JP4557731B2 - Cast iron with excellent corrosion resistance and wear resistance - Google Patents

Cast iron with excellent corrosion resistance and wear resistance Download PDF

Info

Publication number
JP4557731B2
JP4557731B2 JP2005022564A JP2005022564A JP4557731B2 JP 4557731 B2 JP4557731 B2 JP 4557731B2 JP 2005022564 A JP2005022564 A JP 2005022564A JP 2005022564 A JP2005022564 A JP 2005022564A JP 4557731 B2 JP4557731 B2 JP 4557731B2
Authority
JP
Japan
Prior art keywords
cast iron
graphite
resistance
wear resistance
corrosion resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005022564A
Other languages
Japanese (ja)
Other versions
JP2006206986A (en
Inventor
功隆 藤井
佳樹 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Piston Ring Co Ltd
Original Assignee
Nippon Piston Ring Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Piston Ring Co Ltd filed Critical Nippon Piston Ring Co Ltd
Priority to JP2005022564A priority Critical patent/JP4557731B2/en
Publication of JP2006206986A publication Critical patent/JP2006206986A/en
Application granted granted Critical
Publication of JP4557731B2 publication Critical patent/JP4557731B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Cylinder Crankcases Of Internal Combustion Engines (AREA)

Description

本発明は、内燃機関のシリンダライナ用として好適な鋳鉄に係り、とくに耐食性と耐摩耗性の改善に関する。   The present invention relates to cast iron suitable for a cylinder liner of an internal combustion engine, and more particularly to improvement of corrosion resistance and wear resistance.

内燃機関のシリンダライナは、内周面でピストンリングが摺動し気密性を保持する必要から、耐摩耗性、耐スカッフィング性に優れることが強く要求され、従来から黒鉛と炭化物とを分散させた組織を有する特殊合金鋳鉄が使用されてきた。
例えば、特許文献1には、複合シリンダライナの内層として、重量%で、C:2.5〜4.0%、Si:0.8〜2.5%、Mn:0.3〜1.5%、P:0.05〜1.5%、S:0.3%以下と、さらにNi:2.5%以下、Cr:1.5%以下、Mo:0.8%以下、Sn:0.5%以下、Cu:4.0%以下、B、Ti、V、Nb、Zrの1種または2種以上の合計1.0%以下、Al、Ca、Ba、Sr、希土類元素の1種または2種以上の合計0.2%以下、のうち1種または2種以上を含み、残部実質的にFeからなる合金鋳鉄が開示されている。しかし、内燃機関の高出力化および排ガスの規制等の要求から、特許文献1に記載されたような合金鋳鉄では、シリンダライナ内周面の耐摩耗性、耐スカッフィング性が不足するという問題があった。また、水冷ジャケットが装着される湿式シリンダライナの場合には、シリンダライナ外周面のキャビテーション浸食が問題となり、耐食性向上が要求されるようになった。
Cylinder liners for internal combustion engines are strongly required to have excellent wear resistance and scuffing resistance because the piston ring slides on the inner peripheral surface to maintain airtightness. Conventionally, graphite and carbide have been dispersed. Special alloy cast iron with a texture has been used.
For example, in Patent Document 1, as an inner layer of a composite cylinder liner, by weight, C: 2.5-4.0%, Si: 0.8-2.5%, Mn: 0.3-1.5%, P: 0.05-1.5%, S: 0.3 % Or less, Ni: 2.5% or less, Cr: 1.5% or less, Mo: 0.8% or less, Sn: 0.5% or less, Cu: 4.0% or less, one or two of B, Ti, V, Nb, Zr Alloy cast iron containing one or more of the above total 1.0% or less, Al, Ca, Ba, Sr, or one or more rare earth elements total 0.2% or less, and the balance being substantially Fe. Is disclosed. However, due to demands for higher output of internal combustion engines and exhaust gas regulations, the alloy cast iron described in Patent Document 1 has a problem that the wear resistance and scuffing resistance of the inner peripheral surface of the cylinder liner is insufficient. It was. Further, in the case of a wet cylinder liner equipped with a water cooling jacket, cavitation erosion on the outer peripheral surface of the cylinder liner becomes a problem, and improvement in corrosion resistance is required.

このような問題に対し、例えば、特許文献2には、内面に窒化層、外面に硬質クロムめっき層を形成した合金鋳鉄製のシリンダライナが提案されている。特許文献2に記載された技術によれば、内面の耐摩耗性、耐スカッフィング性および外面の耐食性を同時に向上させることができるとしている。なお、特許文献2には、シリンダライナ用合金鋳鉄の一例として、重量%で、C:2.8〜3.5%、Si:1.5〜2.5%、Mn:0.5〜1.0%、P:0.2〜0.5%、S:0.12%以下、B:0.07〜0.11%、Mo:0.1〜0.5%、Cu:0.2〜0.6%を含み、残部実質的にFeからなる組成が記載されている。しかし、特許文献2に記載された技術によれば、表面に窒化層やめっき層を形成することにより耐摩耗性や耐食性は確かに向上するが、窒化層やめっき層が消失するまでの効果であり、それ以降の耐摩耗性、耐食性の維持が難しくなるという問題がある。   For such a problem, for example, Patent Document 2 proposes an alloy cast iron cylinder liner in which a nitride layer is formed on the inner surface and a hard chromium plating layer is formed on the outer surface. According to the technique described in Patent Document 2, the wear resistance of the inner surface, the scuffing resistance, and the corrosion resistance of the outer surface can be improved at the same time. In Patent Document 2, as an example of alloy cast iron for cylinder liners, C: 2.8 to 3.5%, Si: 1.5 to 2.5%, Mn: 0.5 to 1.0%, P: 0.2 to 0.5%, S : 0.12% or less, B: 0.07 to 0.11%, Mo: 0.1 to 0.5%, Cu: 0.2 to 0.6%, and the balance substantially consisting of Fe is described. However, according to the technique described in Patent Document 2, the wear resistance and corrosion resistance are certainly improved by forming a nitride layer or a plating layer on the surface, but the effect until the nitride layer or the plating layer disappears. There is a problem that it is difficult to maintain wear resistance and corrosion resistance thereafter.

このような問題に対し、例えば、特許文献3には、質量%で、C:2.5〜3.6%、Si:1.4〜2.6%、Mn:0.5〜1.0%、P:0.1〜0.4%、S:0.12%以下、Cr:0.1〜0.4%、B:0.03〜0.12%、Cu:0.2〜2.0%、Co:1.0〜10%を含み、残部Feおよび不可避的不純物からなる組成と、パーライトからなるマトリックス中に、硬質相と片状黒鉛が分散した組織からなる鋳鉄が提案されている。特許文献3に記載された鋳鉄は、耐摩耗性と耐食性とを兼備し、とくに耐食摩耗性が向上するとしている。
特開昭60−121254号公報 特開平5−86966号公報 特許第3297150号公報
For example, Japanese Patent Application Laid-Open No. H10-228867 discloses that mass ratios include C: 2.5 to 3.6%, Si: 1.4 to 2.6%, Mn: 0.5 to 1.0%, P: 0.1 to 0.4%, and S: 0.12. %: Cr: 0.1 to 0.4%, B: 0.03 to 0.12%, Cu: 0.2 to 2.0%, Co: 1.0 to 10%, the composition comprising the balance Fe and inevitable impurities, and the matrix comprising pearlite A cast iron having a structure in which a hard phase and flake graphite are dispersed has been proposed. The cast iron described in Patent Document 3 has both wear resistance and corrosion resistance, and in particular, the corrosion wear resistance is improved.
JP-A-60-121254 Japanese Patent Laid-Open No. 5-86966 Japanese Patent No. 3297150

しかしながら、特許文献3に記載された鋳鉄は、高価なCoを多量含有する必要があり、製造コストの高騰を招き経済的に不利となることから、Coレスとする最近の動きに対しても問題を残していた。
本発明は、上記したような従来技術の問題を解決し、高価な合金元素の多量含有を必要とすることなく、安価で、シリンダライナ用として好適な、耐食性、耐摩耗性に優れた鋳鉄を提供することを目的とする。
However, the cast iron described in Patent Document 3 needs to contain a large amount of expensive Co, which causes an increase in manufacturing cost and is economically disadvantageous. Was leaving.
The present invention solves the above-mentioned problems of the prior art, and does not require a large amount of expensive alloy elements, and is inexpensive and suitable for use as a cylinder liner, and has excellent corrosion resistance and wear resistance. The purpose is to provide.

本発明者らは、上記した課題を達成するために、鋳鉄の耐摩耗性、耐食性に影響する各種要因について鋭意検討した。その結果、Coを含まない鋳鉄に、Cr、Cu、B、Moを複合して含有させることにより、基地のパーライトが微細となり、強度が増加し、摺動特性が顕著に向上することを見出した。また、本発明者らは、新規に定義した片状黒鉛の平均黒鉛間隔が、鋳鉄の強度、耐食性に大きく影響することを見出し、片状黒鉛の黒鉛間隔を適正範囲に調整することにより強度が上昇し、耐摩耗性が向上するとともに、耐食性も向上することを見出した。   In order to achieve the above-described problems, the present inventors diligently studied various factors that affect the wear resistance and corrosion resistance of cast iron. As a result, it has been found that by adding Cr, Cu, B, and Mo to the cast iron containing no Co, the base pearlite becomes finer, the strength is increased, and the sliding characteristics are remarkably improved. . In addition, the present inventors have found that the average graphite interval of the newly defined flake graphite greatly affects the strength and corrosion resistance of the cast iron, and the strength is adjusted by adjusting the graphite interval of the flake graphite to an appropriate range. It has been found that the wear resistance is improved and the corrosion resistance is also improved.

また、本発明者らは、Cr、Cu、B、Moを複合して含有し、さらにB含有量を従来よりも増加し、ステダイトとボロン炭化物を含む硬質相の存在比率を増加させ、さらに片状黒鉛の平均黒鉛間隔を適正範囲に調整することを合わせ用いることにより、耐摩耗性、耐食性を同時に安価に向上させるができることを見出した。
本発明は、上記した知見に基づき、さらに検討を加えて完成されたものである。すなわち、本発明は、質量%で、C:3.0〜3.5%、Si:1.5〜2.5%、Mn:0.5〜1.0%、P:0.2〜0.5%、S:0.12%以下、Cr:0.1〜0.5%、B:0.09〜0.18%、Cu:0.4〜1.0%、Mo:0.1〜0.5%を含み、残部Feおよび不可避的不純物からなる組成と、主としてパーライトからなる基地相と、該基地相中に、ステダイトとボロン化合物からなる硬質相と、片状黒鉛とが分散した組織を有し、該硬質相が面積率で14〜22%、片状黒鉛の平均黒鉛間隔が9〜15μmであることを特徴とする耐食性と耐摩耗性に優れた鋳鉄である。また、本発明は、上記した組成と組織を有する鋳鉄を用いて製造されたシリンダライナである。
In addition, the present inventors have combined Cr, Cu, B, and Mo, further increased the B content as compared with the prior art, and increased the abundance ratio of the hard phase containing steadite and boron carbide. It has been found that wear resistance and corrosion resistance can be simultaneously improved at a low cost by using together adjustment of the average graphite interval of glassy graphite within an appropriate range.
The present invention has been completed based on the above findings and further studies. That is, the present invention is in mass%, C: 3.0 to 3.5%, Si: 1.5 to 2.5%, Mn: 0.5 to 1.0%, P: 0.2 to 0.5%, S: 0.12% or less, Cr: 0.1 to 0.5% , B: 0.09 to 0.18%, Cu: 0.4 to 1.0%, Mo: 0.1 to 0.5%, a composition composed of the balance Fe and inevitable impurities, a base phase mainly composed of pearlite, and a steadyte in the base phase And a hard phase composed of boron compound and flake graphite are dispersed, the hard phase is 14 to 22% in area ratio, and the mean graphite interval of flake graphite is 9 to 15 μm. Cast iron with excellent corrosion resistance and wear resistance. Moreover, this invention is a cylinder liner manufactured using the cast iron which has an above-described composition and structure | tissue.

本発明によれば、鋳鉄の耐食性と耐摩耗性が同時に改善でき、耐久性に優れたシリンダライナを安価に製造でき産業上格段の効果を奏する。なお、本発明は、シリンダライナ以外の、例えば、耐摩耗性と耐食性が要求されるバルブガイド等の使途にも有効に適用できるという効果もある。   According to the present invention, the corrosion resistance and wear resistance of cast iron can be improved at the same time, and a cylinder liner excellent in durability can be manufactured at a low cost, and a remarkable industrial effect can be achieved. The present invention has an effect that it can be effectively applied to uses other than the cylinder liner, such as a valve guide that requires wear resistance and corrosion resistance.

まず、本発明鋳鉄の組成限定理由について説明する。なお、とくに断らない限り、質量%は単に%と記す。
C:3.0〜3.5%
Cは、パーライトを主とする組織として基地を強化するとともに、黒鉛を晶出させて、耐摩耗性と耐スカッフィング性を向上させる元素であり、このような効果を得るためには3.0%以上の含有を必要とする。一方、3.5%を超える含有は、黒鉛量、炭化物量が多くなりすぎて脆化を助長する。このため、Cは3.0〜3.5%の範囲に限定した。
First, the reasons for limiting the composition of the cast iron of the present invention will be described. Unless otherwise specified, mass% is simply expressed as%.
C: 3.0-3.5%
C is an element that strengthens the base as a structure mainly composed of pearlite and crystallizes graphite to improve wear resistance and scuffing resistance. In order to obtain such an effect, 3.0% or more. Containing is required. On the other hand, if the content exceeds 3.5%, the amount of graphite and carbides become too large, which promotes embrittlement. For this reason, C was limited to the range of 3.0 to 3.5%.

Si:1.5〜2.5%
Siは、鋳鉄の基本元素の一つで、黒鉛晶出のために少なくとも1.5%以上の含有を必要とする。一方、2.5%を超えて含有すると、含有量が過剰となり強度が低下する。このため、Siは1.5〜2.5%の範囲に限定した。
Mn:0.5〜1.0%
Mnは、鋳鉄の強度を増加させる元素であり、0.5%以上の含有を必要とする。一方、1.0%を超えて含有すると、セメンタイトを析出させ靭性が低下する。このため、Mnは0.5〜1.0%の範囲に限定した。
Si: 1.5-2.5%
Si is one of the basic elements of cast iron, and at least 1.5% or more is required for crystallization of graphite. On the other hand, if the content exceeds 2.5%, the content becomes excessive and the strength decreases. For this reason, Si was limited to the range of 1.5 to 2.5%.
Mn: 0.5-1.0%
Mn is an element that increases the strength of cast iron and needs to contain 0.5% or more. On the other hand, if it exceeds 1.0%, cementite is precipitated and the toughness is lowered. For this reason, Mn was limited to the range of 0.5 to 1.0%.

P:0.2〜0.5%
Pは、ステダイト(リン共晶物)を晶出させて、基地中に硬質相として分散させて、耐摩耗性を向上させる元素であり、0.2%以上の含有を必要とする。一方、0.5%を超えて含有すると材料が脆化する。このため、Pは0.2〜0.5%の範囲に限定した。
S:0.12%以下
Sは、材料特性を脆化させる不純物元素であり、できるだけ低減することが好ましいが、0.12%以下であれば、MnSが生成して加工性に対して有利である。一方、0.12%を超えると材料特性が脆化する。このため、Sは0.12%以下に限定した。
P: 0.2-0.5%
P is an element that crystallizes steadite (phosphorus eutectic) and disperses it as a hard phase in the matrix to improve the wear resistance, and needs to contain 0.2% or more. On the other hand, if the content exceeds 0.5%, the material becomes brittle. For this reason, P was limited to the range of 0.2 to 0.5%.
S: 0.12% or less S is an impurity element that embrittles material properties and is preferably reduced as much as possible. However, if it is 0.12% or less, MnS is formed, which is advantageous for workability. On the other hand, if it exceeds 0.12%, the material properties become brittle. For this reason, S was limited to 0.12% or less.

Cr:0.1〜0.5%
Crは、基地中に固溶し基地を強化するとともに、炭化物中に含まれて炭化物硬さを上昇させ、耐摩耗性を向上させる重要な元素であり、0.1%以上の含有を必要とする。一方、0.5%を超える含有は、炭化物量が多くなり、かつ黒鉛形状がくずれるため切削性が低下する。このため、Crは0.1〜0.5%の範囲に限定した。なお、好ましくは0.2〜0.4%である。
Cr: 0.1-0.5%
Cr is an important element that dissolves in the matrix and strengthens the matrix, and is contained in the carbide to increase the hardness of the carbide and improve the wear resistance, and needs to be contained in an amount of 0.1% or more. On the other hand, if the content exceeds 0.5%, the amount of carbide increases and the shape of graphite is broken, so that the machinability is lowered. For this reason, Cr was limited to the range of 0.1 to 0.5%. In addition, Preferably it is 0.2 to 0.4%.

B:0.09〜0.18%
Bは、ボロン炭化物を生成し、りん共晶物とともに硬質相を形成し硬さを増加させ、Crと同様に耐摩耗性、耐スカッフィング性を向上させる重要な元素であり、本発明では硬質相の面積率を増加させ耐摩耗性を向上させるために、0.09%以上の含有を必要とする。一方、0.18%を超える含有は、硬質相が過剰となり、靭性が低下する。このため、Bは0.09〜0.18%の範囲に限定した。なお、好ましくは0.12〜0.15%である。
B: 0.09 to 0.18%
B is an important element that forms boron carbide, forms a hard phase with the phosphorus eutectic, increases the hardness, and improves wear resistance and scuffing resistance like Cr. In the present invention, B is a hard phase. In order to increase the area ratio and improve the wear resistance, it is necessary to contain 0.09% or more. On the other hand, if it exceeds 0.18%, the hard phase becomes excessive and the toughness decreases. For this reason, B was limited to the range of 0.09 to 0.18%. In addition, Preferably it is 0.12-0.15%.

Cu:0.4〜1.0%
Cuは、基地中に固溶して基地を強化し、耐摩耗性を向上させるとともに、耐食性を向上させる元素であり、本発明ではCr、Bとともに重要な元素である。このような効果は0.4%以上の含有で顕著となるが、1.0%を超えて含有しても効果が飽和し、含有量に見合う効果が期待できない。このため、Cuは0.4〜1.0%の範囲に限定した。なお、好ましくは、0.5〜0.8%である。
Cu: 0.4-1.0%
Cu is an element that solidifies in the matrix and strengthens the matrix to improve wear resistance and corrosion resistance. In the present invention, Cu is an important element together with Cr and B. Such an effect becomes remarkable when the content is 0.4% or more, but even if the content exceeds 1.0%, the effect is saturated, and an effect commensurate with the content cannot be expected. For this reason, Cu was limited to the range of 0.4 to 1.0%. In addition, Preferably, it is 0.5 to 0.8%.

Mo:0.1〜0.5%
Moは、基地中に固溶し基地を強化し、材料強度を向上させる元素であり、0.1%以上の含有を必要とする。一方、0.5%を超える含有は、基地強度が高くなりすぎ切削性が低下する。このため、Moは0.1〜0.5%の範囲に限定した。
上記した成分以外の残部はFeおよび不可避的不純物である。
Mo: 0.1-0.5%
Mo is an element that dissolves in the matrix, strengthens the matrix, and improves the material strength, and needs to be contained in an amount of 0.1% or more. On the other hand, if the content exceeds 0.5%, the base strength becomes too high and the machinability deteriorates. For this reason, Mo was limited to the range of 0.1 to 0.5%.
The balance other than the above components is Fe and inevitable impurities.

さらに、本発明鋳鉄は、基地相と、該基地相中に、ステダイトとボロン化合物からなる硬質相と、片状黒鉛とが分散した組織を有する。基地相は、主としてパーライトからなる。上記した組成、とくにMo、CrとCuを複合含有する組成とすることによりパーライトが微細化し、強度が上昇する。なお、基地相は、主となるパーライト以外は、2体積%以下のフェライト相を含んでも何ら問題ない。   Further, the cast iron of the present invention has a matrix in which a matrix phase, a hard phase composed of steadite and a boron compound, and flake graphite are dispersed in the matrix phase. The base phase consists mainly of perlite. By using the above-described composition, especially a composition containing Mo, Cr and Cu in combination, the pearlite is refined and the strength is increased. It should be noted that there is no problem even if the base phase contains 2% by volume or less of ferrite phase other than the main pearlite.

基地相中に分散する硬質相は、Fe、P、B、Cを含有し、ステダイトとボロン化合物が複雑に混り合った状態を呈し高硬度を有し、鋳鉄の耐摩耗性向上、耐スカッフィング性向上、硬さ増加、耐食性向上に寄与する。本発明では、Bの含有量を増加して、硬質相の分散率を面積率で14〜22%とする。硬質相が面積率で14%未満では、耐スカッフィング性、耐摩耗性が低下し摺動特性が劣化する。一方、硬質相が面積率で22%を超えると、摺動特性は向上するが鋳鉄の加工性が低下する。なお、本発明でいう硬質相は、ナイタール腐食の光学顕微鏡組織で白色に観察される相を指すものとする。     The hard phase dispersed in the matrix phase contains Fe, P, B, and C. It has a state in which steadite and boron compound are mixed in a complicated manner and has high hardness, and improves the wear resistance and scuffing resistance of cast iron. Contributes to improved properties, increased hardness, and improved corrosion resistance. In the present invention, the B content is increased so that the hard phase dispersion ratio is 14 to 22% in terms of area ratio. If the hard phase is less than 14% in area ratio, the scuffing resistance and wear resistance are lowered, and the sliding characteristics are deteriorated. On the other hand, if the hard phase exceeds 22% in area ratio, the sliding characteristics are improved, but the workability of cast iron is lowered. In addition, the hard phase as used in the field of this invention shall point out the phase observed in white by the optical microscope structure of nital corrosion.

本発明の鋳鉄では、基地相中に分散する片状黒鉛の平均黒鉛間隔が9〜15μmとなるように調整する。平均黒鉛間隔が9μm未満では、強度が低下するとともに耐食性も低下する。一方、平均黒鉛間隔が15μmを超えると、黒鉛量が低下し耐スカッフィング性が低下する。上記した平均黒鉛間隔とすることにより、強度の増加と耐食性の向上がともに達成できる。片状黒鉛の平均黒鉛間隔は、接種剤の種類(組成)と添加量の調整により調整することができる。接種剤としては、Mg、Ca、Se、Si等が好ましい。   In the cast iron of the present invention, the flake graphite dispersed in the matrix phase is adjusted so that the average graphite interval is 9 to 15 μm. If the average graphite interval is less than 9 μm, the strength decreases and the corrosion resistance also decreases. On the other hand, when the average graphite interval exceeds 15 μm, the amount of graphite decreases and the scuffing resistance decreases. By using the above average graphite interval, both an increase in strength and an improvement in corrosion resistance can be achieved. The average graphite interval of flake graphite can be adjusted by adjusting the type (composition) of the inoculum and the amount added. As the inoculum, Mg, Ca, Se, Si and the like are preferable.

なお、本発明でいう片状黒鉛の「平均黒鉛間隔」は、次に示す手順により測定された値(平均値)を用いるものとする。
(1)鋳鉄の測定対象個所を検鏡可能な程度に研磨する。
(2)腐食なしで、光学顕微鏡(倍率:100倍)を用いて黒鉛組織を撮像し、黒鉛組織写真(大きさ:73mm×95mm)を作製する。
(3)この黒鉛組織写真を2倍に拡大する。(図2)
(4)拡大された組織写真に図2に示すように対角線2本を記入し、該2本の対角線とそれぞれ交差する黒鉛粒11〜1i,21〜2iをマークする(図3)。なお、写真上で太さ0.5mm(2.5μm)未満の黒鉛粒はマークする対象から除外する。
(5)該マークされた黒鉛粒11〜1i,21〜2i の各々について、該各黒鉛粒の先端から、写真上で0.5mm(2.5μm)以上の太さの黒鉛粒までの最短距離Δdを測定する(図4)。
In addition, the value (average value) measured by the following procedure is used as the “average graphite interval” of flake graphite in the present invention.
(1) Polish the cast iron to be measured so that it can be examined.
(2) Without corrosion, the graphite structure is imaged using an optical microscope (magnification: 100 times) to produce a graphite structure photograph (size: 73 mm × 95 mm).
(3) Enlarge this graphite structure photograph twice. (Figure 2)
(4) In the enlarged structure photograph, two diagonal lines are entered as shown in FIG. 2, and graphite grains 11-1i and 21-2i respectively intersecting the two diagonal lines are marked (FIG. 3). Graphite grains with a thickness of less than 0.5 mm (2.5 μm) on the photograph are excluded from the objects to be marked.
(5) For each of the marked graphite particles 11 to 1i and 21 to 2i, the shortest distance Δd i from the tip of each graphite particle to a graphite particle having a thickness of 0.5 mm (2.5 μm) or more on the photograph Is measured (FIG. 4).

なお、測定は各黒鉛粒の両端で行うものとする。また、写真上で太さ0.5mm(2.5μm)未満の部分で繋がっている黒鉛粒は別個の黒鉛粒とする。また、一部が写真外にはみ出した黒鉛は測定の対象外とする。
(6)得られた各黒鉛粒における最短距離Δdを平均し、測定個所における平均黒鉛間隔Δdとする。
The measurement is performed at both ends of each graphite grain. In addition, the graphite grains connected at a portion having a thickness of less than 0.5 mm (2.5 μm) on the photograph are separate graphite grains. In addition, graphite that is partially out of the photograph is excluded from measurement.
(6) The shortest distance Δd i in the obtained graphite grains is averaged to obtain an average graphite interval Δd at the measurement location.

次に、本発明鋳鉄の好ましい製造方法について説明する。
上記した組成の溶湯を、キュポラ、又は電気炉等の通常の溶製方法で溶製し、置型等の公知の鋳込み法で鋳造し凝固させて、所定寸法の鋳鉄品とすることが好ましい。なお、溶製時、あるいは鋳込み直前に、目的の黒鉛間隔が得られるように所定の接種剤を適正量、溶湯に投入する。得られた鋳造品には、必要に応じ、切削加工等を施して、所望寸法形状の、例えばシリンダライナとすることが好ましい。
Next, the preferable manufacturing method of this invention cast iron is demonstrated.
It is preferable that the molten metal having the above composition is melted by a normal melting method such as a cupola or an electric furnace, and cast and solidified by a known casting method such as a mold to obtain a cast iron product having a predetermined size. In addition, an appropriate amount of a predetermined inoculant is introduced into the molten metal so as to obtain a target graphite interval at the time of melting or immediately before casting. The obtained cast product is preferably subjected to cutting or the like as necessary to obtain a cylinder liner having a desired size and shape, for example.

表1に示す組成の溶湯を、キュポラで溶製し、所定の種類、量の接種剤を添加したのち、横型の置型に注湯し、大きさ:外径φ140mm×内径φ135mm×高さ260mmのシリンダライナ形状の鋳鉄品とした。
得られた鋳鉄品から、内周側摺動面付近から試験片を採取し、研磨して、研磨のまま(腐食無し)で、上記した測定手順に従い片状黒鉛の平均黒鉛間隔を測定した。また、採取した試験片を研磨しナイタール腐食して光学顕微鏡(倍率:100倍)を用いて、基地相組織を観察し、基地相組織の種類および硬質相の面積率を測定した。なお、硬質相の面積率は、ナイタール腐食した試験片について、光学顕微鏡(倍率:100倍)で10視野以上、撮像し、画像解析装置により各視野における硬質相(白色を呈する領域)の面積率を測定し、それらを平均し、鋳鉄品の硬質相面積率とした。ナイタール腐食した光学顕微鏡組織(本発明例)の一例を図1に示す。
The molten metal having the composition shown in Table 1 is melted with a cupola, and after adding a predetermined type and amount of inoculum, the molten metal is poured into a horizontal mold, and the size is: outer diameter φ140 mm × inner diameter φ135 mm × height 260 mm Cylinder liner shaped cast iron product.
From the obtained cast iron product, a test piece was collected from the vicinity of the inner peripheral sliding surface, polished, and polished (no corrosion), and the average graphite interval of the flake graphite was measured according to the measurement procedure described above. Further, the collected specimen was polished and subjected to Nital corrosion, and the base phase structure was observed using an optical microscope (magnification: 100 times), and the type of the base phase structure and the area ratio of the hard phase were measured. The area ratio of the hard phase is the area ratio of the hard phase (white area) in each field of view with an optical microscope (magnification: 100 times) for 10 specimens or more of the specimen that had undergone nital corrosion. Were measured and averaged to obtain the hard phase area ratio of the cast iron product. An example of an optical microscope structure (Example of the present invention) that has undergone Nital corrosion is shown in FIG.

また、得られた鋳鉄品について、耐食性試験、耐摩耗試験、耐スカッフィング性試験、被削性試験を実施した。試験方法はつぎのとおりとした。
(1)耐食性試験
得られた鋳鉄品から、試験片(大きさ:長さ90mm×幅10mm×厚さ5mm)を採取し、上面のみ露出させ、他面はテフロンテープ保護して2.5%硝酸液(液温:70℃)中に20min間、浸漬した。試験後、試験片表面のスケールを除去し、超音波洗浄器で洗浄したのち、乾燥して試験片重量を測定した。得られた試験前後の重量の差を表面積で除し、腐食減量(mg/cm2)として耐食性を評価した。
(2)耐摩耗性試験
得られた鋳鉄品から、ドーナツ状の試験片(大きさ:外径40mmφ×内径16mmφ×厚さ10mm)を採取し、図5に示すローラチップ型摩耗試験機で試験した。この試験機51に、試験片53を取り付け、一端を潤滑液に浸漬しながら回転させ、固定片である板状の相手材52(大きさ:8mm×7mm×5mm)に所定時間(3h)の間、荷重を負荷しながら接触させる。所定時間経過後、試験片を取り外し、試験片の段差プロフィールを粗さ計で測定し、摩耗量(μm)を求め、耐摩耗性を評価した。
Further, the obtained cast iron product was subjected to a corrosion resistance test, an abrasion resistance test, a scuffing resistance test, and a machinability test. The test method was as follows.
(1) Corrosion resistance test A test piece (size: length 90mm x width 10mm x thickness 5mm) is taken from the obtained cast iron product, exposed only on the upper surface, and the other surface is protected with Teflon tape and 2.5% nitric acid solution. (Liquid temperature: 70 ° C.) was immersed for 20 minutes. After the test, the scale on the surface of the test piece was removed, washed with an ultrasonic cleaner, dried, and the weight of the test piece was measured. The difference in weight before and after the test was divided by the surface area, and corrosion resistance was evaluated as corrosion weight loss (mg / cm 2 ).
(2) Abrasion resistance test A donut-shaped test piece (size: outer diameter 40 mmφ x inner diameter 16 mmφ x thickness 10 mm) was sampled from the cast iron product obtained and tested with the roller chip type wear tester shown in Fig. 5. did. A test piece 53 is attached to the testing machine 51, and one end is rotated while being immersed in a lubricating liquid. A plate-like mating material 52 (size: 8 mm × 7 mm × 5 mm) as a fixed piece is set for a predetermined time (3 h). During this time, contact is made while applying a load. After a predetermined time, the test piece was removed, the step profile of the test piece was measured with a roughness meter, the amount of wear (μm) was determined, and the wear resistance was evaluated.

用いた試験条件は、つぎのとおりとした。
試験片への負荷荷重P:80kgf
試験片53の回転数:478rpm
相手材52の材質:PVD被覆鋼材(Cr−N系、硬さ:1400HV0.05)
潤滑液:SAE#30(液温:80℃)
(3)耐スカッフィング性試験
得られた鋳鉄品から、耐摩耗性試験に供した試験片と同一寸法形状のドーナツ状試験片53を採取し、ローラチップ型摩耗試験機51で試験した。試験片53を一定速度で回転させ、試験片53に固定片である板状の相手材51を所定の荷重(P)で圧接し、スカッフが発生した時の面圧を限界面圧とし、耐スカッフィング性を評価した。なお、荷重(P)は、初期荷重を98Nとして、49N/minの勾配で増加した。
The test conditions used were as follows.
Load P on the test piece P: 80kgf
Number of rotations of test piece 53: 478 rpm
Material of mating material 52: PVD coated steel (Cr-N series, hardness: 1400HV0.05)
Lubricating liquid: SAE # 30 (Liquid temperature: 80 ° C)
(3) Scuffing resistance test From the obtained cast iron product, a donut-shaped test piece 53 having the same size and shape as the test piece subjected to the wear resistance test was sampled and tested with a roller tip type wear tester 51. The test piece 53 is rotated at a constant speed, the plate-like mating member 51 that is a fixed piece is pressed against the test piece 53 with a predetermined load (P), and the surface pressure when the scuff is generated is defined as the limit surface pressure. Scuffing properties were evaluated. The load (P) increased with a slope of 49 N / min, assuming an initial load of 98 N.

試験条件は、以下のとおりである。
回転数:478rpm
潤滑油:SAE30+白灯油(1:1)
油量:無給油(初期塗布のみ)
固定片(相手材)材質:PVD被覆鋼材(Cr−N系、硬さ:1400HV0.05)
(4)被削性試験
得られた鋳鉄品表層部を切削加工し、使用した加工工具の刃具寿命を測定した。従来組成の鋳鉄品No.P(比較例)の刃具寿命を基準として、各鋳鉄製品で使用した加工工具の刃具寿命比(=従来の加工本数(基準)/(加工本数))を計算し、被削性を評価した。刃具寿命は1本の刃具(バイト)で加工できた本数とした。刃具寿命比が1.0未満を○、1.0以上を×として評価した。
The test conditions are as follows.
Rotation speed: 478rpm
Lubricating oil: SAE30 + white kerosene (1: 1)
Oil amount: Oil-free (only initial application)
Fixed piece (mating material) material: PVD coated steel (Cr-N series, hardness: 1400HV0.05)
(4) Machinability test The surface layer part of the obtained cast iron product was cut and the cutting tool life of the used processing tool was measured. Based on the tool life of the cast iron product No. P (comparative example) of the conventional composition as a reference, calculate the tool tool life ratio (= conventional machining number (standard) / (number of machining)) of the machining tool used in each cast iron product, The machinability was evaluated. The tool life was the number of tools that could be processed with a single tool. The blade life ratio was evaluated as ○ when the tool life ratio was less than 1.0 and × when 1.0 or more.

得られた結果を表2に示す。   The obtained results are shown in Table 2.

本発明例はいずれも、腐食減量が少なく耐食性に優れ、また、摩耗減量も少なく耐摩耗性に優れ、さらにスカッフィング(焼付き)が発生する荷重が高く耐スカッフィング性に優れ、さらに被削性にも優れている。一方、本発明の範囲を外れる比較例は、耐食性、耐摩耗性、耐スカッフィング性、被削性のいずれか、あるいはすべてが劣化している。   In all of the examples of the present invention, the corrosion weight loss is small and the corrosion resistance is excellent, the wear weight loss is small and the abrasion resistance is excellent, the scuffing load is high, and the scuffing resistance is excellent. Is also excellent. On the other hand, in comparative examples that are outside the scope of the present invention, any or all of corrosion resistance, wear resistance, scuffing resistance, and machinability are deteriorated.

本発明鋳鉄の組織の一例を示す光学顕微鏡組織写真である。It is an optical microscope structure | tissue photograph which shows an example of the structure | tissue of this invention cast iron. 鋳鉄の黒鉛組織の一例を示す光学顕微鏡組織写真である。It is an optical microscope structure photograph which shows an example of the graphite structure of cast iron. 黒鉛組織写真から黒鉛間隔を測定する手順を説明する説明図である。It is explanatory drawing explaining the procedure which measures a graphite space | interval from a graphite structure | tissue photograph. 黒鉛間隔の測定方法を説明する説明図である。It is explanatory drawing explaining the measuring method of a graphite space | interval. ローラチップ型摩耗試験機の概略を模式的に示す説明図である。It is explanatory drawing which shows the outline of a roller chip | tip type | mold abrasion tester typically.

符号の説明Explanation of symbols

51 ローラチップ摩耗試験機
52 相手材
53 試験片
54 潤滑液
51 Roller tip wear tester
52 Counterpart
53 Specimens
54 Lubricant

Claims (2)

質量%で、
C:3.0〜3.5%、 Si:1.5〜2.5%、
Mn:0.5〜1.0%、 P:0.2〜0.5%、
S:0.12%以下、 Cr:0.1〜0.5%、
B:0.09〜0.18%、 Cu:0.4〜1.0%、
Mo:0.1〜0.5%
を含み、残部Feおよび不可避的不純物からなる組成と、主としてパーライトからなる基地相と、該基地相中に、ステダイトとボロン化合物からなる硬質相と、片状黒鉛とが分散した組織を有し、前記硬質相が面積率で14〜22%、片状黒鉛の平均黒鉛間隔が9〜15μmであることを特徴とする耐食性と耐摩耗性に優れた鋳鉄。
% By mass
C: 3.0-3.5%, Si: 1.5-2.5%,
Mn: 0.5 to 1.0%, P: 0.2 to 0.5%,
S: 0.12% or less, Cr: 0.1-0.5%,
B: 0.09 to 0.18%, Cu: 0.4 to 1.0%,
Mo: 0.1-0.5%
Including a composition composed of the balance Fe and inevitable impurities, a matrix phase mainly composed of pearlite, a hard phase composed of steadite and a boron compound, and flake graphite dispersed in the matrix phase, A cast iron excellent in corrosion resistance and wear resistance, characterized in that the hard phase has an area ratio of 14 to 22% and the flake graphite has an average graphite interval of 9 to 15 µm.
請求項1に記載の鋳鉄からなることを特徴とするシリンダライナ。   A cylinder liner comprising the cast iron according to claim 1.
JP2005022564A 2005-01-31 2005-01-31 Cast iron with excellent corrosion resistance and wear resistance Active JP4557731B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005022564A JP4557731B2 (en) 2005-01-31 2005-01-31 Cast iron with excellent corrosion resistance and wear resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005022564A JP4557731B2 (en) 2005-01-31 2005-01-31 Cast iron with excellent corrosion resistance and wear resistance

Publications (2)

Publication Number Publication Date
JP2006206986A JP2006206986A (en) 2006-08-10
JP4557731B2 true JP4557731B2 (en) 2010-10-06

Family

ID=36964159

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005022564A Active JP4557731B2 (en) 2005-01-31 2005-01-31 Cast iron with excellent corrosion resistance and wear resistance

Country Status (1)

Country Link
JP (1) JP4557731B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107779736A (en) * 2016-08-30 2018-03-09 中国石油天然气集团公司 A kind of alloy cast iron and its preparation method and application

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101290457B1 (en) 2009-02-24 2013-07-26 유겐가이샤와타나베츄조쇼 Martensitic-steel casting material and process for producing martensitic cast steel product
KR101404754B1 (en) 2011-11-14 2014-06-13 엘지전자 주식회사 Alloy cast iron and manufacturing method of rolling piston using the same
CN102676912A (en) * 2012-05-30 2012-09-19 河南中原吉凯恩气缸套有限公司 Low-carbon and low-silicon cylinder sleeve and preparation method thereof
JP6147584B2 (en) * 2012-08-30 2017-06-14 日本ピストンリング株式会社 Cylinder liner
CN103924167A (en) * 2014-04-29 2014-07-16 长沙金龙铸造实业有限公司 High-strength rigid nodular iron and manufacturing method thereof
KR101790051B1 (en) 2016-03-09 2017-10-30 삼영기계(주) spheroidal graphite cast iron alloy for manufacturing piston ring
KR101677169B1 (en) * 2016-03-09 2016-11-17 삼영기계 (주) piston ring improved abrasion-proof
US10428407B2 (en) 2016-09-05 2019-10-01 Tpr Co., Ltd. Cylindrical member made of flake graphite cast iron
JP6951949B2 (en) 2017-11-16 2021-10-20 トヨタ自動車東日本株式会社 Sliding mechanism
CN109014048B (en) * 2018-10-19 2024-07-02 淄柴动力有限公司 Casting production process and device for boron cast iron cylinder sleeve
CN113462954A (en) * 2021-06-12 2021-10-01 山东华盛农业药械有限责任公司 Material formula of wear-resistant cylinder sleeve of gasoline engine
CN115323258A (en) * 2022-08-23 2022-11-11 一汽解放汽车有限公司 Gray cast iron and preparation method and application thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60121254A (en) * 1983-12-05 1985-06-28 Kubota Ltd Composite cylinder liner
JPS61281849A (en) * 1985-06-07 1986-12-12 Nippon Piston Ring Co Ltd Valve guide for internal-combustion engine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60121254A (en) * 1983-12-05 1985-06-28 Kubota Ltd Composite cylinder liner
JPS61281849A (en) * 1985-06-07 1986-12-12 Nippon Piston Ring Co Ltd Valve guide for internal-combustion engine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107779736A (en) * 2016-08-30 2018-03-09 中国石油天然气集团公司 A kind of alloy cast iron and its preparation method and application
CN107779736B (en) * 2016-08-30 2019-11-12 中国石油天然气集团公司 A kind of alloy cast iron and its preparation method and application

Also Published As

Publication number Publication date
JP2006206986A (en) 2006-08-10

Similar Documents

Publication Publication Date Title
JP4557731B2 (en) Cast iron with excellent corrosion resistance and wear resistance
US10605374B2 (en) Valve seat insert excellent in wear resistance made of iron-base sintered alloy for internal combustion engines, and assembly of valve seat insert and valve
JP4500259B2 (en) Piston for internal combustion engine and method for manufacturing the same
JP2007162128A (en) Case hardening steel having excellent forgeability and crystal grain-coarsening prevention property, its production method and carburized component
JP4953377B2 (en) Cast iron containing A-type graphite, casting method of cast iron containing A-type graphite, and cylinder liner using the cast iron containing A-type graphite
JP6736227B2 (en) Valve seat made of iron-based sintered alloy for internal combustion engine with excellent wear resistance and combination of valve seat and valve
KR101794876B1 (en) Cylindrical member made of flake graphite cast iron
CN110462081A (en) The excellent ferrite-group stainless steel of high temperature abrasion resistance, the manufacturing method of ferrite series stainless steel plate, exhaust component, high temperature slide unit and component of turbo-charger
JPWO2004003246A1 (en) Self-lubricating sliding part material and piston ring wire
JP4840026B2 (en) Seizure-resistant cast iron
JP6561816B2 (en) Crankshaft and manufacturing method thereof
JP3297150B2 (en) Cast iron having excellent corrosion resistance and wear resistance, and a cylinder liner formed from the cast iron
JP2021008649A (en) Austenitic stainless cast steel
JP2001271144A (en) Martensitic stainless steel for piston ring and deformed wire for piston ring
JP4507422B2 (en) Crankshaft steel with excellent machinability and wear resistance
JPH0718379A (en) Steel for machine structure excellent in seizing resistance and fatigue strength
JP3491612B2 (en) Crankshaft steel with excellent machinability and wear resistance
JP4616209B2 (en) Piston ring steel with excellent seizure resistance, deformed wire for piston ring, and piston ring
JP3456635B2 (en) Spherical carbide cast iron
JP4066307B2 (en) Piston ring material and piston ring for internal combustion engines having self-lubricating properties
JP2909456B2 (en) Piston ring with excellent scuffing resistance
JPH07145445A (en) Cast iron for cylinder liner
WO2021260954A1 (en) Steel material and carburized steel part
JP2866868B2 (en) Piston ring material
JP2594505B2 (en) Rocker arm

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100720

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100720

R150 Certificate of patent or registration of utility model

Ref document number: 4557731

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130730

Year of fee payment: 3