content is less than 0.03% by mass, the wear resistance and scuff resistance cannot be improved, and good machinability cannot be obtained. On the other hand, when the phosphorus content exceeds 0.3% by mass, good machinability cannot be obtained even though the wear resistance and scuff resistance can be improved. In such a case, the area ratio of the steadite phase is observed as exceeding 0.05 area% in the cast iron composition.

本件発明に係るA型黒鉛を含む鋳鉄の硫黄含有量は、0.01質量%〜0.13質量%の範囲であることが好ましい。マンガンと硫黄との関係を考えると、1.7×[硫黄(質量%)]+0.2質量%≦[マンガン(質量%)]≦1.7×[硫黄(質量%)]+0.3質量%の関係を満たせば、硫黄の黒鉛化阻害作用を防止する事ができ、切削性を改善する硫化マンガン(MnS)の形成を可能とする。ここで、上記マンガン含有量は、0.5質量%〜1.0質量%の範囲であり、硫黄含有量が0.01質量%〜0.13質量%である。従って、当該硫黄成分の全ては、上述のマンガンと結合し、硫化マンガン(MnS)を形成し、本件発明に係るA型黒鉛を含む鋳鉄の切削性を向上させるように作用する。しかし、本件発明に係るA型黒鉛を含む鋳鉄の硫黄含有量が0.01%未満の場合には、硫化マンガン(MnS)の形成が少なく切削性を改善しないばかりか、マンガン量が少なくなると硫化鉄を形成し白鋳鉄化するため靱性に乏しい鋳鉄製品が得られる。これに対し、当該硫黄含有量が0.13%を超える場合には、硫黄自体は溶湯への炭素の溶解度を抑制し黒鉛形成を促進する作用を果たすが、白鋳鉄化する傾向にありA型黒鉛を得ることが困難となる。   The sulfur content of the cast iron containing A-type graphite according to the present invention is preferably in the range of 0.01% by mass to 0.13% by mass. Considering the relationship between manganese and sulfur, 1.7 × [sulfur (mass%)] + 0.2 mass% ≦ [manganese (mass%) ≦ 1.7 × [sulfur (mass%)] + 0.3 mass %, The sulfur graphitization inhibiting action can be prevented, and manganese sulfide (MnS) can be formed to improve machinability. Here, the said manganese content is the range of 0.5 mass%-1.0 mass%, and sulfur content is 0.01 mass%-0.13 mass%. Accordingly, all of the sulfur components are combined with the above-described manganese to form manganese sulfide (MnS), and act to improve the machinability of cast iron containing A-type graphite according to the present invention. However, when the sulfur content of the cast iron containing A-type graphite according to the present invention is less than 0.01%, the formation of manganese sulfide (MnS) is small and the machinability is not improved. Cast iron products with poor toughness are obtained because iron is formed into white cast iron. On the other hand, when the sulfur content exceeds 0.13%, sulfur itself serves to suppress the solubility of carbon in the molten metal and promote the formation of graphite, but tends to be white cast iron and is A-type. It becomes difficult to obtain graphite.

本件発明に係るA型黒鉛を含む鋳鉄の場合、以下に述べるスズ、アンチモンはパーライト安定化成分であり、共通する機能を果たす成分である。従って、以下に述べる含有量の範囲において、スズ、アンチモンの一種を用いても、これらを組み合わせて用いても構わない。以下、スズとアンチモンとに分けて説明する。   In the case of cast iron containing A-type graphite according to the present invention, tin and antimony described below are pearlite stabilizing components and components that perform a common function. Therefore, within the content range described below, one of tin and antimony may be used, or these may be used in combination. Hereinafter, description will be made separately for tin and antimony.

スズ含有量は、0.001質量%〜0.3質量%の範囲であることが好ましい。鋳鉄組織においてスズは黒鉛化阻止元素であり、耐摩耗性に優れたパーライト基地の形成を容易にするパーライト安定化機能を果たす。従って、本件発明に係るA型黒鉛を含む鋳鉄のスズ含有量が0.001質量%未満の場合には、パーライト安定化機能を果たし得ない。これに対し、本件発明に係るA型黒鉛を含む鋳鉄のスズ含有量が0.3質量%を超えるものとしても、それ以上にパーライト安定化機能が向上せず、当該効果が飽和するため、単に資源の無駄となる。   The tin content is preferably in the range of 0.001% by mass to 0.3% by mass. Tin is a graphitization-inhibiting element in the cast iron structure, and fulfills a pearlite stabilization function that facilitates the formation of a pearlite matrix with excellent wear resistance. Therefore, when the tin content of the cast iron containing A-type graphite according to the present invention is less than 0.001% by mass, the pearlite stabilizing function cannot be achieved. On the other hand, even if the tin content of the cast iron containing A-type graphite according to the present invention exceeds 0.3% by mass, the pearlite stabilization function is not improved further, and the effect is saturated. It is a waste of resources.

本件発明に係るA型黒鉛を含む鋳鉄のアンチモン含有量は、0.001質量%〜0.2質量%の範囲であることが好ましい。鋳鉄組織においてアンチモンは黒鉛化阻止元素であり、上述のスズと同様に、耐摩耗性に優れたパーライト基地の形成を容易にするパーライト安定化機能を果たす。即ち、アンチモンは、パーライト基地の中で、黒鉛サイズを微細化するため得られるA型黒鉛を含む鋳鉄の硬度の向上に寄与する。本件発明に係るA型黒鉛を含む鋳鉄のアンチモン含有量が0.001質量%未満の場合には、パーライト安定化機能を果たし得ない。本件発明に係るA型黒鉛を含む鋳鉄のアンチモン含有量が0.2質量%を超えるものとしても、それ以上にパーライト安定化機能が向上せず当該効果が飽和する。   The antimony content of the cast iron containing A-type graphite according to the present invention is preferably in the range of 0.001% by mass to 0.2% by mass. Antimony is a graphitization-inhibiting element in the cast iron structure and, like the above-mentioned tin, fulfills a pearlite stabilizing function that facilitates the formation of a pearlite base having excellent wear resistance. That is, antimony contributes to the improvement of the hardness of cast iron containing A-type graphite obtained for refining the graphite size in the pearlite matrix. When the antimony content of the cast iron containing A-type graphite according to the present invention is less than 0.001% by mass, the pearlite stabilization function cannot be achieved. Even if the antimony content of the cast iron containing A-type graphite according to the present invention exceeds 0.2% by mass, the pearlite stabilizing function is not further improved and the effect is saturated.

本件発明に係るA型黒鉛を含む鋳鉄の銅含有量は、0.03質量%〜0.6質量%の範囲であることが好ましい。銅は鋳鉄組織の中で炭素の黒鉛化を阻害せず、パーライト安定化剤として機能するものである。しかし、上述のアンチモン及び/又はスズの添加を行うことにより、パーライト安定化をより確実なものとして、遊離フェライトの析出を防止する。その結果、銅は、鋳鉄の硬度を上昇させる耐摩耗性の改善成分及び耐食性向上成分であり、研削又はホーニング加工での加工欠陥を防止するのに適した黒鉛サイズの形成成分として作用し、切削性を改善できる潤滑剤として機能するレベルの黒鉛形成に寄与する。従って、当該銅含有量が0.03質量%未満の場合には、耐摩耗性、耐食性、切削性のいずれの項目も改善できない。一方、当該銅含有量が0.6質量%を超える場合には、耐摩耗性、耐食性、切削性の各特性の上昇は望めず飽和する。また、更に過剰に銅含有量を増加させれば、上述のアンチモン及び/又はスズ含有量の範囲の黒鉛化阻止能では遊離フェライトの析出を効果的に防止し得ず軟化するため好ましくない。   The copper content of the cast iron containing A-type graphite according to the present invention is preferably in the range of 0.03% by mass to 0.6% by mass. Copper does not inhibit carbon graphitization in the cast iron structure and functions as a pearlite stabilizer. However, the addition of the above-described antimony and / or tin makes pearlite stabilization more reliable and prevents the precipitation of free ferrite. As a result, copper is a component for improving wear resistance and a component for improving corrosion resistance, which increases the hardness of cast iron, and acts as a graphite-size forming component suitable for preventing processing defects in grinding or honing. This contributes to the formation of graphite that functions as a lubricant capable of improving the properties. Therefore, when the copper content is less than 0.03% by mass, none of the items of wear resistance, corrosion resistance, and machinability can be improved. On the other hand, when the copper content exceeds 0.6% by mass, the wear resistance, corrosion resistance, and machinability are not expected to increase and become saturated. Further, if the copper content is further increased excessively, the above-mentioned antimony and / or tin content in the range of graphitization inhibition is not preferable because precipitation of free ferrite cannot be effectively prevented and softening occurs.

本件発明に係るA型黒鉛を含む鋳鉄のクロム含有量は、0.03質量%〜0.3質量%の範囲であることが好ましい。鋳鉄組織においてクロムは黒鉛化阻止元素であり、上述のスズ、アンチモンと同様に、耐摩耗性に優れたパーライト基地の形成を容易にするパーライト安定化機能を果たす。従って、本件発明に係るA型黒鉛を含む鋳鉄はクロムを含むことで、特に耐摩耗性、耐食性の向上が可能となる。当該クロム含有量が0.03質量%未満の場合には、耐摩耗性及び耐食性共に向上しないため添加する意味がない。一方、当該クロム含有量が0.3質量%を超えるように添加すると切削性が低下する。   The chromium content of cast iron containing A-type graphite according to the present invention is preferably in the range of 0.03% by mass to 0.3% by mass. Chromium is a graphitization-inhibiting element in the cast iron structure and, like the above-described tin and antimony, fulfills a pearlite stabilizing function that facilitates the formation of a pearlite matrix having excellent wear resistance. Therefore, the cast iron containing A-type graphite according to the present invention contains chromium, so that it is possible to improve particularly the wear resistance and the corrosion resistance. When the chromium content is less than 0.03% by mass, it is meaningless to add since both wear resistance and corrosion resistance are not improved. On the other hand, when it adds so that the said chromium content may exceed 0.3 mass%, machinability will fall.

また、本件発明に係るA型黒鉛を含む鋳鉄は、モリブデンを0.1質量%〜0.6質量%の範囲添加した組成とすることも好ましい。このモリブデンは、必要に応じて添加するものであり、優れた切削性及び耐摩耗性とともに、材料強度を更に向上させるために用いる。即ち、モリブデンは、黒鉛化の阻止元素であり、黒鉛サイズの粗大化を防止して、基地に微細且つ均一に黒鉛を分散させて高強度化を図り、靱性及び耐摩耗性に優れたパーライト基地の形成を容易にするパーライト安定化機能を果たす。従って、当該モリブデン含有量が0.1質量%未満の場合には、靱性及び耐摩耗性共に向上させることが出来ない。一方、当該モリブデン含有量が0.6質量%を超えるものとすると、ベイナイト組織になり、硬度が高くなり過ぎて、切削性が悪化するため好ましくない。   Moreover, it is also preferable that the cast iron containing A-type graphite according to the present invention has a composition in which molybdenum is added in a range of 0.1 mass% to 0.6 mass%. This molybdenum is added as necessary, and is used for further improving the material strength as well as excellent machinability and wear resistance. That is, molybdenum is a graphitization inhibiting element, prevents the coarsening of the graphite size, disperses the graphite finely and evenly in the base to increase the strength, and is a pearlite base excellent in toughness and wear resistance. It fulfills the pearlite stabilization function that facilitates the formation of Therefore, when the molybdenum content is less than 0.1% by mass, neither toughness nor wear resistance can be improved. On the other hand, if the molybdenum content exceeds 0.6% by mass, a bainite structure is formed, the hardness becomes too high, and the machinability deteriorates, which is not preferable.

鋳造組織から見た本件発明に係るA型黒鉛を含む鋳鉄の形態: 以上述べてきた鋳鉄組成を用いることで、その組織中に適度なサイズと均一に分布した片状黒鉛を形成し、パーライト基地硬さを好適に調整できるようになる。鋳鉄中のステダイト相は、切削加工性能を向上させるために用いてきたものであるが、一方では、ステダイト相が増加すると切削加工時の亀裂型切りくずが発生する現象が顕著になり、仕上がり精度が問題となってきた。ところが、本件発明に係るA型黒鉛を含む鋳鉄の場合には、切削性を改善するために必要としてきたステダイト相の量を減らしても、良好な耐摩耗性と良好な切削性とを同時に得ることが出来るようになった点に特徴がある。 Form of cast iron containing A-type graphite according to the present invention as seen from the cast structure: By using the cast iron composition described above, flake graphite having an appropriate size and uniform distribution is formed in the structure, and a pearlite base Hardness can be suitably adjusted. The steadite phase in cast iron has been used to improve cutting performance, but on the other hand, when the steadite phase increases, the phenomenon of crack-type chips during cutting becomes prominent, resulting in finished accuracy. Has become a problem. However, in the case of cast iron containing A-type graphite according to the present invention, good wear resistance and good machinability can be obtained at the same time even if the amount of steadite phase required for improving machinability is reduced. It is characterized by the fact that it has become possible.

本件発明に係る鋳鉄組成を用いて製造方法を種々に変化させることで、最終的な鋳鉄製品として種々の鋳鉄組織を備えるものが得られる。中でも、以下に述べる観察組織を備えるA型黒鉛を含む鋳鉄が、最も良好な切削性と耐摩耗性とを備え、且つ、その被加工表面が美麗で、仕上げ精度が飛躍的に向上する。即ち、本件発明に言う切削性とは、単に切削が容易で加工治具寿命の長期化が図れるだけではなく、同一の加工治具及び同一の加工条件を用いる限り、切削加工を受けた被加工表面の仕上げ精度が良好という意味を含んでいることを明記しておく。   By changing the manufacturing method using the cast iron composition according to the present invention, what has various cast iron structures can be obtained as a final cast iron product. Among them, cast iron containing A-type graphite having the observation structure described below has the best cutting properties and wear resistance, has a beautiful surface to be processed, and dramatically improves the finishing accuracy. In other words, the machinability referred to in the present invention is not only easy to cut and prolonging the life of the processing jig, but as long as the same processing jig and the same processing conditions are used, the workpiece subjected to the cutting processing is used. It should be clearly stated that this means that the surface finishing accuracy is good.

即ち、本件発明に係るA型黒鉛を含む鋳鉄の場合、金属顕微鏡により観察可能な金属組織の観察領域面積の全体を100面積%として、フェライト相の占有面積が1.5面積%以下、ステダイト相の占有面積が0.05面積%以上、黒鉛相の占有面積が10面積%〜18面積%のパーライト基地を備える場合に、最も良好な切削性と耐摩耗性とを同時に発揮する。ここで、本件発明に係るA型黒鉛を含む鋳鉄の組織を観察する場合、黒鉛形状の観察にはエッチング無しの状態で、金属顕微鏡で100倍の倍率で観察する。そして、フェライト相及びステダイト相を観察する場合には、ナイタルを用いる等の所定のエッチング処理を行い、金属顕微鏡で200倍観察する。   That is, in the case of cast iron containing A-type graphite according to the present invention, the entire observation region area of the metal structure that can be observed with a metal microscope is 100% by area, and the occupied area of the ferrite phase is 1.5% by area or less. In the case where a pearlite base having a occupying area of 0.05 area% or more and a occupying area of graphite phase of 10 area% to 18 area% is provided, the best cutting ability and wear resistance are simultaneously exhibited. Here, when observing the structure of cast iron containing A-type graphite according to the present invention, the graphite shape is observed without etching and at a magnification of 100 times with a metal microscope. And when observing a ferrite phase and a steadite phase, predetermined | prescribed etching processes, such as using a night, are performed, and it observes 200 times with a metal microscope.

このA型黒鉛を含む鋳鉄の基地は、パーライト基地である。ここでパーライトとは、当業者に関しては周知の用語であるが簡単に説明しておく。鉄−炭素系状態図のγ固溶体が、共析変態(A変態)により、α固溶体(フェライト)と鉄炭素化合物(FeC:セメンタイト)とに分解し、この両者が薄い層となって交互に積層した縞模様を形成したものである。そして、パーライト基地とは、組織の全体がパーライト組織となっていることを意味している。更に、本件発明に係るA型黒鉛を含む鋳鉄の場合、そのパーライト基地にフェライト相、ステダイト相、黒鉛相が均一に分布して存在したものである。 The base of cast iron containing this A-type graphite is a pearlite base. Here, perlite is a well-known term for those skilled in the art, but will be briefly described. The γ solid solution in the iron-carbon phase diagram is decomposed into an α solid solution (ferrite) and an iron carbon compound (Fe 3 C: cementite) by the eutectoid transformation (A 1 transformation), and both of these become thin layers. A striped pattern in which layers are alternately stacked is formed. The perlite base means that the entire organization is a perlite organization. Further, in the case of cast iron containing A-type graphite according to the present invention, the ferrite phase, steadite phase, and graphite phase are uniformly distributed in the pearlite matrix.

本件発明に係るA型黒鉛を含む鋳鉄の場合、金属顕微鏡により観察可能な金属組織の観察領域面積の全体を100面積%として、フェライト相の占有面積が1.5面積%以下であることが好ましい。この範囲のフェライト相の占有面積としたのは、耐摩耗性に欠けるフェライト相を可能な限り減少させ基地強度の低下を防止して、切削加工又はホーニング加工による亀裂型切りくず発生現象を防止して、被加工表面の仕上げ精度を向上させ、滑らかな加工表面を得るためである。従って、このフェライト相の占有面積が1.5面積%を超えると、被加工表面の仕上げ精度が劣化し、滑らかな加工表面を得ることが出来なくなる。   In the case of cast iron containing A-type graphite according to the present invention, the entire observation region area of the metal structure that can be observed with a metal microscope is 100% by area, and the occupied area of the ferrite phase is preferably 1.5% by area or less. . The area occupied by the ferrite phase in this range is to reduce the ferrite phase lacking in wear resistance as much as possible to prevent the base strength from being lowered, and to prevent the occurrence of crack-type chips due to cutting or honing. In order to improve the finishing accuracy of the surface to be processed and obtain a smooth processed surface. Therefore, when the area occupied by the ferrite phase exceeds 1.5 area%, the finishing accuracy of the surface to be processed is deteriorated and a smooth processed surface cannot be obtained.

そして、本件発明に係るA型黒鉛を含む鋳鉄のステダイト相は、金属顕微鏡により観察可能な金属組織の観察領域面積の全体を100面積%として、当該占有面積が0.05面積%以上であることが好ましい。ステダイトは、α鉄、FeC(セメンタイト)、リン化鉄(FeP)の三元共晶組織で、高硬度である。その結果、パーライト基地中にステダイト相が0.05面積%未満として析出していると、ホーニング加工時に対し、亀裂型切りくず発生現象が起き、その結果、被加工表面の仕上げ精度が劣化し、滑らかな加工表面を得ることが出来なくなる。 And the steadite phase of the cast iron containing A-type graphite according to the present invention has the entire area of the observation area of the metal structure observable with a metal microscope as 100 area%, and the occupied area is 0.05 area% or more. Is preferred. Steadite is a ternary eutectic structure of α iron, Fe 3 C (cementite), and iron phosphide (Fe 3 P), and has high hardness. As a result, if the steadite phase is precipitated in the pearlite base as less than 0.05 area%, crack type chip generation phenomenon occurs at the time of honing, and as a result, the finishing accuracy of the surface to be processed deteriorates, A smooth machined surface cannot be obtained.

また、本件発明に係るA型黒鉛を含む鋳鉄の黒鉛相は、金属顕微鏡により観察可能な金属組織の観察領域面積の全体を100面積%として、当該黒鉛相の占有面積が10面積%〜18面積%であることが好ましい。このとき黒鉛相の占有面積が10面積%未満の場合には、摺動部材として黒鉛相の果たす潤滑機能が発揮されず、耐摩耗性、耐スカッフ性が劣る。一方、黒鉛相の占有面積が18%面積を超える場合には、黒鉛サイズが粗大化して、鋳鉄強度が低下し、機械用構造部材としての実用性に欠けるようになる。なお、本件発明のA型黒鉛を含む鋳鉄材料及びシリンダライナは、観察面積中の全片状黒鉛の量を100面積%としたとき、A型黒鉛を70面積%以上含み、残部としてB型黒鉛及びD型黒鉛を含む場合がある。また、遠心鋳造法による場合には、A型黒鉛とE型黒鉛との合計が70面積%以上である事が好ましい。   Further, the graphite phase of cast iron containing A-type graphite according to the present invention has an area occupied by the graphite phase of 10 area% to 18 area, where the entire observation area of the metal structure that can be observed with a metal microscope is 100 area%. % Is preferred. At this time, when the area occupied by the graphite phase is less than 10% by area, the lubricating function of the graphite phase as a sliding member is not exhibited, and the wear resistance and scuff resistance are poor. On the other hand, when the occupied area of the graphite phase exceeds 18%, the graphite size becomes coarse, the cast iron strength decreases, and the practicality as a structural member for a machine is lacking. The cast iron material and cylinder liner containing A-type graphite of the present invention contains 70% by area or more of A-type graphite when the amount of all flake graphite in the observation area is 100% by area, and the rest is B-type graphite. And D-type graphite. In the case of the centrifugal casting method, the total of A-type graphite and E-type graphite is preferably 70 area% or more.

本件発明に係るA型黒鉛を含む鋳鉄が、以上のような鋳鉄組織を備えると、パーライト基地硬さのビッカース硬度250HV0.1以上となる。耐摩耗性の観点から見れば、フェライト組織よりパーライト組織の方が優れる。一般に硬さの高いものほど耐摩耗性に優れるが、パーライト組織のラメラ構造が粗く、フェライト量が多くならないようにして、ホーニング加工時の亀裂型切りくず発生現象をより確実に防止する観点からは、基地硬さを300HV0.1以上とすることがより好ましい。なお、ここで上限に関して特に限定を設けていないが、ビッカース硬度が400HV0.1以下であることが好ましい。ビッカース硬度が400HV0.1を超えると、機械用構造部材として求められる靱性が低下して、切削性、振動減衰特性等も劣化するからである。   When the cast iron containing A-type graphite according to the present invention has the cast iron structure as described above, the Vickers hardness of pearlite base hardness is 250HV0.1 or more. From the viewpoint of wear resistance, the pearlite structure is superior to the ferrite structure. In general, the higher the hardness, the better the wear resistance, but from the viewpoint of more reliably preventing cracking chip generation during honing by making the lamellar structure of the pearlite structure coarse and not increasing the amount of ferrite. The base hardness is more preferably 300HV0.1 or more. In addition, although there is no restriction | limiting in particular regarding an upper limit here, it is preferable that Vickers hardness is 400HV0.1 or less. This is because when the Vickers hardness exceeds 400 HV0.1, the toughness required as a structural member for a machine is lowered, and the machinability, vibration damping characteristics, and the like are also deteriorated.

本件発明に係るA型黒鉛を含む鋳鉄の鋳造方法の形態: 本件発明に係るA型黒鉛を含む鋳鉄の鋳造方法の形態に関して述べる。本件発明に係るA型黒鉛を含む鋳鉄を得るための溶湯の組成は、基本的に、目的とするA型黒鉛を含む鋳鉄の最終組成よりSiが約0.2%程度低い組成の溶湯を用いる。そして、注湯の直前に黒鉛化を促進するための接種(フェロシリコン合金)を行う。その結果、溶湯と凝固した後の鋳鉄との間で、成分的な差異が殆ど無くなる。即ち、最初に炭素が2.9質量%〜3.6質量%、ケイ素が2.0質量%〜2.5質量%、マンガンが0.5質量%〜1.0質量%、リンが0.05質量%〜0.3質量%、硫黄が0.01質量%〜0.13質量%、銅が0.03質量%〜0.3質量%、クロムが0.03質量%〜0.3質量%、スズが0.001質量%〜0.3質量%及び/又はアンチモンが0.001質量%〜0.2質量%であり、残部が鉄及び不可避的不純物からなる溶湯を調製する。このときの溶湯の調整方法、各種成分の溶湯中への添加順序及び調整方法の種類に関しては、特段の限定はなく、公知のいずれの手法を用いても構わない。そして、この溶湯の組成は、溶湯を調製する際の添加原料の割合から算出したものである。 Form of Cast Iron Casting Method Containing A-Type Graphite According to the Present Invention: An embodiment of a casting method of cast iron containing A-type graphite according to the present invention will be described. The composition of the molten metal for obtaining the cast iron containing A-type graphite according to the present invention basically uses a molten metal having a composition whose Si is about 0.2% lower than the final cast iron-containing composition containing A-type graphite. . And inoculation (ferrosilicon alloy) for promoting graphitization is performed immediately before pouring. As a result, there is almost no component difference between the molten metal and the cast iron after solidification. That is, first, 2.9% to 3.6% by mass of carbon, 2.0% to 2.5% by mass of silicon, 0.5% to 1.0% by mass of manganese, and 0.8% of phosphorus. 05 mass% to 0.3 mass%, sulfur 0.01 mass% to 0.13 mass%, copper 0.03 mass% to 0.3 mass%, chromium 0.03 mass% to 0.3 mass% %, Tin is 0.001 mass% to 0.3 mass% and / or antimony is 0.001 mass% to 0.2 mass%, and the remainder is prepared from iron and inevitable impurities. There are no particular limitations on the method for adjusting the molten metal, the order of addition of various components into the molten metal, and the type of adjusting method, and any known method may be used. And the composition of this molten metal is computed from the ratio of the additional raw material at the time of preparing a molten metal.

そして、溶湯を鋳型内に鋳込む際には、重力鋳造法又は遠心鋳造法のいずれを用いても構わない点も特徴である。しかしながら、上記組成の溶湯に遠心鋳造法を採用する場合には、その金型の表面温度が250℃未満とすると、冷却速度が早すぎ、黒鉛化が抑制され、良好なサイズのA型黒鉛が析出しにくくなるため好ましくない。一方、当該金型の表面温度を270℃を超えるものとすると、冷却速度が遅くなり過ぎて、析出黒鉛のサイズが粗大になり基地硬さが低下するため好ましくない。   And when casting a molten metal in a casting_mold | template, either the gravity casting method or the centrifugal casting method may be used. However, when the centrifugal casting method is adopted for the molten metal having the above composition, if the surface temperature of the mold is less than 250 ° C., the cooling rate is too fast, graphitization is suppressed, and a good-sized A-type graphite is obtained. Since it becomes difficult to precipitate, it is not preferable. On the other hand, if the surface temperature of the mold exceeds 270 ° C., the cooling rate becomes too slow, the size of the precipitated graphite becomes coarse, and the base hardness decreases.

遠心鋳造法においては、その金型内面に、ケイ藻土を主成分とする塗型を塗布形成する。このときの塗型厚さは、冷却速度と金型寿命とに影響を与える重要な因子である。当該塗型厚さが0.5mm未満であると、冷却速度が速すぎて、鋳造製品のチル化傾向が大きくなり、上述の鋳造組織を得ることが出来なくなる。一方、当該塗型厚さが1.5mmを超えると、冷却速度が遅くなり過ぎて、析出する黒鉛サイズが粗大になり、基地硬さが低下し、摺動部材として求められる耐摩耗性等の必要な機能を発揮しなくなる。   In the centrifugal casting method, a coating mold mainly composed of diatomaceous earth is applied and formed on the inner surface of the mold. The coating thickness at this time is an important factor affecting the cooling rate and the mold life. When the coating mold thickness is less than 0.5 mm, the cooling rate is too fast, the chilling tendency of the cast product is increased, and the above-described cast structure cannot be obtained. On the other hand, if the coating thickness exceeds 1.5 mm, the cooling rate becomes too slow, the precipitated graphite size becomes coarse, the base hardness decreases, and the wear resistance required as a sliding member, etc. Necessary functions are not displayed.

本件発明に係るシリンダライナの形態: 本件発明に係るシリンダライナは内燃機関のピストンを収容するシリンダの内壁部に設けるものであり、以上に述べてきたA型黒鉛を含む鋳鉄を用いて形成したことを特徴とする。当該A型黒鉛を含む鋳鉄を用いることで、ホーニング加工後のシリンダライナの表面を、従来に無いレベルで美麗且つ滑らかに仕上げることができ、高品質の内燃機関用シリンダを提供することが可能となる。 Form of the cylinder liner according to the present invention: The cylinder liner according to the present invention is provided on the inner wall portion of the cylinder that accommodates the piston of the internal combustion engine, and is formed using the cast iron containing A-type graphite as described above. It is characterized by. By using cast iron containing the A-type graphite, the surface of the cylinder liner after honing can be finished beautifully and smoothly at an unprecedented level, and a high-quality cylinder for an internal combustion engine can be provided. Become.

この実施例では、最終的な鋳鉄組成とほぼ同様の組成の溶湯を調製し、重力鋳造法又は遠心鋳造法を用いて、シリンダライナ用鋳鉄を製造した。そして、当該鋳込み後のシリンダライナ用鋳鉄の表面をホーニング加工して、加工性能を評価するため、加工後のシリンダライナ表面の最大高さ(Pt)を、JIS B0601(2001)に基づいて測定した。なお、このときの最大高さ(Pt)は、曲率半径2μmの触針を用いて触芯式表面粗さ計を用いて測定した。以下の表1には、実施例(試料1〜試料17)と後述する比較例(試料C−1、試料C−2、試料C−3)との鋳鉄組成及び鋳造条件に関して、対比可能なように纏めて示す。ここで念のために明記しておくが、表1に鋳鉄組成として記載した各成分量は、意図的に添加したものであり、不可避不純物として含有している微量成分を含まないものである。   In this example, a molten metal having a composition almost the same as the final cast iron composition was prepared, and a cast iron for a cylinder liner was manufactured using a gravity casting method or a centrifugal casting method. Then, in order to evaluate the processing performance by honing the cast iron surface for cylinder liner after casting, the maximum height (Pt) of the cylinder liner surface after processing was measured based on JIS B0601 (2001). . In addition, the maximum height (Pt) at this time was measured using a stylus with a radius of curvature of 2 μm using a stylus-type surface roughness meter. In Table 1 below, it is possible to compare the cast iron composition and casting conditions of Examples (Sample 1 to Sample 17) and Comparative Examples (Sample C-1, Sample C-2, Sample C-3) described later. It summarizes and shows. Here, it should be clearly noted that the amounts of each component described as the cast iron composition in Table 1 are intentionally added and do not include trace components contained as inevitable impurities.

そして、表1に示した組成の各シリンダライナ用鋳鉄の鋳造組織を観察し、ホーニング加工した後の加工表面の表面粗さを測定した結果を、実施例(試料1〜試料15)と後述する比較例(試料C−1、試料C−2、試料C−3)とを対比可能なように、以下の表2に示す。ホーニング条件に関しては、以下に列挙掲載する。   And the result of having observed the cast structure of the cast iron for cylinder liners of the composition shown in Table 1 and measuring the surface roughness of the processed surface after honing was described later as Examples (Sample 1 to Sample 15). The comparative examples (Sample C-1, Sample C-2, Sample C-3) are shown in Table 2 below so that they can be compared. The honing conditions are listed below.

ホーニング条件 砥石:荒工程・・・・・・ダイヤ♯220
仕上工程・・・・・GC♯220
プラトウ・・・・・軟質系砥石
取代:荒工程・・・・・・0.02〜0.03mm/径
仕上工程・・・・・0.03〜0.04mm/径
プラトウ・・・・・5ストローク
砥石拡張方法・・・機械式
Honing condition Whetstone: Roughing process ... Diamond # 220
Finishing process: GC # 220
Plato: Soft grinding wheel
Stock allowance: Roughing process ... 0.02-0.03mm / diameter
Finishing process: 0.03-0.04mm / diameter
Prato 5 strokes
Grinding wheel extension method: mechanical

更に、図1〜図4には、本件発明に係るA型黒鉛を含む鋳鉄組織を備えるシリンダライナ用鋳鉄の代表的金属顕微鏡観察像を示す。図1には、試料3の重力鋳造法を用いて砂型で製造したシリンダライナ用鋳鉄の腐食しない場合の鋳造組織を倍率100倍の金属顕微鏡観察像として示した。これに対し、図2には、試料3をナイタルでエッチングした場合の鋳造組織を倍率200倍の金属顕微鏡観察像として示した。図3には、試料9の遠心鋳造方式を用いて金型で製造したシリンダライナ用鋳鉄であって、エッチング無しの鋳造組織を倍率100倍の金属顕微鏡観察像として示した。そして、図4には、試料9をナイタルでエッチングした場合の鋳造組織を倍率200倍の金属顕微鏡観察像として示した。この図1〜図4から分かるように、良好なA型黒鉛形態が得られているのが分かる。   Furthermore, in FIGS. 1-4, the typical metal-microscope observation image of the cast iron for cylinder liners provided with the cast iron structure | tissue containing the A-type graphite which concerns on this invention is shown. In FIG. 1, a cast structure in the case of no corrosion of cast iron for a cylinder liner manufactured by a sand mold using the gravity casting method of Sample 3 is shown as a metal microscope observation image at a magnification of 100 times. On the other hand, in FIG. 2, the cast structure in the case where the sample 3 was etched with a night was shown as a metal microscope observation image with a magnification of 200 times. FIG. 3 shows a cast structure for a cylinder liner manufactured by a mold using the centrifugal casting method of Sample 9 and a cast structure without etching as a metal microscope observation image at a magnification of 100 times. FIG. 4 shows a cast structure obtained when the sample 9 is etched by night as a metal microscope observation image with a magnification of 200 times. As can be seen from FIGS. 1 to 4, it can be seen that a good A-type graphite form is obtained.

比較例Comparative example

この比較例では、実施例と同様に、最終的な鋳鉄組成とほぼ同様の組成の溶湯を調製し、遠心鋳造法を用いて、シリンダライナ用鋳鉄を製造した。このときの鋳鉄組成及び鋳造条件に関しては、実施例と同時に、上述の表1に同時掲載した。そして、当該鋳込み後のシリンダライナ用鋳鉄の表面をホーニング加工して、加工性能を評価するため、加工後のシリンダライナ表面の最大高さ(Pt)を測定し、実施例との対比に用いた。その他のホーニング加工条件等は実施例と同様である。   In this comparative example, similarly to the example, a molten metal having a composition almost the same as the final cast iron composition was prepared, and cast iron for cylinder liners was manufactured using a centrifugal casting method. The cast iron composition and casting conditions at this time are listed in Table 1 simultaneously with the examples. Then, the surface of the cast iron for cylinder liner after the casting is honed, and the maximum height (Pt) of the cylinder liner surface after processing is measured and used for comparison with the example in order to evaluate the processing performance. . Other honing processing conditions and the like are the same as in the example.

更に、図5には、試料C−1の遠心鋳造法で製造したシリンダライナ用鋳鉄のエッチング無しの鋳造組織を倍率100倍の金属顕微鏡観察像として示した。そして、図6には、試料C−1をナイタルでエッチングした場合の鋳造組織を倍率200倍の金属顕微鏡観察像として示した。この図5及び図6でも、黒鉛形態としては良好なA型黒鉛となっている。   Further, FIG. 5 shows an unetched cast structure of cast iron for cylinder liner manufactured by the centrifugal casting method of Sample C-1 as a metal microscope observation image at a magnification of 100 times. And in FIG. 6, the cast structure | tissue at the time of etching the sample C-1 with a night is shown as a metal-microscope observation image of 200-times multiplication factor. In FIGS. 5 and 6 as well, the graphite form is good A-type graphite.

<実施例と比較例との対比>
以上に述べてきた実施例と比較例とに関して、それぞれを対比して述べることとする。この対比は、表2を参照しつつ行うものとする。
<Contrast between Example and Comparative Example>
The examples and comparative examples described above will be described in comparison with each other. This comparison is made with reference to Table 2.

この表1の実施例の試料1〜試料17の鋳造組成を見ると、全てが炭素が2.9質量%〜3.6質量%、ケイ素が2.0質量%〜2.5質量%、マンガンが0.5質量%〜1.0質量%、リンが0.05質量%〜0.3質量%、硫黄が0.01質量%〜0.13質量%、銅が0.03質量%〜0.3質量%、クロムが0.03質量%〜0.3質量%、スズが0.001質量%〜0.3質量%及び/又はアンチモンが0.001質量%〜0.2質量%であり、残部が鉄及び不可避的不純物の範囲にある。これに対し、表1の比較例の試料C−1、試料C−2、試料C−3は、上記組成範囲には含まれないことが分かる。   Looking at the casting compositions of Sample 1 to Sample 17 in the examples of Table 1, all are 2.9% to 3.6% by mass of carbon, 2.0% to 2.5% by mass of silicon, manganese Is 0.5 mass% to 1.0 mass%, phosphorus is 0.05 mass% to 0.3 mass%, sulfur is 0.01 mass% to 0.13 mass%, and copper is 0.03 mass% to 0 mass%. .3% by mass, chromium by 0.03% by mass to 0.3% by mass, tin by 0.001% by mass to 0.3% by mass and / or antimony by 0.001% by mass to 0.2% by mass. The balance is in the range of iron and inevitable impurities. In contrast, Sample C-1, Sample C-2, and Sample C-3 of Comparative Example in Table 1 are not included in the composition range.

そして、表2の実施例の試料1〜試料17の鋳造組織は、金属顕微鏡により観察可能な金属組織の観察領域面積の全体を100面積%として、フェライト相の占有面積が1.5面積%以下、ステダイト相の占有面積が0.05面積%以上、黒鉛相の占有面積が10面積%〜18面積%のパーライト基地を備えることが分かる。これに対し、表1の比較例の試料C−1、試料C−2、試料C−3は、上記鋳造組織の特徴を満足していないことが分かる。   The cast structures of Sample 1 to Sample 17 in the examples in Table 2 are 100% by area of the entire observation region area of the metal structure that can be observed by a metal microscope, and the area occupied by the ferrite phase is 1.5% by area or less. It can be seen that a pearlite base having an area occupied by the steadite phase of 0.05 area% or more and an area occupied by the graphite phase of 10 area% to 18 area% is provided. On the other hand, it can be seen that Sample C-1, Sample C-2, and Sample C-3 of Comparative Example in Table 1 do not satisfy the characteristics of the cast structure.

ここで、表2を参照しながら、実施例(試料1〜試料17)と比較例(試料C−1、試料C−2、試料C−3)との基地硬さをみると、実施例の試料のビッカース硬度がHV0.1において254〜350の範囲にある。これに対し、比較例の試料のビッカース硬度は332〜360の範囲にある。即ち、ビッカース硬度で見た場合、実施例の試料の方が硬度が広い範囲を持ち、且つ、より軟質な領域を備えていることが分かる。しかしながら、発明者等の研究によれば、実施例と比較例との間で耐摩耗性に顕著な差異は認められず同等のレベルにある。   Here, referring to Table 2, when the base hardness of the example (sample 1 to sample 17) and the comparative example (sample C-1, sample C-2, sample C-3) is seen, The sample has a Vickers hardness in the range of 254 to 350 at HV0.1. On the other hand, the Vickers hardness of the sample of the comparative example is in the range of 332 to 360. That is, in terms of Vickers hardness, it can be seen that the sample of the example has a wider range of hardness and a softer region. However, according to the research by the inventors, there is no significant difference in wear resistance between the example and the comparative example, and the level is equivalent.

そして、表2を参照しながら、実施例(試料1〜試料17)と比較例(試料C−1、試料C−2、試料C−3)とのホーニング加工後の被加工表面の表面粗さ(表2では単に「ホーニング加工後表面粗さ」と表示)を比べる。その結果、比較例の最大高さ(Pt)が6.1μn〜6.3μmの範囲にあるのに対し、実施例の最大高さ(Pt)は、3.3μm〜4.0μmの範囲となり、ホーニング加工後の被加工表面の粗さが飛躍的に滑らかになり、仕上げ精度が飛躍的に向上したことが分かる。このことは、遠心鋳造法を用いた比較例の試料と、遠心鋳造法を用いた実施例の試料11〜試料13とを比べても同様である。また、実施例の試料1〜試料10、試料14、試料15の各試料の最大高さ(Pt)と、試料11〜試料13の各試料の最大高さ(Pt)とを対比すると、本件発明に係る組成の溶湯を用いた場合の鋳造方法として重力鋳造法、遠心鋳造法のいずれを用いても良好なホーニング加工性能を示すA型黒鉛を含む鋳鉄が得られることが裏付けられる。   And with reference to Table 2, the surface roughness of the surface to be processed after the honing process of the example (sample 1 to sample 17) and the comparative example (sample C-1, sample C-2, sample C-3) (In Table 2, simply indicated as “surface roughness after honing”). As a result, the maximum height (Pt) of the comparative example is in the range of 6.1 μn to 6.3 μm, whereas the maximum height (Pt) of the example is in the range of 3.3 μm to 4.0 μm. It can be seen that the roughness of the surface to be processed after the honing process has been dramatically smoothed, and the finishing accuracy has been greatly improved. This is the same even if the sample of the comparative example using the centrifugal casting method and the samples 11 to 13 of the example using the centrifugal casting method are compared. Further, when the maximum height (Pt) of each of the samples 1 to 10, 14, and 15 of the example and the maximum height (Pt) of each of the samples 11 to 13 are compared, the present invention It is supported that cast iron containing A-type graphite exhibiting good honing performance can be obtained by using either the gravity casting method or the centrifugal casting method as a casting method in the case of using the molten metal having the composition according to the above.

更に、表2を参照しながら、実施例(試料16及び試料17)と比較例(試料C−1、試料C−2、試料C−3)とのホーニング加工後の被加工表面の表面粗さ(表2では単に「ホーニング加工後表面粗さ」と表示)を比べる。この実施例に該当する試料16及び試料17は、鋳鉄組成としてスズ、アンチモン及びモリブデンを併用した組成を備えている。その結果、比較例の試料と比べて、基地硬さが顕著に堅くなっている。従って、比較例の試料と比べて、試料16及び試料17は、本件発明においてスズ、アンチモン及びモリブデンを併用した鋳鉄組成を採用することで、耐摩耗性能に優れることが推察できる。しかも、実施例(試料16及び試料17)と比較例(試料C−1、試料C−2、試料C−3)とのホーニング加工後の被加工表面の粗さを見ると、実施例の方が硬い物性を備えているにも拘わらず、飛躍的に滑らかな被加工表面を得ることができ、比較例と比べて仕上げ精度が飛躍的に向上したことが分かる。   Furthermore, referring to Table 2, the surface roughness of the surface to be processed after the honing process of the example (sample 16 and sample 17) and the comparative example (sample C-1, sample C-2, sample C-3). (In Table 2, simply indicated as “surface roughness after honing”). Sample 16 and sample 17 corresponding to this example have a composition in which tin, antimony and molybdenum are used in combination as the cast iron composition. As a result, the base hardness is significantly harder than that of the sample of the comparative example. Therefore, it can be inferred that Sample 16 and Sample 17 are superior in wear resistance performance by adopting a cast iron composition in which tin, antimony and molybdenum are used in combination in the present invention, as compared with the sample of the comparative example. Moreover, when the roughness of the surface to be processed after the honing process of the example (sample 16 and sample 17) and the comparative example (sample C-1, sample C-2, sample C-3) is seen, the direction of the example Although it has hard physical properties, it can be seen that a dramatically smooth surface to be processed can be obtained, and the finishing accuracy has been dramatically improved as compared with the comparative example.

本件発明に係るA型黒鉛を含む鋳鉄は、上述の鋳鉄組成とすることで、摺動部材として求められる耐摩耗性を備えると同時に、従来の耐摩耗性鋳鉄を超える良好な切削性能を示すものであり、このような特性を備えるが故に、内燃機関のピストンを収容するシリンダの内壁部に設けるシリンダライナ用に好適であり、高品質のシリンダライナの提供を可能とする。また、本件発明に係るA型黒鉛を含む鋳鉄の製造方法は、得ようとするA型黒鉛を含む鋳鉄の鋳鉄組成を反映させた溶湯組成に特徴を持つものであり、従来の鋳造設備の全てを利用することが可能で、鋳込み方法として重力鋳造法及び遠心鋳造法のいずれの方法も採用可能であるため、新たな設備投資を必要としない利点がある。   The cast iron containing A-type graphite according to the present invention has the above-described cast iron composition, and has the wear resistance required as a sliding member, and at the same time exhibits a good cutting performance exceeding that of conventional wear-resistant cast iron. Since it has such characteristics, it is suitable for a cylinder liner provided on an inner wall portion of a cylinder that houses a piston of an internal combustion engine, and can provide a high-quality cylinder liner. The method for producing cast iron containing A-type graphite according to the present invention is characterized by a molten metal composition reflecting the cast iron composition of cast iron containing A-type graphite to be obtained. Since both the gravity casting method and the centrifugal casting method can be adopted as the casting method, there is an advantage that no new capital investment is required.

試料3(実施例:重力鋳造法)のエッチング無しの金属顕微鏡観察像である。It is a metal-microscope observation image without the etching of the sample 3 (Example: gravity casting method). 試料3(実施例:重力鋳造法)のエッチング後の金属顕微鏡観察像である。It is a metal-microscope observation image after the etching of the sample 3 (Example: Gravity casting method). 試料9(実施例:遠心鋳造法)のエッチング無しの金属顕微鏡観察像である。It is a metal-microscope observation image without the etching of the sample 9 (Example: Centrifugal casting method). 試料9(実施例:遠心鋳造法)のエッチング後の金属顕微鏡観察像である。It is a metal-microscope observation image after the etching of the sample 9 (Example: Centrifugal casting method). 試料C−1(比較例:遠心鋳造法)のエッチング無しの金属顕微鏡観察像である。It is a metal-microscope observation image without the etching of sample C-1 (comparative example: centrifugal casting method). 試料C−1(比較例:遠心鋳造法)のエッチング後の金属顕微鏡観察像である。It is a metal-microscope observation image after the etching of sample C-1 (comparative example: centrifugal casting method).

Claims (6)

黒鉛が方向性を持たず無秩序で且つ均一に分布した存在形態を備えるA型黒鉛を含む鋳鉄であって、
炭素が2.9質量%〜3.6質量%、ケイ素が2.0質量%〜2.5質量%、マンガンが0.5質量%〜1.0質量%、リンが0.03質量%〜0.3質量%、硫黄が0.01質量%〜0.13質量%、銅が0.03質量%〜0.6質量%、クロムが0.03質量%〜0.3質量%、スズが0.001質量%〜0.3質量%及び/又はアンチモンが0.001質量%〜0.2質量%であり、残部が鉄及び不可避的不純物からなる化学組成を備えることを特徴としたA型黒鉛を含む鋳鉄。
A cast iron containing A-type graphite having a presence form in which graphite is not directional and is disordered and uniformly distributed,
Carbon is 2.9 mass% to 3.6 mass%, Silicon is 2.0 mass% to 2.5 mass%, Manganese is 0.5 mass% to 1.0 mass%, and Phosphorus is 0.03 mass% to 0.3 wt%, sulfur 0.01 wt% to 0.13 wt%, copper 0.03 wt% to 0.6 wt%, chromium 0.03 wt% to 0.3 wt%, tin A type characterized in that 0.001% by mass to 0.3% by mass and / or antimony is 0.001% by mass to 0.2% by mass and the balance has a chemical composition consisting of iron and inevitable impurities. Cast iron containing graphite.
モリブデンを0.1質量%〜0.6質量%含ませたものである請求項1に記載のA型黒鉛を含む鋳鉄。 The cast iron containing A-type graphite according to claim 1, wherein molybdenum is contained in an amount of 0.1 mass% to 0.6 mass%. 金属顕微鏡により観察可能な金属組織の観察領域面積の全体を100面積%として、フェライト相の占有面積が1.5面積%以下、ステダイト相の占有面積が0.05面積%以上、黒鉛相の占有面積が10面積%〜18面積%のパーライト基地を備える請求項1又は請求項2に記載のA型黒鉛を含む鋳鉄。 The observation area of the metal structure that can be observed with a metal microscope is 100% by area, the ferrite phase occupies 1.5 area% or less, the steadite phase occupies 0.05 area% or more, and the graphite phase occupies The cast iron containing A-type graphite according to claim 1 or 2, comprising a pearlite base having an area of 10 area% to 18 area%. 基地のビッカース硬度が250HV0.1以上である請求項1〜請求項3のいずれかに記載のA型黒鉛を含む鋳鉄。 The cast iron containing A-type graphite according to any one of claims 1 to 3, wherein the base has a Vickers hardness of 250HV0.1 or more. 請求項1〜請求項4のいずれかに記載のA型黒鉛を含む鋳鉄の鋳込み方法であって、
炭素が2.9質量%〜3.6質量%、ケイ素が2.0質量%〜2.5質量%、マンガンが0.5質量%〜1.0質量%、リンが0.03質量%〜0.3質量%、硫黄が0.01質量%〜0.13質量%、銅が0.03質量%〜0.6質量%、クロムが0.03質量%〜0.3質量%、スズが0.001質量%〜0.3質量%及び/又はアンチモンが0.001質量%〜0.2質量%であり、残部が鉄及び不可避的不純物からなる化学組成の溶湯を調製し、
重力鋳造法又は遠心鋳造法を用いて、当該溶湯を鋳型内に鋳込むことを特徴としたA型黒鉛を含む鋳鉄の鋳造方法。
A casting method for cast iron containing the A-type graphite according to any one of claims 1 to 4,
Carbon is 2.9 mass% to 3.6 mass%, Silicon is 2.0 mass% to 2.5 mass%, Manganese is 0.5 mass% to 1.0 mass%, and Phosphorus is 0.03 mass% to 0.3 wt%, sulfur 0.01 wt% to 0.13 wt%, copper 0.03 wt% to 0.6 wt%, chromium 0.03 wt% to 0.3 wt%, tin 0.001% by mass to 0.3% by mass and / or antimony is 0.001% by mass to 0.2% by mass, and a molten metal having a chemical composition consisting of iron and inevitable impurities is prepared.
A casting method for cast iron containing A-type graphite, wherein the molten metal is cast into a mold using a gravity casting method or a centrifugal casting method.
内燃機関のピストンを収容するシリンダの内壁部に設けるシリンダライナであって、
請求項1〜請求項4のA型黒鉛を含む鋳鉄を用いて形成したことを特徴とするシリンダライナ。
A cylinder liner provided on an inner wall portion of a cylinder for accommodating a piston of an internal combustion engine,
A cylinder liner formed by using cast iron containing the A-type graphite of claim 1.
JP2007253894A 2006-09-28 2007-09-28 Cast iron containing A-type graphite, casting method of cast iron containing A-type graphite, and cylinder liner using the cast iron containing A-type graphite Active JP4953377B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007253894A JP4953377B2 (en) 2006-09-28 2007-09-28 Cast iron containing A-type graphite, casting method of cast iron containing A-type graphite, and cylinder liner using the cast iron containing A-type graphite

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006265335 2006-09-28
JP2006265335 2006-09-28
JP2007253894A JP4953377B2 (en) 2006-09-28 2007-09-28 Cast iron containing A-type graphite, casting method of cast iron containing A-type graphite, and cylinder liner using the cast iron containing A-type graphite

Publications (2)

Publication Number Publication Date
JP2008106357A JP2008106357A (en) 2008-05-08
JP4953377B2 true JP4953377B2 (en) 2012-06-13

Family

ID=39439964

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007253894A Active JP4953377B2 (en) 2006-09-28 2007-09-28 Cast iron containing A-type graphite, casting method of cast iron containing A-type graphite, and cylinder liner using the cast iron containing A-type graphite

Country Status (1)

Country Link
JP (1) JP4953377B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107779736A (en) * 2016-08-30 2018-03-09 中国石油天然气集团公司 A kind of alloy cast iron and its preparation method and application
EP3428486A4 (en) * 2016-03-09 2019-07-31 Samyoung Machinery Co., Ltd. Alloy cast iron having improved wear resistance, and piston ring comprising same

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2400311T3 (en) * 2009-02-12 2013-04-09 Teksid Do Brasil Ltda Method to obtain a high strength gray iron alloy for combustion engines and foundries in general
PT2396439E (en) * 2009-02-12 2014-07-24 Teksid Do Brasil Ltda High resistance gray iron alloy for combustion engines and general casts
EP2392812A1 (en) * 2010-06-01 2011-12-07 Wärtsilä Schweiz AG Low-wear stroke piston combustion engine
JP6147584B2 (en) * 2012-08-30 2017-06-14 日本ピストンリング株式会社 Cylinder liner
JP6084118B2 (en) * 2013-05-24 2017-02-22 本田技研工業株式会社 Centrifugal casting method
CN109694981A (en) * 2019-01-07 2019-04-30 陕西柴油机重工有限公司 Full A type graphite material of high-power diesel engine body and preparation method thereof
CN115369310A (en) * 2022-08-26 2022-11-22 中原内配集团股份有限公司 Cast iron, cylinder sleeve and preparation process thereof
CN115584430B (en) * 2022-08-30 2023-08-08 宁波日星铸业有限公司 High-pearlite-content gray cast iron with thick and large section and preparation method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05285599A (en) * 1991-04-11 1993-11-02 Hitachi Metals Ltd Horizontal continuous casting mold and hollow member produced by this mold
JPH0649583A (en) * 1992-07-29 1994-02-22 Kubota Corp Cast iron for cylinder liner
JPH08176722A (en) * 1994-12-26 1996-07-09 Nippon Piston Ring Co Ltd Wear resistant flaky graphite cast iron having excellent machinability and production thereof
JP3763603B2 (en) * 1996-01-30 2006-04-05 日本ピストンリング株式会社 Abrasion-resistant cast iron and method for producing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3428486A4 (en) * 2016-03-09 2019-07-31 Samyoung Machinery Co., Ltd. Alloy cast iron having improved wear resistance, and piston ring comprising same
CN107779736A (en) * 2016-08-30 2018-03-09 中国石油天然气集团公司 A kind of alloy cast iron and its preparation method and application
CN107779736B (en) * 2016-08-30 2019-11-12 中国石油天然气集团公司 A kind of alloy cast iron and its preparation method and application

Also Published As

Publication number Publication date
JP2008106357A (en) 2008-05-08

Similar Documents

Publication Publication Date Title
JP4953377B2 (en) Cast iron containing A-type graphite, casting method of cast iron containing A-type graphite, and cylinder liner using the cast iron containing A-type graphite
KR101214709B1 (en) Flaky graphite cast iron, and method for production thereof
JP4954644B2 (en) Combination of cylinder liner and piston ring
JP4557731B2 (en) Cast iron with excellent corrosion resistance and wear resistance
WO2009122985A1 (en) Iron-base sintered alloy for valve sheet and valve sheet for internal combustion engine
US5972128A (en) Cast iron and piston ring
JPWO2004094808A1 (en) Piston for internal combustion engine
KR20090055648A (en) Free-cutting steel excellent in manufacturability
US10371085B2 (en) Cylinder liner and method of forming the same
JP2016079498A (en) Gray cast iron for cylinder liner and method for manufacturing cylinder liner using the same
JP2012041571A (en) Flake graphite cast iron for large-sized casting product and method for producing the same
WO2018042654A1 (en) Cylindrical member made from lamellar graphite cast iron
CN110835670A (en) High-wear-resistance high-hardness easy-cutting high-end mirror surface plastic die steel and preparation method thereof
JP4840026B2 (en) Seizure-resistant cast iron
CN102330040A (en) Free-machining steel material
JP2015507081A (en) Highly elastic wear-resistant gray cast iron for piston ring applications
US2208544A (en) Cast iron roll
JP5282546B2 (en) High-strength, thick-walled spheroidal graphite cast iron with excellent wear resistance
JP5282547B2 (en) High-strength, thick-walled spheroidal graphite cast iron with excellent wear resistance
AU6092496A (en) Cast iron indefinite chill roll produced by the addition of niobium
KR101599520B1 (en) A grey cast iron
JP3763603B2 (en) Abrasion-resistant cast iron and method for producing the same
JPH03122252A (en) Steel for metal mold and metal mold
Meena et al. Machinability of Austempered Ductile Iron (ADI) Produced by Integrated Green Technology of Continuous Casting‐Heat Treatment Processes
JP2000265243A (en) Bi FREE-CUTTING STEEL

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120301

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120308

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120309

R150 Certificate of patent or registration of utility model

Ref document number: 4953377

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150323

Year of fee payment: 3