JP3456635B2 - Spherical carbide cast iron - Google Patents

Spherical carbide cast iron

Info

Publication number
JP3456635B2
JP3456635B2 JP12286199A JP12286199A JP3456635B2 JP 3456635 B2 JP3456635 B2 JP 3456635B2 JP 12286199 A JP12286199 A JP 12286199A JP 12286199 A JP12286199 A JP 12286199A JP 3456635 B2 JP3456635 B2 JP 3456635B2
Authority
JP
Japan
Prior art keywords
cast iron
weight
test
corrosion resistance
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP12286199A
Other languages
Japanese (ja)
Other versions
JP2000313934A (en
Inventor
滋典 西内
豊 川野
悟 山本
清介 菅原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CITY OF KYOTO
Original Assignee
CITY OF KYOTO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CITY OF KYOTO filed Critical CITY OF KYOTO
Priority to JP12286199A priority Critical patent/JP3456635B2/en
Priority to DE2000120636 priority patent/DE10020636A1/en
Publication of JP2000313934A publication Critical patent/JP2000313934A/en
Priority to US09/794,818 priority patent/US6406563B2/en
Application granted granted Critical
Publication of JP3456635B2 publication Critical patent/JP3456635B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C37/00Cast-iron alloys
    • C22C37/04Cast-iron alloys containing spheroidal graphite
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C37/00Cast-iron alloys
    • C22C37/06Cast-iron alloys containing chromium
    • C22C37/08Cast-iron alloys containing chromium with nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C37/00Cast-iron alloys
    • C22C37/10Cast-iron alloys containing aluminium or silicon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は球状炭化物鋳鉄に係
り、その目的は耐食性、耐摩耗性、靱性といった特性を
全て充分に兼ね備え、産業の発展に伴い高性能・高機能
化されつつある化学工業や機械、船舶、石油等の諸工業
において広範囲に適用することができる球状炭化物鋳鉄
の提供にある。
The present invention relates to relates to a spherical shape carbide cast iron, the purpose of corrosion resistance, abrasion resistance, all fully combines properties such toughness, chemical that is being high performance and high functionality with the development of industry industrial and machinery, ships, to provide a broadly applicable spherical shaped carbides cast iron is Ru can be in various industries such as petroleum.

【0002】[0002]

【従来の技術】従来より各種ボイラ設備や化学プラント
機器類等、高温環境下で使用される装置の素材には耐熱
性や耐食性が要求されていた。しかし、近年、産業技術
の発展に伴い化学工業を始めとする諸工業の高温設備の
向上や高機能・高性能化は著しく、より厳しい条件での
耐用が要求されるようになってきている。たとえば、エ
ンジニアリングプラスチックの射出成形の分野において
は、樹脂成形体の強度や難燃性、耐摩耗性等を向上させ
るため樹脂中にFRPなどの補強材や各種添加剤が添加
されるようになってきている。この結果、樹脂成形体の
シリンダ樹脂中の補強材により摩耗しやすく、しかも添
加剤から発生する強腐食性ガスにより腐食しやすくなっ
ている。また、自動車などの各種産業において製造され
る部品の形状も複雑化されてきており、部品の製造装置
の摩耗は従来よりも著しいものとなってきている。
2. Description of the Related Art Conventionally, materials for equipment used in a high temperature environment such as various boiler facilities and chemical plant equipment have been required to have heat resistance and corrosion resistance. However, in recent years, along with the development of industrial technology, the improvement of high-temperature equipment and the high performance and high performance of various industries including the chemical industry have been remarkable, and the durability under more severe conditions has been required. For example, in the field of injection molding of engineering plastics, reinforcing materials such as FRP and various additives have been added to the resin in order to improve the strength, flame retardancy, abrasion resistance, etc. of the resin molded body. ing. As a result, the reinforcing material in the cylinder resin of the resin molded body is liable to be worn, and the strong corrosive gas generated from the additive is apt to be corroded. Further, the shapes of parts manufactured in various industries such as automobiles have become complicated, and wear of parts manufacturing apparatuses has become more remarkable than before.

【0003】このように産業の高度化に伴い、そこで使
用される装置等の使用環境は極めて苛酷なものとなって
きており、その素材には、強度、耐熱性といった性質に
加え、耐摩耗性、耐食性の従来以上の向上が要求されて
いる。
In this way, with the advancement of the industry, the environment in which the equipment and the like used therein are used has become extremely severe, and in addition to its properties such as strength and heat resistance, its material is wear resistant. However, there is a demand for further improvement in corrosion resistance.

【0004】先ず、優れた耐摩耗性を得るには、硬い鋳
鉄である白鋳鉄の利用が考えられる。しかしながら、こ
の白鋳鉄はその組織中に黒鉛が存在せず、パーライト及
びセメンタイトから形成されるため非常に脆いという欠
点を有している。従って、白鋳鉄の利用により、優れた
耐摩耗性を得るのは困難である。そこで、白鋳鉄の欠点
を克服した、靱性のある球状黒鉛鋳鉄の利用が従来より
試みられている。
First, in order to obtain excellent wear resistance, use of white cast iron, which is hard cast iron, can be considered. However, this white cast iron has the drawback that it is very brittle because it has no graphite in its structure and is formed from pearlite and cementite. Therefore, it is difficult to obtain excellent wear resistance by using white cast iron. Therefore, it has been attempted to use toughness, spheroidal graphite cast iron that overcomes the drawbacks of white cast iron.

【0005】上記した球状黒鉛鋳鉄は、その組織中に晶
出する片状黒鉛の形状が球状化されているため、優れた
靱性を有している。これは、球状黒鉛鋳鉄等の金属素材
組織中の晶出物の形状が靱性に大きな影響を与えるため
である。つまり、通常、晶出物の形状は非金属的な性質
が強いと共有結合又は静電結合、即ち有面(face
t)となって常に板状となり、この場合靱性は弱く、逆
に金属的な性質が強いと金属結合、即ち非有面(non
facet)粒状又は球状のデンドライトとなり、この
場合外部から衝撃を受けても力が分散されるため靱性は
強く、球状黒鉛鋳鉄の場合、マグネシウム(Mg)が
0.04%以上配合されることにより、鋳鉄組織中に晶
出する片状黒鉛の形状が球状化されているため、優れた
靱性を有しているのである。しかもこの強靱性が他面、
耐摩耗性を向上させる要因と考えられており、一部共有
結合を存在させた球状黒鉛鋳鉄は白鋳鉄に匹敵する耐摩
耗性を有している。
The above-mentioned spheroidal graphite cast iron has excellent toughness because the shape of flake graphite crystallized in its structure is spheroidized. This is because the shape of crystallized substances in the metallic material structure such as spheroidal graphite cast iron has a great influence on the toughness. That is, usually, the crystallized product has a strong non-metallic property and is covalently bonded or electrostatically bonded, that is, faced.
t), which is always plate-shaped, in which case the toughness is weak and, conversely, when the metallic property is strong, metallic bonding, that is, non-faced (non-faced)
facet) becomes a granular or spherical dendrite, and in this case the toughness is strong because the force is dispersed even when an impact is applied from the outside, and in the case of spheroidal graphite cast iron, magnesium (Mg) is added by 0.04% or more, Since the flake graphite crystallized in the cast iron structure has a spherical shape, it has excellent toughness. Moreover, this toughness is on the other side,
It is considered to be a factor that improves wear resistance, and the spheroidal graphite cast iron in which a part of covalent bonds is present has wear resistance comparable to white cast iron.

【0006】一方、本発明者らは、既に特願平9−30
7951号において、鋳鉄組織中に粒状又は球状V−C
系炭化物及びFe−Cr系炭化物を晶出させることで、
耐摩耗性及び耐衝撃性に優れた合金鋳鉄を得ることがで
きることを見出している。
On the other hand, the present inventors have already filed Japanese Patent Application No. 9-30.
No. 7951, granular or spherical VC in cast iron structure
By crystallizing the system carbide and the Fe-Cr system carbide,
It has been found that an alloy cast iron having excellent wear resistance and impact resistance can be obtained.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、上記球
状黒鉛鋳鉄は耐摩耗性及び靱性には優れているが、耐食
性に劣るという欠点を、また特願平9−307951号
に記載の合金鋳鉄も耐摩耗性及び耐衝撃性には優れてい
るが耐食性が若干劣るという欠点を有しており、耐摩耗
性、靱性、耐食性を併せ持った鋳鉄は未だ得られていな
い。そこで、球状黒鉛鋳鉄及び特願平9−307951
号に記載の合金鋳鉄が有する耐摩耗性及び靱性に加え、
優れた耐食性を有する鋳鉄の創出が望まれていた。
However, although the spheroidal graphite cast iron is excellent in wear resistance and toughness, it has a drawback that it is inferior in corrosion resistance, and the alloy cast iron described in Japanese Patent Application No. 9-307951 is also resistant to corrosion. It has excellent wear resistance and impact resistance, but has a drawback of slightly inferior corrosion resistance, and cast iron having both wear resistance, toughness and corrosion resistance has not yet been obtained. Therefore, spheroidal graphite cast iron and Japanese Patent Application No. 9-307951
In addition to the wear resistance and toughness of the alloy cast iron described in No.
It has been desired to create cast iron having excellent corrosion resistance.

【0008】ところで、優れた耐食性を有する鉄鋼材料
としては、ステンレス鋳鋼が知られており、具体的に
は、JISG5122の規格では、代表的な18Cr−
8Ni系のSCS12、SCS13、SCS19、SC
S21や18Cr−11Ni−Mo系のSCS14、高
Cr−Ni系のSCS11、13Cr系のSCS1、S
CS2、高Cr系等のステンレス鋳鋼が存在する。これ
らステンレス鋳鋼はいずれもCrを12%以上含有して
おり、このCrの酸化作用により不動態化し、鋳鋼の表
面にFeO、Cr、NiOなどの酸化物が晶出さ
れ、表面を錆から保護される構成となっている。
By the way, as a steel material having excellent corrosion resistance, stainless cast steel is known, and specifically, in the JIS G5122 standard, a typical 18Cr-
8Ni SCS12, SCS13, SCS19, SC
S21 or 18Cr-11Ni-Mo SCS14, high Cr-Ni SCS11, 13Cr SCS1, S
There are stainless cast steels such as CS2 and high Cr type. All of these stainless cast steels contain Cr in an amount of 12% or more, and are passivated by the oxidation action of this Cr, and oxides such as FeO, Cr 2 O 3 and NiO are crystallized on the surface of the cast steel to rust the surface. It is configured to be protected from.

【0009】そこで、本発明者らは、優れた耐食性が付
与された鋳鉄に関する鋭意研究を続けたところ、粒状又
は球状V−C炭化物のみを晶出させることにより、耐摩
耗性及び靱性を付与するだけでなく、ステンレス鋳鋼に
匹敵する優れた耐食性も付与することができることを見
出し本発明の完成に至った。
[0009] Therefore, the present inventors have made continued intensive study on the cast iron excellent corrosion resistance is imparted, by only the crystallized granular or spherical V- C carbides, imparting wear resistance and toughness In addition to the above, it was found that excellent corrosion resistance comparable to stainless cast steel can be imparted, and the present invention has been completed.

【0010】[0010]

【課題を解決するための手段】即ち請求項1記載の発明
は、C:0.6〜4.0重量%、Cr:13〜30重量
%、Ni:4〜15重量%、Si:0.2〜4.5重量
%、Mn:0.2〜1.5重量%、P:0.01〜0.
15重量%、S:0.01〜0.05重量%、V:8
15重量%、残部鉄(Fe)及び不可避不純物からな
り、その組織中に共有結合性の粒状又は球状V−C炭化
物を晶出させてなることを特徴とする球状炭化物鋳鉄に
関する。請求項2記載の発明は、前記合金元素に、
(a)Mo:0.05〜15重量%、(b)Ti:0.
01〜5重量%、(c)B:0.01〜2重量%、
(d)Cu、W、Zr、Co、Nb、Ta、Yのうちの
少なくとも2種以上の合金元素:0.2〜5重量%、の
(a)〜(d)の中から選択された一以上を配合してな
ることを特徴とする請求項1記載の球状炭化物鋳鉄に関
する。これらの発明を提供することにより上記の課題を
悉く解決する。
That is, according to the invention of claim 1, C: 0.6 to 4.0% by weight, Cr: 13 to 30% by weight, Ni: 4 to 15% by weight, Si: 0. 2-4.5% by weight, Mn: 0.2-1.5% by weight, P: 0.01-0.
15% by weight, S: 0.01 to 0.05% by weight, V: 8 to
The present invention relates to spheroidal carbide cast iron comprising 15% by weight, the balance iron (Fe) and unavoidable impurities, and crystallizing covalently bonded granular or spherical V-C carbides in its structure. According to the invention of claim 2, in the alloy element,
(A) Mo: 0.05 to 15% by weight, (b) Ti: 0.
01-5 wt%, (c) B: 0.01-2 wt%,
(D) Cu, W, Zr , Co, Nb, Ta, at least two or more alloying elements of Y: 0.2 to 5 wt%, selected from among the (a) ~ (d) one about globular carbides cast iron according to claim 1, characterized by being blended with the above following. The above problems are solved by providing these inventions.

【0011】[0011]

【発明の実施の形態】以下、本発明に係る球状炭化物鋳
鉄について詳述する。本発明に係る球状炭化物鋳鉄は
鉄(Fe)に必須成分としてC、V、Cr、Ni、S
i、Mn、P、Sが含有されてなる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, described in detail engagement Ru spherical shape carbide cast iron in the present invention. Engaging Ru spherical shape carbide cast iron in the present invention,
C, V, Cr, Ni, S as essential components to iron (Fe)
i, Mn, P, and S are contained.

【0012】先ず、C及びVは、耐摩耗性向上を目的と
し、粒状又は球状V−C炭化物を晶出させるために配合
される。炭素(C)含有量は、0.6〜4.0%とされ
る。これは、含有量が0.6%未満では合金鋳鉄の硬度
及び機械的性質は殆ど変化せず、0.6%を超えると合
金鋳鉄の硬度は上昇し、機械的性質も向上するが、含有
量が4.0%を超えると、一部のCはFe−Cr炭化物
(セメンタイト)となり、耐食性を低下させてしまうか
らである。
[0012] First, C and V are intended to improve wear resistance, are formulated granular or spherical V- C carbides in order to crystallize. The carbon (C) content is set to 0.6 to 4.0%. This is because if the content is less than 0.6%, the hardness and mechanical properties of the alloy cast iron hardly change, and if the content exceeds 0.6%, the hardness of the alloy cast iron increases and the mechanical properties also improve. When the amount is more than 4.0%, a part of C is thus degrading Fe-C r carbides <br/> (cementite), and corrosion resistance.

【0013】バナジュウム(V)含有量は、8.0〜1
5%とされる。これは、含有量が8.0%未満では、高
硬度の炭化物を分散させて共有結合性の粒状又は球状V
C炭化物を晶出させることができず、15%を超えて
配合しても、それ以上の効果は期待できず、逆に偏析を
起こしやすくなり、いずれの場合も好ましくないからで
ある。また、粒状又は球状V−C炭化物は、VとCの原
子数比が約1:1(重量比4:1)であるため、Vの含
有量がCの含有量の約4倍になるように配合するとより
好ましい。
The vanadium (V) content is 8.0 to 1
It is set to 5%. This is because if the content is less than 8.0 %, high-hardness carbides are dispersed to form covalently bonded granular or spherical V.
- it can not be a C carbides crystallized, even though the amount is more than 15%, more than that of the effect can not be expected, it tends to cause segregation in the contrary, it is not preferable in both cases. Further, granular or spherical V- C carbides, the atomic ratio of V and C is about 1: 1 (weight ratio 4: 1) because it is, the content of V is approximately four times the content of C Is more preferable.

【0014】クロム(Cr)及びニッケル(Ni)は耐
食性向上のために配合される。Cr含有量は13〜30
%とされる。これは、含有量13%未満では、安定した
オーステナイト(γ)を晶出させることができず、酸化
性溶液に対する耐食性を低下させてしまい、一方、30
%を超えると偏析を起こして強度を劣化させる原因とな
るため、いずれの場合も好ましくないからである。Ni
含有量は4.0〜15%とされる。これは、含有量4.
0%未満では金属組織のマルテンサイト化が起こりやす
くなり、一方、15%を超えると偏析を起こし、しかも
基地が柔らかくなるため、いずれの場合も好ましくない
からである。また、4%以上配合することにより、非酸
化性溶液に対する耐食性も改善される。
Chromium (Cr) and nickel (Ni) are added to improve corrosion resistance. Cr content is 13-30
%. This is because if the content is less than 13%, stable austenite (γ) cannot be crystallized, and the corrosion resistance to an oxidizing solution will be reduced.
This is because if it exceeds%, it causes segregation and deteriorates the strength, which is not preferable in any case. Ni
The content is set to 4.0 to 15%. This has a content of 4.
If it is less than 0%, the martensitic structure of the metal structure tends to occur, while if it exceeds 15%, segregation occurs and the matrix becomes softer, which is not preferable in any case. Further, by blending 4% or more, the corrosion resistance to a non-oxidizing solution is also improved.

【0015】ケイ素(Si)は脱酸及び硬度増大、また
鋳造性を良くするのに有効であり、含有させる場合、そ
の含有量は0.2〜4.5%とされる。これは、0.2
%未満ではSi含有による効果を発揮することができ
ず、一方、4.5%を超えると靱性が低下してしまい、
いずれの場合も好ましくないからである。
Silicon (Si) is effective for deoxidizing, increasing hardness and improving castability, and when it is contained, its content is set to 0.2 to 4.5%. This is 0.2
If it is less than 4.5%, the effect due to the Si content cannot be exhibited, while if it exceeds 4.5%, the toughness decreases.
This is because neither case is preferable.

【0016】マンガン(Mn)を含有させる場合、その
含有量は0.2〜1.5%とされる。これは1.5%を
超えると偏析を起こしやすくなり、V−C系の合金鋳鉄
にとって好ましくないからである。リン(P)は若干の
硬度上昇及び流動性の向上により鋳造性を良くするのに
有効であり、含有させる場合、その含有量は0.01〜
0.15%とされる。これは、0.01%未満では、P
配合による効果が期待できず、一方0.15%を超える
と偏析や脆性を起こすためいずれの場合も好ましくない
からである。
When manganese (Mn) is contained, its content is 0.2 to 1.5%. This is because if it exceeds 1.5%, segregation tends to occur, which is not preferable for VC alloy cast iron. Phosphorus (P) is effective in improving the castability by slightly increasing the hardness and improving the fluidity, and when it is contained, its content is 0.01-.
It is set to 0.15%. This is because if less than 0.01%, P
This is because the effect due to the compounding cannot be expected, and on the other hand, if it exceeds 0.15%, segregation or brittleness occurs, which is not preferable in any case.

【0017】硫黄(S)を含有させる場合、含有量は
0.01〜0.05%とされる。これは、通常0.05
%を超えると、FeC(セメンタイト)及びMnS
(硫化マンガン)を晶出しやすくなり、耐食性が低下す
るため好ましくないからである。
When sulfur (S) is contained, the content is 0.01 to 0.05%. This is usually 0.05
%, Fe 3 C (cementite) and MnS
This is because (manganese sulfide) is easily crystallized and the corrosion resistance is lowered, which is not preferable.

【0018】以上の元素が鉄(Fe)に含有させる必須
成分であり、本発明ではこれらの必須成分に加えて、
(a)Mo、(b)Ti、(c)B、(d)Cu、W、
Zr、Co、Nb、Ta、Yのうちの少なくとも2種以
上の合金元素、の(a)〜(d)の中から選択された一
上を適宜配合させてもよい。
The above elements are essential components contained in iron (Fe). In the present invention, in addition to these essential components,
(A) Mo, (b) Ti, (c) B, (d) Cu, W,
Zr, Co, Nb, Ta, at least two or more alloying elements, of the (a) ~ one <br/> than above that is selected from a (d) may be suitably blended of Y.

【0019】モリブデン(Mo)はキッシュ黒鉛析出防
止及び基地を安定させるのに有効であり、Moを含有さ
せる場合、その含有量は0.05〜15%とされる。こ
れは、0.05%未満では、Mo配合による効果が得ら
れず、逆に15%を超えると、高硬度の炭化物を分散さ
せて共有結合性の粒状又は球状V−C炭化物の晶出を不
安定とさせ、しかも耐食性が劣化してしまうため、いず
れの場合も好ましくないからである。
Molybdenum (Mo) is effective for preventing the precipitation of quiche graphite and stabilizing the matrix. When Mo is contained, its content is 0.05 to 15%. This is less than 0.05%, not to obtain the effect by Mo formulation Conversely, if it exceeds 15%, the high hardness carbide is dispersed in the covalent granular or spherical V- C carbides crystallize This is not preferable in any case, since it causes instability and deteriorates corrosion resistance.

【0020】チタン(Ti)は脱窒素と金属組織の微細
化に有効であり、含有させる場合、その含有量は0.0
1〜5.0%とされる。これは、0.01%未満では、
Ti配合による効果が得られず、逆に5.0%を超える
とTi系炭化物の析出が著しくなり、強度を劣化させる
ため、いずれの場合も好ましくないからである。
Titanium (Ti) is effective in denitrifying and refining the metal structure, and when contained, its content is 0.0
It is set to 1 to 5.0%. This is below 0.01%
This is because the effect of Ti blending cannot be obtained, and conversely, if it exceeds 5.0%, precipitation of Ti-based carbides becomes remarkable and the strength is deteriorated, which is not preferable in any case.

【0021】ホウ素(B)は熱処理による硬度増大に有
効であり、含有させる場合、含有量は0.01〜2.0
%とされる。これは、0.01%未満では、B配合によ
る効果が得られず、逆に、2.0%を超えると強度を劣
化させる原因となるため、いずれの場合も好ましくない
からである。
Boron (B) is effective in increasing the hardness by heat treatment, and when it is contained, the content is 0.01 to 2.0.
%. This is because if it is less than 0.01%, the effect due to the blending of B cannot be obtained, and conversely, if it exceeds 2.0%, it causes deterioration of the strength, which is not preferable in any case.

【0022】銅(Cu)、タングステン(W)、ジルコ
ニウム(Zr)、コバルト(Co)、ニオブ(Nb)、
タンタル(Ta)、イットリウム(Y)については、耐
食性、耐摩耗性、耐熱性等の目的に応じて適宜配合すれ
ばよい。これらは単独で配合しても効果はあるが、複数
組み合わせて配合することにより、より優れた効果を得
ることができるので、2種以上の元素を組み合わせて配
合する。ただし、いたずらに配合しても共有結合を強固
なものとするとは限らないため、2種以上の元素の合計
の含有量は0.2〜5.0%とされる。
Copper (Cu), tungsten (W), zirconium (Zr), cobalt (Co), niobium (Nb),
Tantalum (Ta) and yttrium (Y) may be appropriately blended according to the purpose such as corrosion resistance, wear resistance, and heat resistance. These are effective even if blended alone, but more superior effects can be obtained by blending a plurality of them. Therefore, two or more elements are blended in combination. However, mischievous blending does not necessarily strengthen the covalent bond, so the total content of two or more elements is 0.2 to 5.0%.

【0023】本発明では、必須成分であるC、V、C
r、Ni、Si、Mn、P、Sに加えて、以上説明した
ような各配合成分を、その使用目的に応じて適宜配合し
て鋳造すればよく、特に高炭素含有物の硬度安定化には
Si、P、B、Zr、Cu、Nb、Ta、Yの配合が、
基地安定化及びキッシュ黒鉛の析出防止にはCr、M
o、Wの配合が、鋳造時における金属組織の微細化、脱
ガスにはTiの配合が、金属組織のマルテンサイト化の
防止にはNi、Coの配合が有効である。
In the present invention, the essential components C, V, C
In addition to r, Ni, Si, Mn, P and S, the above-described respective compounding components may be appropriately compounded and cast according to the purpose of use, and especially for stabilizing the hardness of high carbon content. Is a combination of Si, P, B, Zr, Cu, Nb, Ta and Y,
Cr, M for matrix stabilization and prevention of precipitation of quiche graphite
The compounding of o and W is effective for refining and degassing the metal structure during casting, and the compounding of Ti is effective for preventing the formation of martensite in the metal structure.

【0024】上記組成からなる球状炭化物鋳鉄は、常法
に準じ、鋳型内に熔湯を注ぎ込み、その後冷却する鋳放
しにより得ることができる。また、冷却時に生じる鋳造
応力を除去することが望ましいので、973〜1293
Kで1時間程度保持した後、焼準及び焼鈍してもよい。
973〜1173Kで保持後炉冷(焼鈍)又は空冷処理
(焼準)した場合、組織はオーステナイト(γ)+V
複合体となる。また、1173〜1293Kで保持
後炉冷(焼鈍)又は空冷処理(焼準)した場合は、強度
・靱性の向上を目的とした焼準、耐衝撃性向上のための
鋳造応力除去を目的とした焼なましといった処理が必要
となるが、この温度範囲での組織も、オーステナイト
(γ)+V複合体となり、前記973〜1173
Kで処理した合金鋳鉄と相違はない。尚、上記の如く焼
準処理、焼鈍処理を施した場合、鋳放しで製造した合金
鋳鉄とその組織に相違はない。
The spherical shaped carbide cast iron ing from the composition, in a usual manner, poured molten metal into the mold, it can be obtained by cast and then cooled. Since it is desirable to remove the casting stress generated during cooling, 973 to 1293
After holding at K for about 1 hour, normalizing and annealing may be performed.
If held after furnace cooling (annealing) or air treatment (normalizing) at 973~1173K, tissue austenite (gamma) + V P
It becomes a CQ complex. Further, when the furnace cooling (annealing) or air cooling (normalizing) after holding at 1173 to 1293K is performed, normalizing for improving strength and toughness, and casting stress removal for improving impact resistance are aimed at. Although a treatment such as annealing is required, the structure in this temperature range also becomes an austenite (γ) + V P C Q complex, and the above 973 to 1173
It is no different from alloy cast iron treated with K. When the normalizing treatment and the annealing treatment are performed as described above, there is no difference in the structure between the as-cast alloy cast iron and its structure.

【0025】[0025]

【実施例】以下、本発明の球状炭化物鋳鉄を実施例に基
づいて一層詳細に説明する。ただし、本発明は以下の実
施例に何ら限定されるものではない。
BRIEF DESCRIPTION more detail on the basis of the spherical shape carbide cast iron an embodiment of the present invention. However, the present invention is not limited to the following examples.

【0026】(実施例1〜5、比較例1〜8)溶製条件 純鉄(Fe)に、C:0.05%、Si:0.4%、M
n:1.0%、P:0.04%、S:0.015%、N
i:8.0%、Cr:18.0%をそれぞれ配合し、更
に表1に示す配合に従って炭素(C)を配合して、配合
例1〜8の鋳造原料を得た。
(Examples 1 to 5 and Comparative Examples 1 to 8) Melting conditions Pure iron (Fe), C: 0.05%, Si: 0.4%, M
n: 1.0%, P: 0.04%, S: 0.015%, N
i: 8.0% and Cr: 18.0% were blended, respectively, and carbon (C) was further blended in accordance with the blending shown in Table 1 to obtain casting raw materials of Blending Examples 1 to 8.

【表1】 [Table 1]

【0027】前記調製した配合例1〜5の各鋳造原料に
ついては、まず、それぞれにVを8、10或いは15%
配合して表2に示す実施例1〜5の鋳造原料を種類づ
つ得、次に、それぞれにVを0、2.5、4、6或いは
16%配合して表2に示す比較例1〜5の鋳造原料を
種類づつ得た。また、配合例6〜8の各鋳造原料につい
ては、それぞれにVを0、2.5、4、6、8、10、
15或いは16%配合して表2に示す比較例6〜8の鋳
造原料を8種類ずつ得た。これらの鋳造原料を、20K
g高周波誘導炉(ラミング材 MgO+Al)を
用いて、それぞれ溶解鋳造を行った。溶製試料は、JI
S G 307鋳鋼品の製造、試験及び検査の通則、3.
2.1供試材(a)より、シエル型引張試験片(JIS
Z 2201 金属材料引張4号試験片)、シエル型衝
撃試験片(JIS Z 2202 金属材料衝撃3号試験
片ノッチなし)、硬度試験・ミクロ組織観察試験・摩耗
試験・耐食試験片として25mm角×50mm高の角状
試料とし、鋳造後、973Kで1時間保持後空冷を行っ
た。
Regarding each of the casting raw materials of the above-mentioned formulation examples 1 to 5, first, V was 8 , 10 or 15%, respectively.
3 kinds of the casting raw materials of Examples 1 to 5 shown in Table 2 were compounded, and then V was 0, 2.5, 4 , 6 or 16% respectively, and Comparative Example 1 shown in Table 2 was obtained. 5 to 5 casting materials
Got by type. Moreover, about each casting raw material of formulation examples 6-8, V was 0, 2.5, 4, 6, 8, 10, respectively.
Eight types of casting raw materials of Comparative Examples 6 to 8 shown in Table 2 were obtained by mixing 15 or 16%. 20K of these casting materials
g High-frequency induction furnace (ramming material MgO + Al 2 O 3 ) was used to perform melting and casting. The melted sample is JI
General rules for the production, testing and inspection of S G 307 cast steel products, 3.
2.1 Ciel type tensile test piece (JIS
Z 2201 metal material tensile 4 test piece), shell type impact test piece (JIS Z 2202 metal material impact 3 test piece notch), hardness test / microstructure observation test / wear test / corrosion resistance test piece 25 mm square × 50 mm After casting, a high-angled sample was held at 973 K for 1 hour and then air-cooled.

【表2】 [Table 2]

【0028】[0028]

【試験例】(試験例1)ミクロ組織の観察 前記実施例4(4−8、4−10)及び比較例4(4−
1、4−2、4−16)で得られた合金鋳鉄についてミ
クロ組織の観察を行うため、973K熱処理組織の顕微
鏡写真(倍率:400及び1000)撮影を行った。こ
の結果を図1〜10に示す。
[Test Example] (Test Example 1) Observation of Microstructure The aforementioned Example 4 (4-8, 4-10) and Comparative Example 4 (4-
In order to observe the microstructure of the alloy cast iron obtained in Nos. 1, 4-2 and 4-16), micrographs (magnification: 400 and 1000) of the 973K heat-treated structure were taken. The results are shown in FIGS.

【0029】図1〜10の結果より、図1〜図4で示さ
れる実施例4の合金鋳鉄では球状炭化物が晶出している
ことが分かる。これに対し、図5〜図10で示される比
較例4の合金鋳鉄では、粒状又は球状炭化物が晶出して
いないことが分かる。つまりVを添加することにより球
状炭化物を晶出させることができ、またその添加量が増
加するにつれて、球状炭化物の晶出量が増加すると言う
ことができる。
From the results shown in FIGS. 1 to 10 , it can be seen that in the cast iron alloy of Example 4 shown in FIGS . 1 to 4 , spheroidal carbide was crystallized. On the other hand, in the cast iron alloy of Comparative Example 4 shown in FIGS. 5 to 10 , it can be seen that no granular or spherical carbide is crystallized. That is, it can be said that the addition of V makes it possible to crystallize the spherical carbide, and that the crystallized amount of the spherical carbide increases as the added amount increases.

【0030】(試験例2、3)引張り強度及び伸び 前記実施例1〜5及び比較例1〜8で得られた合金鋳鉄
の引張り強度及び伸びを試験した。試験片は、JIS
G 0307 鋳鋼品の製造、試験及び検査の通則の供試
材の形状及び寸法(a)に従って、JIS Z 2201
金属材料引張4号試験片を採取した。試験方法はこの
4号試験片を用いて、引張り強度及び伸び共にJIS
Z 2241 金属材料引張り試験法の基準に従って測定
した。引張り強度の結果を表3に、伸びの結果を表4に
示す。
(Test Examples 2 and 3) Tensile Strength and Elongation The tensile strength and elongation of the alloy cast irons obtained in Examples 1 to 5 and Comparative Examples 1 to 8 were tested. The test piece is JIS
G 0307 According to JIS Z 2201 according to the shape and size (a) of the specimen under the general rules of manufacturing, testing and inspecting cast steel products.
A metal material tensile No. 4 test piece was collected. The test method uses this No. 4 test piece to measure both tensile strength and elongation according to JIS.
Z2241 It measured according to the standard of a metallic material tensile test method. The results of tensile strength are shown in Table 3 and the results of elongation are shown in Table 4.

【表3】 [Table 3]

【表4】 [Table 4]

【0031】表3の結果より、引張り強度は、Cの配合
量が0.6%〜2.0%までは、Cの配合量が増加する
に従い上昇するが、Cの配合量が3.0%以上に増加す
ると、引張り強度はCの配合量の増加とともに小さくな
ることが分かる。また、Vに関しては、配合量が0〜6
%までは、配合量の増加に従い引張り強度は大きくな
が、8%以上配合した場合、Vの配合量の増加とともに
引張り強度は低下することが分かる。また、表4の結果
より、伸びは、Cの配合量が増加するに従い小さな値を
とるようになり、また、Vの配合量が増加するに従い大
きな値をとるようになることが分かる。
From the results of Table 3, the tensile strength increases as the C content increases from 0.6% to 2.0%, but the C content becomes 3.0. It can be seen that the tensile strength decreases with an increase in the compounding amount of C when the content is increased to 10% or more. Regarding V, the blending amount is 0 to 6
%, The tensile strength increases as the blending amount increases, but when 8% or more is blended, the tensile strength decreases as the blending amount of V increases. Further, from the results in Table 4, it can be seen that the elongation takes a smaller value as the blending amount of C increases and also takes a larger value as the blending amount of V increases.

【0032】(試験例4)衝撃試験 前記実施例1〜5及び比較例1〜8で得られた合金鋳鉄
の衝撃試験を行った。試験方法は、JIS Z 2242
金属材料衝撃試験方法に示される、シャルピー衝撃試
験とし、試験を行う前に、試験片の表面にある酸化物を
Belt式研摩耗機で取り除き、10×10×55mm
の形状で、ノッチなしのJIS3号試験片に加工したも
のを試験した。試験後破断面を観察し、大きな欠陥の見
られるものについては除外した。衝撃試験の結果を表5
に示す。
(Test Example 4) Impact Test The alloy cast irons obtained in Examples 1 to 5 and Comparative Examples 1 to 8 were subjected to an impact test. The test method is JIS Z 2242.
The Charpy impact test indicated in the metal material impact test method is used. Before the test, the oxide on the surface of the test piece is removed with a Belt abrasion grinder 10 × 10 × 55 mm.
The test piece of No. 3 processed into a JIS No. 3 test piece without a notch was tested. After the test, the fracture surface was observed, and those showing large defects were excluded. The results of the impact test are shown in Table 5.
Shown in.

【表5】 [Table 5]

【0033】表5の結果より、衝撃値は、Cの配合量が
0.1%のとき最大となっているが、その後一旦減少し
た後、配合量0.6%のとき再び大きな値をとり、その
後は減少していることが分かる。また、実施例に関して
いえば、Vの配合量が増加するに従い、衝撃値も増大し
ていることが分かる。
From the results shown in Table 5, the impact value reaches its maximum when the C content is 0.1%, but after it decreases once, it becomes a large value again when the C content is 0.6%. , Then it can be seen that it has decreased. Further, regarding the examples, it can be seen that the impact value increases as the blending amount of V increases.

【0034】(試験例5)硬度測定 前記実施例1〜5及び比較例1〜8で得られた合金鋳鉄
の硬度をそれぞれ測定した。硬度の指標としては「ロッ
クウエル硬さ(H)」の「Cスケール」(HC)を
用い、試験方法JIS Z 2245に示される「ロック
ウエル硬さ試験方法」(ダイヤモンド圧子又は球圧子を
用いて、まず基準荷重を加え、次に試験荷重を加え、再
び基準荷重に戻したとき、前後2回の基準荷重における
圧子の侵入深さの差によって定義式から求める)に準じ
て試験を行った。硬度測定の結果を表6に示す。
(Test Example 5) Hardness Measurement The hardness of the alloy cast iron obtained in Examples 1 to 5 and Comparative Examples 1 to 8 was measured. Using "C scale" (H R C) of "Rockwell hardness (H R)" as an index of the hardness, using a "Rockwell hardness test method" (diamond indenter or ball indenter shown in Test Method JIS Z 2245 Then, a reference load was first applied, then a test load was applied, and when the test load was returned to the reference load again, the test was carried out according to (Definition formula based on the difference in the indenter penetration depth between the front and rear reference loads). . The results of hardness measurement are shown in Table 6.

【表6】 [Table 6]

【0035】(試験例6)摩耗試験 図11 に示す摩耗試験機を用いて、前記実施例1〜5及
び比較例1〜8で得られた合金鋳鉄について、摩耗試験
を次に示す操作に従い行った。25mm角×50mm高
の供試材より10mm棒を切り出して試験片とし、これ
をネジホルダー(2)で取り付け、長さ12mmにマイ
クロカッターで切断した。また、試料に接触させる砥石
には、市販の材質Alに粘土系バインダーを約3
0%配合して成形後、約1473Kで焼結して得た、寸
法がφ25mm×2mm、♯80の砥粒の軸付砥石
(1)を用いた。試料の各面をBelt式研摩機によ
り、砥石と接触する面が良好な平面状態になるように特
に注意を払いながら、♯80で研摩した。研摩試料表面
に付着物がないことを確認した後、その重量を精密天秤
で測定し、これを摩耗試験前重量とした。次に、ホルダ
ー部に試験面を下にして試料を取り付け、砥石と同じ高
さに合わせた水平台を用いて試験面の水平度を水平に調
整しつつ、側面からネジ止めをした。試験機のバランス
を調整した後、試料の真上に0.2kgの荷重用分銅
(3)を置き、天秤(4)を介して試料とは反対側に制
振スプリング(5)を取り付け試料の空走をおさえた。
この状態で、回転速度を1700rpmとして、摩耗試
験機をスタートさせた。回転時間は90秒とし、スター
トさせてから30、60秒後にドレッシング用砥石で軸
付き砥石の目詰まりを防止するためにドレッシングし
た。試験が終了後、試料に付着した研摩粉をよく拭き取
り除去し、再び精密天秤で秤量し、試験前の重量との差
をもって摩耗量とした。摩耗試験の結果を表7に示す。
(Test Example 6) Abrasion test Using the abrasion tester shown in FIG. 11 , an abrasion test was conducted on the alloy cast irons obtained in Examples 1 to 5 and Comparative Examples 1 to 8 according to the following procedure. It was A 10 mm rod was cut out from a test material measuring 25 mm square and 50 mm high to form a test piece, which was attached with a screw holder (2) and cut into a length of 12 mm with a micro cutter. Further, for the grindstone to be brought into contact with the sample, a commercially available material Al 2 O 3 and a clay-based binder of about 3 are used.
A grindstone with a shaft (1) having a size of φ25 mm × 2 mm and # 80 abrasive grains (1) obtained by mixing 0% and shaping and sintering at about 1473K was used. Each surface of the sample was polished with a Belt polisher at # 80, paying particular attention so that the surface in contact with the grindstone was in a good flat state. After confirming that there were no deposits on the surface of the polished sample, its weight was measured with a precision balance and used as the weight before abrasion test. Next, the sample was attached to the holder part with the test surface facing downward, and the horizontal level adjusted to the same height as the grindstone was used to adjust the horizontality of the test surface to be horizontal, and the side surface was screwed. After adjusting the balance of the tester, place a 0.2 kg load weight (3) directly above the sample and attach a damping spring (5) to the side opposite to the sample via the balance (4). I stopped running free.
In this state, the abrasion tester was started at a rotation speed of 1700 rpm. The rotation time was 90 seconds, and after 30 and 60 seconds from the start, dressing was performed with a dressing grindstone to prevent clogging of the grindstone with a shaft. After the test was completed, the polishing powder adhering to the sample was thoroughly wiped off and removed, and again weighed with a precision balance, and the difference from the weight before the test was taken as the wear amount. The results of the abrasion test are shown in Table 7.

【表7】 [Table 7]

【0036】表6及び表7の結果から、硬度は、Vの添
加量の増加とともに低くなるのに対して、耐摩耗性は、
Vの添加量の増加とともに高まることが分かる。即ち、
最高の耐摩耗性を示す合金鋳鉄(実施例4、4−10)
の硬度はそれ程高い値ではなく、耐摩耗性を向上させる
には、硬度を上昇させなければならないとされた従来の
考えに反する結果となった。これは、最高の耐摩耗性を
示した配合の合金鋳鉄の衝撃値がかなり大きな靱性を示
していることから、優れた耐摩耗性は硬度だけに関係す
るのではなく、靱性にも関係し、この二つの性質を併せ
持つとき、優れた耐摩耗性を得ることができるものと思
われる。
From the results shown in Tables 6 and 7, the hardness decreases as the amount of V added increases, while the wear resistance shows
It can be seen that it increases as the amount of V added increases. That is,
Alloy cast iron showing the best wear resistance (Examples 4 and 4-10)
The hardness was not so high, and the result was contrary to the conventional idea that the hardness had to be increased in order to improve wear resistance. This is because the impact value of the alloy cast iron of the compound showing the highest wear resistance shows considerably large toughness, so that the excellent wear resistance is not only related to hardness, but also related to toughness, It is considered that excellent wear resistance can be obtained when these two properties are combined.

【0037】(試験例7)耐食性試験 実施例4(4−8、4−10)及び前記比較例4(4−
1、4−2、4−6)に示される合金鋳鉄を用いて、H
SO(7N)、HCl(1N)に対する耐食性試験
をした。試験方法としては、試料10mmを全面仕上
(エメリー320番仕上)し、アルコ−ルで脱脂洗浄し
た後、重量及び表面積測定を行い試験に供した。各試験
片はそれぞれ別々に同一大の500ccの容器(ビ−カ
−)に入れ、そこに300ccのHSO(7N)、
HCl(1N)をそれぞれ注ぎ、HSO(7N)は
沸騰、HCl(1N)は室温にて140時間浸漬し、洗
浄、乾燥後、常温で各試料の重量測定と表面積測定を行
い、腐食減量をmg/cmで測定した。尚、比較材と
して、耐食性が良いとされるSUS304を用いて同時
に測定した。SUS304の配合割合を表8に示す。
Test Example 7 Corrosion Resistance Test Example 4 (4-8, 4-10) and Comparative Example 4 (4-)
1 , 4-2 , 4-6 ) and H
A corrosion resistance test against 2 SO 4 (7N) and HCl (1N) was performed. As a test method, a sample 10 mm 3 was finished on the entire surface (Emery No. 320 finish), degreased and washed with an alcohol, and then the weight and surface area were measured and subjected to the test. Each test piece was separately put in a 500 cc container (beaker) of the same size, and 300 cc of H 2 SO 4 (7N),
HCl (1N) was poured respectively, H 2 SO 4 (7N) was boiled, HCl (1N) was soaked at room temperature for 140 hours, washed and dried, and then the weight and surface area of each sample were measured at room temperature for corrosion. Weight loss was measured in mg / cm 2 . Incidentally, SUS304, which is said to have good corrosion resistance, was used as a comparative material and simultaneously measured. Table 8 shows the compounding ratio of SUS304.

【表8】 耐食性試験の結果を表9に示す。[Table 8] The results of the corrosion resistance test are shown in Table 9.

【表9】 [Table 9]

【0038】表9の結果から実施例の合金鋳鉄と比較例
の合金鋳鉄及びSUS304の耐食性を比較する。ま
ず、沸騰したHSO(7N)に対する耐食性を比較
すると、V6%で最良の耐食性を示し、V10%から耐
食性は低下するが、SUS304よりも数段耐食性が良
好であることを示している。尚、この場合、Vの添加量
は耐食性には余り影響しないものと考えられるが、必須
成分としてC、V、Cr、Ni、Si、Mn、P、Sを
配合すれば、耐食性を向上させることができると言え
る。次に、室温でのHCl(1N)に対する耐食性を比
較すると、Vの添加量が増加すると耐食性は低下する
が、SUS304よりも耐食性が良好であることを示
し、やはり必須成分としてC、V、Cr、Ni、Si、
Mn、P、Sを配合すれば、耐食性を向上させることが
できると言える。尚、実施例及び比較例の合金鋳鉄はい
ずれも、耐食性に優れたステンレス鋳鋼に相当するよう
に、18%のCrと8%のNiが含有されている。通
常、18%のCrと8%のNiが含まれていても、Cが
含まれると急速に耐食性が低下することが知られている
が、本試験例における合金鋳鉄はいずれもSUS304
よりも優れた耐食性を示している。これは合金鋳鉄組織
中に粒状又は球状V−C炭化物が晶出することで、ステ
ンレス鋳鋼よりも優れた耐食性を維持することができる
と言うことができる。
Based on the results shown in Table 9, the corrosion resistance of the alloy cast iron of the example, the alloy cast iron of the comparative example, and SUS304 are compared. First, comparing the corrosion resistance against boiling H 2 SO 4 (7N), the best corrosion resistance is shown at V6%, and the corrosion resistance decreases from V10%, but it shows that the corrosion resistance is several steps better than SUS304. . In this case, it is considered that the added amount of V does not affect the corrosion resistance so much, but if C, V, Cr, Ni, Si, Mn, P and S are added as essential components, the corrosion resistance is improved. It can be said that Next, comparing the corrosion resistance to HCl (1N) at room temperature, it is shown that the corrosion resistance decreases as the amount of V added increases, but the corrosion resistance is better than SUS304, and C, V, and Cr are also essential components. , Ni, Si,
It can be said that by adding Mn, P and S, the corrosion resistance can be improved. It should be noted that the alloy cast irons of Examples and Comparative Examples each contain 18% of Cr and 8% of Ni so as to correspond to stainless cast steel having excellent corrosion resistance. It is generally known that even if 18% Cr and 8% Ni are contained, the corrosion resistance is rapidly reduced when C is contained. However, the cast iron alloys in these test examples are all made of SUS304.
Shows better corrosion resistance than. It can be said that the alloy cast iron structure granular or spherical V- C carbides during that crystallizes, it is possible to maintain excellent corrosion resistance of stainless cast steel.

【0039】以上の結果をまとめると、Vの配合量が4
%未満のときは、硬度は高いが、耐摩耗性、耐食性に劣
り、15%より多く配合した場合、耐摩耗性には優れる
が、十分な硬度が得られず、また、Cの配合量が0.6
%未満のときは、硬度、耐摩耗性に劣り、4%より多く
配合した場合、引張り強さ、伸び、衝撃値に劣るといえ
る。従って、実際の使用に耐えうる機械的強度を備える
とともに、耐摩耗性及び耐食性を向上させるには、Fe
の他、必須成分として最低、C、V、Cr、Ni、S
i、Mn、P、Sが必要であり、そのCの配合量は0.
6〜4.0%の範囲内とし、且つVの配合量は4.0〜
15%の範囲内にする必要がある。また、Vの配合量が
この範囲内でより多いほど、つまり、金属組織中の粒状
又は球状V−C系炭化物の晶出量が多いほど、耐摩耗性
及び耐食性を向上させることができるといえる。
Summarizing the above results, the compounding amount of V is 4
When it is less than%, the hardness is high, but the wear resistance and corrosion resistance are poor. When it is blended in more than 15%, the wear resistance is excellent, but sufficient hardness cannot be obtained, and the content of C is 0.6
When it is less than%, the hardness and wear resistance are inferior, and when it is more than 4%, the tensile strength, elongation and impact value are inferior. Therefore, in order to improve the wear resistance and the corrosion resistance as well as having the mechanical strength to withstand the actual use, Fe
In addition, at least C, V, Cr, Ni, S as essential components
i, Mn, P, and S are required, and the C content is 0.
6 to 4.0%, and the compounding amount of V is 4.0 to 4.0.
It must be within the range of 15%. Further, it can be said that the wear resistance and the corrosion resistance can be improved as the blending amount of V is larger within this range, that is, as the crystallization amount of the granular or spherical V-C type carbide in the metal structure is larger. .

【0040】(試験例8)水中ポンプ・インペラ実証試験 汚泥貯槽の排水処理装置として水中ポンプ・インペラ実
証試験を行った。汚泥貯槽の実使用はpH4〜7(設計
pH7〜9)、汚泥中の異物として、砂を混入させた。
また汚泥濃度は3%前後であった。この処理装置汚泥貯
槽水を蛍光X線分析で分析したとき、汚泥濃度0.5
%、FeSO:18.0%、SO:6.1%、Al
:4.2%、SiO:8.8%、V
2.9%、有機物(C):63.0%であった。なおp
Hの実証値は5.0であった。実施例4(4−8)と従
来の鋳鉄FC200を材料として外径φ230のインペ
ラを作成し、汚泥処理用水中ポンプに取り付けて実証試
験を行った。その結果、実施例4(4−8)を材料とし
て作成したインペラは1003時間運転後0.30%の
減量が見られた。これに対し、従来の鋳鉄のインペラは
844時間後9.00%の減量となり、明らかに実施例
を材料としたものが優れていた。このことから、実施例
の合金鋳鉄は従来の鋳鉄に比べ耐摩耗性及び耐食性に優
れているといえる。
Test Example 8 Submersible Pump / Impeller Demonstration Test A submersible pump / impeller demonstration test was carried out as a wastewater treatment device for a sludge storage tank. The actual use of the sludge storage tank was pH 4 to 7 (designed pH 7 to 9), and sand was mixed as a foreign matter in the sludge.
The sludge concentration was around 3%. When this treatment equipment sludge storage tank water was analyzed by fluorescent X-ray analysis, the sludge concentration was 0.5.
%, FeSO 3: 18.0%, SO 3: 6.1%, Al
2 O 3 : 4.2%, SiO 2 : 8.8%, V 2 O 5 :
It was 2.9% and organic matter (C): 63.0%. P
The proven value of H was 5.0. An impeller having an outer diameter of φ230 was created using Example 4 (4-8) and conventional cast iron FC200 as materials, and was attached to a submersible pump for sludge treatment to perform a verification test. As a result, the impeller made using Example 4 (4-8) as a material was found to lose 0.30% after 1003 hours of operation. On the other hand, in the conventional cast iron impeller, the weight was reduced by 9.00% after 844 hours, and it was clearly superior to the one using the example material. From this, it can be said that the alloy cast irons of the examples are superior to the conventional cast irons in wear resistance and corrosion resistance.

【0041】[0041]

【発明の効果】以上詳述した如く、請求項1記載の発明
は、C:0.6〜4.0重量%、Cr:13〜30重量
%、Ni:4〜15重量%、Si:0.2〜4.5重量
%、Mn:0.2〜1.5重量%、P:0.01〜0.
15重量%、S:0.01〜0.05重量%、V:8
15重量%、残部鉄(Fe)及び不可避不純物からな
り、その組織中に共有結合性の粒状又は球状V−C炭化
物を晶出させてなることを特徴とする球状炭化物鋳鉄で
あり、また請求項2記載の発明は、前記合金元素に、
(a)Mo:0.05〜15重量%、(b)Ti:0.
01〜5重量%、(c)B:0.01〜2重量%、
(d)Cu、W、Zr、Co、Nb、Ta、Yのうちの
少なくとも2種以上の合金元素:0.2〜5重量%、の
(a)〜(d)の中から選択された一以上を配合してな
ることを特徴とする請求項1記載の球状炭化物鋳鉄であ
るから以下のような優れた効果を奏する。
As described in detail above, according to the invention of claim 1, C: 0.6 to 4.0% by weight, Cr: 13 to 30% by weight, Ni: 4 to 15% by weight, Si: 0. 2 to 4.5% by weight, Mn: 0.2 to 1.5% by weight, P: 0.01 to 0.
15% by weight, S: 0.01 to 0.05% by weight, V: 8 to
A spheroidal carbide cast iron comprising 15% by weight, the balance iron (Fe) and unavoidable impurities, and crystallizing covalently-bonded granular or spheroidal VC carbides in its structure. In the invention described in 2, the alloy elements are
(A) Mo: 0.05 to 15% by weight, (b) Ti: 0.
01-5 wt%, (c) B: 0.01-2 wt%,
(D) Cu, W, Zr , Co, Nb, Ta, at least two or more alloying elements of Y: 0.2 to 5 wt%, selected from among the (a) ~ (d) one since spherical carbide cast iron according to claim 1, characterized by being blended on following excellent effects as follows.

【0042】即ち、必須成分としてC、V、Cr、N
i、Si、Mn、P、Sが配合されていることにより、
その組織中に晶出する炭化物が球状化され、優れた耐摩
耗性を発揮することができる。また、前記したように炭
化物が球状化されていることにより、ステンレス鋼に匹
敵する耐食性を発揮することができる。つまり、本発明
に係る球状炭化物鋳鉄は、靱性、強度、溶接性、切削性
に優れるとともに、耐食性及び耐摩耗性においても優れ
ており、しかも熔湯の流動性が良好であるので欠陥の少
ない鋳造品である。従って、産業の発展に伴い高機能、
高性能化されつつある化学工業や産業機械等の諸工業に
おいて広範囲に適用することができるという優れた効果
を奏する。
That is, C, V, Cr, N as essential components
Since i, Si, Mn, P and S are mixed,
Carbides crystallized in the structure are spheroidized, and excellent wear resistance can be exhibited. Further, as described above, since the carbide is spheroidized, it can exhibit corrosion resistance comparable to that of stainless steel. In other words, engagement Ru spherical shape carbide cast iron in the present invention, toughness, strength, weldability, excellent in machinability, and excellent in corrosion resistance and wear resistance, yet a defect because the fluidity of the molten metal is good There are few castings. Therefore, with the development of industry, high functionality,
It has an excellent effect that it can be applied in a wide range in various industries such as chemical industry and industrial machinery, which are being improved in performance.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例4で得られたV配合量8.0%の合金鋳
鉄の組織の400倍の顕微鏡写真である。
FIG. 1 is a micrograph of a structure of an alloy cast iron having a V content of 8.0% obtained in Example 4 and magnified 400 times.

【図2】実施例4で得られたV配合量8.0%の合金鋳
鉄の組織の1000倍の顕微鏡写真である。
FIG. 2 is a micrograph of a structure of an alloy cast iron with a V content of 8.0% obtained in Example 4, taken 1000 times.

【図3】実施例4で得られたV配合量10.0%の合金
鋳鉄の組織の400倍の顕微鏡写真である。
FIG. 3 is a micrograph of a structure of an alloy cast iron having a V content of 10.0% obtained in Example 4 magnified 400 times.

【図4】実施例4で得られたV配合量10.0%の合金
鋳鉄の組織の1000倍の顕微鏡写真である。
FIG. 4 is a 1000 × micrograph of the structure of an alloy cast iron having a V content of 10.0% obtained in Example 4.

【図5】比較例4で得られたV配合量0%の合金鋳鉄の
組織の400倍の顕微鏡写真である。
FIG. 5 is a micrograph of a structure of an alloy cast iron having a V content of 0% obtained in Comparative Example 4 magnified 400 times.

【図6】比較例4で得られたV配合量0%の合金鋳鉄の
組織の1000倍の顕微鏡写真である。
FIG. 6 is a micrograph of a structure of an alloy cast iron having a V content of 0% obtained in Comparative Example 4 at a magnification of 1000 times.

【図7】比較例4で得られたV配合量2.5%の合金鋳
鉄の組織の400倍の顕微鏡写真である。
FIG. 7 is a micrograph of a structure of a cast iron alloy having a V content of 2.5% obtained in Comparative Example 4 magnified 400 times.

【図8】比較例4で得られたV配合量2.5%の合金鋳
鉄の組織の1000倍の顕微鏡写真である。
FIG. 8 is a 1000 × micrograph of the structure of an alloy cast iron having a V content of 2.5% obtained in Comparative Example 4.

【図9】比較例4で得られたV配合量15.5%の合金
鋳鉄の組織の400倍の顕微鏡写真である。
FIG. 9 is a micrograph of a structure of an alloy cast iron with a V content of 15.5% obtained in Comparative Example 4 magnified 400 times.

【図10】比較例4で得られたV配合量15.5%の合
金鋳鉄の組織の1000倍の顕微鏡写真である。
FIG. 10 is a micrograph of a structure of a cast iron alloy having a V content of 15.5% obtained in Comparative Example 4 at a magnification of 1000 times.

【図11】本発明の球状炭化物鋳鉄の摩耗試験に使用し
た、試験機の側面図である。
FIG. 11 is a side view of a testing machine used for a wear test of the spheroidal carbide cast iron of the present invention.

───────────────────────────────────────────────────── フロントページの続き (73)特許権者 000140502 株式会社岡本 岐阜県羽島郡岐南町三宅1丁目82番地 (72)発明者 西内 滋典 大阪府枚方市楠葉花園町5番6−1005号 (72)発明者 川野 豊 京都府宇治市木幡赤塚47番地の20 (72)発明者 山本 悟 京都府京都市左京区一乗寺葉山町11番地 の6 (72)発明者 菅原 清介 大阪府東大阪市御厨南2丁目5番28号 (56)参考文献 特開 平6−240404(JP,A) 特開 昭62−47451(JP,A) 特開 昭57−2834(JP,A) 特開 昭62−211319(JP,A) 特公 昭54−19371(JP,B1) (58)調査した分野(Int.Cl.7,DB名) C22C 37/08 ─────────────────────────────────────────────────── ─── Continuation of the front page (73) Patent holder 000140502 Okamoto Co., Ltd. 1-282 Miyake, Ginan-cho, Hashima-gun, Gifu Prefecture (72) Inventor Shigenori Nishiuchi 5-6-1005 Kusuhanaencho, Hirakata-shi, Osaka (72) Inventor Yutaka Kawano 20 at 47, Kobata Akatsuka, Uji City, Kyoto Prefecture 72 (72) Inventor Satoru Yamamoto 6 at 11 Ichijoji Hayama-cho, Sakyo-ku, Kyoto City Kyoto Prefecture (72) Inventor Kiyosuke Sugawara Misaki, Higashi-Osaka City, Osaka Prefecture Minami 2-chome 28-28 (56) Reference JP-A-6-240404 (JP, A) JP-A-62-47451 (JP, A) JP-A-57-2834 (JP, A) JP-A-62- 211319 (JP, A) JP-B-54-19371 (JP, B1) (58) Fields investigated (Int.Cl. 7 , DB name) C22C 37/08

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 C:0.6〜4.0重量%、Cr:13
〜30重量%、Ni:4〜15重量%、Si:0.2〜
4.5重量%、Mn:0.2〜1.5重量%、P:0.
01〜0.15重量%、S:0.01〜0.05重量
%、V:8〜15重量%、残部鉄(Fe)及び不可避不
純物からなり、その組織中に共有結合性の粒状又は球状
V−C炭化物を晶出させてなることを特徴とする球状炭
化物鋳鉄。
1. C: 0.6 to 4.0% by weight, Cr: 13
-30 wt%, Ni: 4-15 wt%, Si: 0.2-
4.5% by weight, Mn: 0.2 to 1.5% by weight, P: 0.
01 to 0.15% by weight, S: 0.01 to 0.05% by weight, V: 8 to 15% by weight, balance iron (Fe) and unavoidable impurities, and covalently-bonded granular or spherical particles in its structure. A spheroidal carbide cast iron characterized by crystallizing VC carbide.
【請求項2】 前記合金元素に、(a)Mo:0.05
〜15重量%、(b)Ti:0.01〜5重量%、
(c)B:0.01〜2重量%、(d)Cu、W、Z
r、Co、Nb、Ta、Yのうちの少なくとも2種以上
の合金元素:0.2〜5重量%、の(a)〜(d)の中
から選択された一以上を配合してなることを特徴とする
請求項1記載の球状炭化物鋳鉄。
2. The alloy element comprises: (a) Mo: 0.05
˜15% by weight, (b) Ti: 0.01 to 5% by weight,
(C) B: 0.01 to 2% by weight, (d) Cu, W, Z
r, Co, Nb, Ta, at least two or more alloying elements of Y: 0.2 to 5 wt%, of the (a) ~ Ichi以above selected from <br/> among (d) The spheroidal carbide cast iron according to claim 1, wherein the spheroidal carbide cast iron is blended.
JP12286199A 1999-04-28 1999-04-28 Spherical carbide cast iron Expired - Lifetime JP3456635B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP12286199A JP3456635B2 (en) 1999-04-28 1999-04-28 Spherical carbide cast iron
DE2000120636 DE10020636A1 (en) 1999-04-28 2000-04-27 Rust-free cast iron used e.g. in the petrochemical industry contains alloying additions of vanadium, chromium, nickel, silicon, manganese, phosphorus and sulfur
US09/794,818 US6406563B2 (en) 1999-04-28 2001-02-26 Stainless spheroidal carbide cast iron

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12286199A JP3456635B2 (en) 1999-04-28 1999-04-28 Spherical carbide cast iron

Publications (2)

Publication Number Publication Date
JP2000313934A JP2000313934A (en) 2000-11-14
JP3456635B2 true JP3456635B2 (en) 2003-10-14

Family

ID=14846459

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12286199A Expired - Lifetime JP3456635B2 (en) 1999-04-28 1999-04-28 Spherical carbide cast iron

Country Status (2)

Country Link
JP (1) JP3456635B2 (en)
DE (1) DE10020636A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007016842A (en) * 2005-07-06 2007-01-25 Okamoto Co Ltd Metal touch type fluid flow control device
EP2184372B9 (en) * 2007-08-31 2015-03-11 Kabushiki Kaisha Toyota Jidoshokki Austenitic cast iron, process for manufacturing the same, austenitic cast iron castings, and exhaust system parts
CN103014479A (en) * 2012-11-26 2013-04-03 姚芙蓉 Wearable cast iron alloy material
CN103695759A (en) * 2013-12-27 2014-04-02 黄忠波 Wear resisting cast iron abrasive disc
CN114959437B (en) * 2022-05-31 2023-06-27 广东省科学院新材料研究所 Vanadium-alloyed high-chromium cast iron and preparation method and application thereof

Also Published As

Publication number Publication date
DE10020636A1 (en) 2000-11-16
JP2000313934A (en) 2000-11-14

Similar Documents

Publication Publication Date Title
JP6214674B2 (en) High hardness low alloy wear resistant steel sheet and method for producing the same
CA2473253A1 (en) High chromium-nitrogen bearing castable alloy
WO2005073424A1 (en) High-chromium nitrogen containing castable alloy
JP4427790B2 (en) Martensitic stainless steel
JP2016509630A (en) High toughness low alloy wear resistant steel sheet and method for producing the same
EP1728884A1 (en) Steel for a plastic molding die
JP2005248263A (en) Martensitic stainless steel
US6793744B1 (en) Martenstic stainless steel having high mechanical strength and corrosion
JP5307729B2 (en) Lead free free cutting steel
JP5753365B2 (en) High chrome cast iron
KR20190034594A (en) Steel for machine structural use
US6406563B2 (en) Stainless spheroidal carbide cast iron
KR20190034273A (en) Steel for machine structural use
JP3737803B2 (en) Spherical vanadium carbide-containing high manganese cast iron material and method for producing the same
JP3456635B2 (en) Spherical carbide cast iron
JP3710053B2 (en) Stainless spheroidal carbide cast iron material
JP3768091B2 (en) High strength and high corrosion resistance martensitic stainless steel and manufacturing method thereof
JP4752800B2 (en) Non-tempered steel
JP3401534B2 (en) Tough high carbon vanadium cementite alloy cast iron
GB2368849A (en) Martensitic stainless steel
US4278465A (en) Corrosion-resistant alloys
JP3507723B2 (en) Bi free cutting steel
RU76647U1 (en) SHAFT (OPTIONS)
JP7464832B2 (en) Bolts and bolt steel
JP2002275573A (en) Spheroidal carbide alloy white cast iron

Legal Events

Date Code Title Description
S803 Written request for registration of cancellation of provisional registration

Free format text: JAPANESE INTERMEDIATE CODE: R313803

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

S803 Written request for registration of cancellation of provisional registration

Free format text: JAPANESE INTERMEDIATE CODE: R313803

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080801

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090801

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090801

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100801

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100801

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120801

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120801

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120801

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130801

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term