JP2002275573A - Spheroidal carbide alloy white cast iron - Google Patents

Spheroidal carbide alloy white cast iron

Info

Publication number
JP2002275573A
JP2002275573A JP2001074906A JP2001074906A JP2002275573A JP 2002275573 A JP2002275573 A JP 2002275573A JP 2001074906 A JP2001074906 A JP 2001074906A JP 2001074906 A JP2001074906 A JP 2001074906A JP 2002275573 A JP2002275573 A JP 2002275573A
Authority
JP
Japan
Prior art keywords
cast iron
carbide
white cast
impact
spheroidization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001074906A
Other languages
Japanese (ja)
Other versions
JP3937128B2 (en
Inventor
Tsuneo Takada
恒夫 高田
Tadashi Kitsudo
忠 橘堂
Mamoru Takemura
守 武村
Mitsuaki Matsumuro
光昭 松室
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurimoto Ltd
Osaka Prefecture
Original Assignee
Kurimoto Ltd
Osaka Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurimoto Ltd, Osaka Prefecture filed Critical Kurimoto Ltd
Priority to JP2001074906A priority Critical patent/JP3937128B2/en
Publication of JP2002275573A publication Critical patent/JP2002275573A/en
Application granted granted Critical
Publication of JP3937128B2 publication Critical patent/JP3937128B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve the problem that the material having high wear resistance is hard to be used for an apparatus to be subjected to large impact because of its high brittleness. SOLUTION: The white cast iron has a composition containing, by weight, 2.0 to 4.0% C, 0.5 to 3.0% Si, 0.06 to 1.5% Mn, 6.0 to 16.0% V, 0.01 to 0.1% Mg and 0 to 5.0% Ni, and the balance substantially Fe with impurities. V carbides which have been imperfectly spheroidal ones are perfectly spheroidized by the molten metal addition treatment of Mg, so that the white cast iron has an impact value of almost >=1.4 times that of the non-treated material having almost the same components.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は耐摩耗性の優れた高
硬度材でありながら、さらに靭性も兼ね具えた合金白鋳
鉄に係る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an alloy white cast iron which is a high hardness material having excellent wear resistance and also has toughness.

【0002】[0002]

【従来の技術】多岐に亘る産業用機器、装置において摩
耗作用に直面する部材は、自らの摩耗の進行によって装
置毎に設定された所期の機能を失うに至るので部材の耐
摩耗性は装置の運転効率を左右する重要な要因となる。
摩耗作用は種々の形態に大別されるが、最も一般的には
流動する処理材料との間に発生する擦過摩耗(アブレー
ジョン)に対抗するため部材表面の硬度を高めることが
まず有効とされ、硬度にほぼ比例的に耐摩耗性の向上が
連動する。その意味で従来からFe−C系では白鋳鉄、
とくにCrなどを相当量配合して高い硬度の複合炭化物
(ダブルカーバイド、たとえばFe−Cr−C炭化物)
を初晶、または共晶の形で晶出させて所期の耐摩耗性を
満足させる合金白鋳鉄が多用されている。
2. Description of the Related Art In a wide variety of industrial equipment and devices, members facing wear action lose their intended functions set for each device due to the progress of their own wear. It is an important factor that affects the operating efficiency of a vehicle.
The abrasion action is roughly classified into various forms, but it is first effective to increase the hardness of the member surface in order to counter abrasion (abrasion) that occurs most commonly with a flowing processing material. The improvement of wear resistance is linked almost in proportion to the hardness. In that sense, white cast iron has conventionally been used for Fe-C alloys,
High hardness composite carbide (double carbide, for example, Fe-Cr-C carbide) in which a considerable amount of Cr is blended.
Alloy white cast iron, which crystallizes in the form of primary crystal or eutectic to satisfy the desired wear resistance, is widely used.

【0003】一方、適用される装置の種類によっては単
純な耐摩耗性だけでは十分な機能を果たし得ず、さらに
別の要件を満たすことが求められる場合も少なくない。
とくに問題となることは、耐摩耗性を向上する要件であ
る炭化物そのものが硬い反面、脆いというマイナスの要
素を本質的に具え、基地に晶出した形態も板状や網目状
となって現れるため、白鋳鉄は本質的に脆性材料であっ
て衝撃に対しては弱いという欠点から逃れ難い。このた
め高耐摩耗性に加え、如何に靭性を兼ね具えるかという
ことが材料の適用範囲の広がりを決定する大きな条件と
なる。
On the other hand, depending on the type of equipment to be applied, simple wear resistance alone cannot fulfill a sufficient function, and there are many cases where it is required to satisfy other requirements.
A particular problem is that the carbide itself, which is a requirement to improve wear resistance, has a negative element that it is hard but brittle, and the form crystallized on the matrix also appears as a plate or mesh. White cast iron, however, is inherently a brittle material and is hard to escape from the drawback of being vulnerable to impact. For this reason, in addition to the high wear resistance, how to have the toughness is a great condition for determining the expansion of the applicable range of the material.

【0004】特公昭37−7602号公報の従来技術で
は、耐摩耗性に優れた白鋳鉄が衝撃や打撃に脆弱なのは
炭化物の形状が片状、板状、または網目状であるからか
らであることに着目し、C:1.5〜4.8%、Si:
0.2〜3.0%、V:2.0〜15.0%、残部Fe
の合金鋳鉄を提案し、Vの添加によって炭化物の形状を
均一微細な球状、または擬球状の析出に変えて耐衝撃性
を向上させたと謳っている。
In the prior art of Japanese Patent Publication No. 37-7602, the reason why white cast iron having excellent wear resistance is vulnerable to impact and impact is because the shape of carbide is flaky, plate-like or mesh-like. And C: 1.5-4.8%, Si:
0.2-3.0%, V: 2.0-15.0%, balance Fe
Alloy cast iron, and claims that the addition of V has changed the carbide shape into uniform and fine spherical or pseudospherical precipitates to improve the impact resistance.

【0005】一方、特開平11−124651号の従来
技術では、C:0.6〜6.5、Si:0.2〜3.
0、Mn:0.2〜1.0、Cr:13.0〜30.
0、Ni:4.0〜15.0、V:4.0〜15.0
%、残りFeの成分で、組織中に主として共有結合性の
粒状、または球状V−C系炭化物、およびFe−Cr系
炭化物を晶出させた強靱高炭素バナジウムセメンタイト
系合金鋳鉄を提起している。この材料は耐食性、耐摩耗
性、耐熱性の全ての特性を十分に兼ね具え、とくに球状
のV炭化物晶出による耐衝撃性を向上させる点に特徴が
あり、公報によれば従来、腐食や高温における酸化作用
に比較的耐え得る材料として各種化学プラント、ボイラ
などの部材に多用されてきたステンレス鋼も硬度が低く
耐摩耗性の劣る点が否定できず、この課題を解決するた
めに強靱高炭素系の合金鋳鉄を開発(特開平6−240
404号)したが、しかし、この新材料においても、た
とえば灰流し管、水中ポンプの汚泥用プロペラなど衝撃
の加わる危険度の高い用途では破壊される可能性がある
など万全とは言えないので、形状が平面で脆弱なFe−
Cr炭化物であった組織をV添加によって粒状、球状の
V炭化物を晶出させて耐衝撃性を大幅に向上させたと謳
っている。
On the other hand, in the prior art of Japanese Patent Application Laid-Open No. 11-124651, C: 0.6-6.5, Si: 0.2-3.
0, Mn: 0.2 to 1.0, Cr: 13.0 to 30.
0, Ni: 4.0 to 15.0, V: 4.0 to 15.0
%, With the balance of Fe, and presents a tough high-carbon vanadium-cementite alloy cast iron crystallized mainly with covalently bonded granular or spherical VC-based carbides and Fe-Cr-based carbides in the structure. . This material is fully characterized by having all the properties of corrosion resistance, abrasion resistance, and heat resistance, and in particular, improving the impact resistance due to the crystallization of spherical V carbides. Stainless steel, which has been widely used in various chemical plants and boilers as a material relatively resistant to the oxidizing action of stainless steel, has a low hardness and inferior wear resistance. System alloy cast iron developed (Japanese Unexamined Patent Publication No. 6-240)
However, even with this new material, it cannot be said that this new material may be destroyed in applications with high risk of impact, such as ash sink pipes and propellers for sludge of submersible pumps. Fe- which is flat and brittle in shape
It is stated that the addition of V precipitates the structure of Cr carbide to crystallize granular and spherical V carbide to greatly improve the impact resistance.

【0006】[0006]

【発明が解決しようとする課題】引用した中で第一の従
来技術は、特に高価な合金成分を大量に添加することな
く、単にVを適量添加しただけでCとの親和力が非常に
高く、そのため形成された炭化物の形状も球状、または
擬球状となって板状、片状、網目状の形状に起因する脆
性を大幅に改善し、かつ、その炭化物の硬度も極めて高
い(マイクロビッカース硬度、約2700)ために耐摩
耗性も一層強化された点は評価できる。しかし、この場
合、炭化物の最終的な形状は人為的に制御して得られた
ものではないから、その形状を完結する割合のバラツキ
も否定し難く、信頼できるレベルの靭性が常に確実に具
えられるか否かは必ずしも保証の限りに非ず、鋳造条件
の変動によってかなりのバラツキの生じる懸念は疑えな
いし、自然発生的に自由に晶出するままの炭化物の形状
は当然、球状化の割合にある限界があると言わざるを得
ない。
According to the first prior art cited, the affinity with C is very high just by adding an appropriate amount of V without adding a large amount of expensive alloy components. Therefore, the shape of the formed carbide is also spherical or pseudo-spherical, so that the brittleness due to the plate-like, flake-like, and mesh-like shapes is greatly improved, and the hardness of the carbide is extremely high (micro Vickers hardness, It can be evaluated that the abrasion resistance was further enhanced because of about 2700). However, in this case, since the final shape of the carbide is not obtained by artificial control, it is difficult to deny the variation in the rate of completing the shape, and a reliable level of toughness is always provided. Whether or not it is not necessarily guaranteed, there is no doubt that considerable variation will occur due to fluctuations in casting conditions, and the shape of carbides that are naturally and freely crystallized is naturally at the rate of spheroidization I have to say that there is a limit.

【0007】一方、第二の従来技術はステンレス鋼を出
発材とし、高硬度のセメンタイト系の高炭素合金鋳鉄に
進み、さらにV添加によって球状または粒状の炭化物の
晶出によって耐摩耗性と靭性を具えるという経緯を経た
ものであるが、大量のCr添加が必須の要件で、少なく
とも13%は含まないと強固なFe−Cr系の炭化物が
晶出しないことや、Niについても4.0%以上含まな
いとマルテンサイト化が起こりやすくなるため必須の要
件としているから、大量の合金成分の添加は製造コスト
を著しく高騰させる欠点がある。さらにV炭化物の粒
状、球状化は前の従来技術と同様、とくに人為的な制
御、操作によるものではなく自然発生的な金属間の反応
に依存するだけであるから、多くの鋳造条件の相違によ
ってその作用のバラツキも避け難く、必ずしも確実な球
状化、粒状化を保証するものではない。このことは添付
された顕微鏡組織写真にも明らかに認められ、菊花弁状
の不安定、不規則な塊状の炭化物と、ヒゲ状または網目
状に混在する多数のFe−Cr系炭化物が晶出している
状態からも明確に確認できる。
On the other hand, the second prior art uses stainless steel as a starting material, proceeds to a high-hardness cementite-based high-carbon alloy cast iron, and further increases wear resistance and toughness by crystallizing spherical or granular carbides by adding V. Although it is a process of providing, it is an essential requirement that a large amount of Cr be added. If at least 13% is not contained, strong Fe-Cr-based carbides do not crystallize, and Ni also contains 4.0%. If it is not contained, martensitization is liable to occur, so that it is an essential requirement. Therefore, the addition of a large amount of alloy components has the disadvantage of significantly increasing the production cost. Furthermore, as in the prior art, since the granulation and spheroidization of V carbides depend not only on artificial control and operation but on the spontaneous reaction between metals, there are many differences in casting conditions. Variations in the action are also unavoidable and do not necessarily guarantee reliable spheroidization and granulation. This is clearly seen in the attached microstructure photograph, in which chrysanthemum petals are unstable, irregular massive carbides, and a large number of Fe-Cr-based carbides mixed in a whisker-like or mesh-like form are crystallized. It can be clearly confirmed from the state where it is.

【0008】さらに基地についていえば、鋳放しの場合
でも、焼鈍、焼準の熱処理を施した場合でも、何れも組
織としてはオーステナイト(γ)+セメンタイト(Fe
−Cr−C)+VC複合体であってほぼ変らないと記載
があり、添付された顕微鏡写真においてもこのことが裏
付けられている。結局、問題は用途との適合性であっ
て、耐熱、耐食性を重視する化学プラント、ボイラ部材
などでは好適であっても、衝撃を伴う摩耗がより過酷な
分野、たとえば廃棄物や車両用のシュレッダーミルのハ
ンマー、打撃子などに対しては、基地の硬度が低きに失
し、たとえ炭化物を球状、粒状にさせただけでは、な
お、不十分な結果しか期待できないのではないかという
疑問が残る。
[0008] Further, regarding the matrix, in both cases of as-cast, annealing and normalizing heat treatment, the structure is austenitic (γ) + cementite (Fe).
-Cr-C) + VC complex is described as almost unchanged, and this is supported by the attached micrograph. After all, the problem is compatibility with the application, and it is suitable for chemical plants and boiler members that emphasize heat resistance and corrosion resistance, but is subject to more severe wear with impact, such as shredders for waste and vehicles. With regard to mill hammers and strikers, the question was that the hardness of the base was lost at a low level, and that even if carbides were made spherical or granular, insufficient results could still be expected. Remains.

【0009】本発明は以上の課題を解決するため、確実
にVとCとの化合物である炭化物を球状の形態で晶出さ
せることにより、従来通りの耐摩耗性のレベルを維持し
つつ耐衝撃性を著しく向上させ、少なくとも同一成分の
耐衝撃性に比べてほぼ1.4倍を超える靭性を兼ね具え
た合金白鋳鉄を広く産業機械、土木機械など広範囲の用
途に供することを目的とする。
In order to solve the above-mentioned problems, the present invention ensures that a carbide, which is a compound of V and C, is crystallized in a spherical form, thereby maintaining a conventional level of abrasion resistance while maintaining a high level of impact resistance. It is an object of the present invention to provide alloy white cast iron having significantly improved ductility and having at least 1.4 times the toughness as compared with the impact resistance of the same component for a wide range of uses such as industrial machinery and civil engineering machinery.

【0010】[0010]

【課題を解決するための手段】本発明に係る合金白鋳鉄
は、重量%にしてC:2.0〜4.0、Si:0.5〜
3.0、Mn:0.06〜1.5、V:6.0〜16.
0、Mg:0.01〜0.1、Ni:0〜1.0、残り
実質的に不純物を含むFeよりなり、顕微鏡組織におい
てほぼパーライトの母相へMgの溶湯添加処理によって
球状化したV炭化物が晶出することにより無処理のほぼ
同一成分の材料よりほぼ1.4倍以上の衝撃値を具えた
ことによって前記の課題を解決した。
The alloy white cast iron according to the present invention has a C: 2.0 to 4.0 and a Si: 0.5 to 100% by weight.
3.0, Mn: 0.06 to 1.5, V: 6.0 to 16.
0, Mg: 0.01 to 0.1, Ni: 0 to 1.0, and the remainder substantially composed of Fe containing impurities. The above problem was solved by the fact that the crystallized carbide provided an impact value that was approximately 1.4 times or more that of an untreated material of almost the same composition.

【0011】また、この基本構成のうち、Ni:1.
0.〜5.0と増量し、Mo:0.01〜0.8%をさ
らに添加して顕微鏡組織がほぼ下部ベイナイトまたはマ
ルテンサイトの母相として耐摩耗性をさらに向上するこ
とにより一層目的を有効に達成する場合もある。Ni、
Mo添加の有無やその添加量は、基地をパーライト相に
するか、下部ベイナイトまたはマルテンサイト相にする
か、製品の使用条件によって求められる耐摩耗性と耐衝
撃性のバランスの取り方によって異なる。
In the basic configuration, Ni: 1.
0. To 5.0, and Mo: 0.01 to 0.8% is further added to further improve the wear resistance of the microstructure as a base phase of lower bainite or martensite to further improve the purpose. May be achieved. Ni,
Whether Mo is added or not and the amount of Mo added depend on whether the matrix is a pearlite phase, a lower bainite or martensite phase, or how to balance abrasion resistance and impact resistance required depending on the use conditions of the product.

【0012】[0012]

【発明の実施の形態】本発明の合金白鋳鉄の成分限定理
由を以下に説明する。 C:鋳鉄という限りFe−C状態図上から2.0〜
6.67%CのFe−C合金とされるが、Siとの関係
によってその組織には決定的な差が顕れ、マウラー(M
aurer)の組織図からは、白鋳鉄の領域はA点
(C:4.3%、Si:0%、共晶点)とB点(C:
1.0%、Si:2.0%)を結んだ直線ABと横軸、
縦軸で囲む直角三角形の範囲とされる。本発明ではC:
2.0〜4.0%としてこの領域をカバーしたが、実用
的に好ましいのは2.5〜3.5%の範囲が推奨され
る。 Si:前記の組織図に従えばSi:0〜2.0%の範
囲になるが、Siは溶解時の脱酸や鋳造時の湯流れの点
から不可欠の成分であり、少なくとも0.5%含まれな
いと健全な鋳造が難しい。また、他成分の添加の影響に
よって白鋳鉄の範囲は拡張するが、3.0%を超えると
靭性を劣化させ、また黒鉛晶出を許容する範囲に入って
来るので0.5〜3.0%に限定したが、好ましくは
1.0〜2.5%が推奨される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The reasons for limiting the components of the alloy white cast iron of the present invention will be described below. C: 2.0- from the Fe-C phase diagram as far as cast iron is concerned
Although it is a 6.67% C Fe-C alloy, a critical difference appears in its structure due to the relationship with Si, and Maurer (M
According to the structure diagram of Aurer, the area of white cast iron is point A (C: 4.3%, Si: 0%, eutectic point) and point B (C:
1.0%, Si: 2.0%) and a horizontal axis,
The range is a right-angled triangle surrounded by the vertical axis. In the present invention, C:
Although this range is covered by 2.0 to 4.0%, a range of 2.5 to 3.5% is recommended for practical use. Si: Si is in the range of 0 to 2.0% according to the above structure diagram, but Si is an indispensable component from the viewpoint of deoxidation during melting and molten metal flow during casting, and is at least 0.5% If not included, sound casting is difficult. Further, the range of white cast iron expands due to the effect of the addition of other components, but if it exceeds 3.0%, the toughness is degraded, and the range falls within the range where graphite crystallization is allowed. %, But preferably 1.0 to 2.5% is recommended.

【0013】V:含有するCと結合して硬度の高い炭
化物を晶出するには少なくとも6.0%を要する。しか
し16.0%を超えると、最早結合すべきCとのバラン
スが崩れて加えただけの炭化物を晶出することができな
くなり効果が伴わないばかりか、却って耐衝撃性が低下
する原因となるので6.0〜16.0%に限定した。し
かし、実用的には後述の実施例の結果からみても8.0
〜13.0%の範囲が好ましい。 Mg:自然凝固過程で晶出するV炭化物の形状を、そ
のままでは不安定な菊弁状ともなり得るのを確実に球
状、粒状に変化させる作用として不可欠の要素である。
球状黒鉛鋳鉄で提唱されている球状黒鉛化理論の一つで
ある気泡説に従えば、鋳鉄溶湯中に添加されたMgは気
泡となり、その気泡外周から黒鉛が求心的に球状に成長
するとされている。本発明の鋳鉄のように母成分が白鋳
鉄の場合にもこのようなMgの気泡が炭化物を球状化す
る要素であるか否かは定かには不明であり、Mgの脱酸
効果そのものが本来、球状であるバナジウム炭化物を球
状の形態に還元するとも考えられる。何れにしてもMg
添加が球状化を促進する一因であるとは推察される。M
gの添加は瞬間的な爆発的燃焼による酸化消耗を見越し
た上で十分な球状化反応を保証するために、球状黒鉛化
の場合と同じ添加技術を転用し、凝固後の分析において
なお、0.01〜0.1%の残留成分が確認できる程度
の添加量と添加方法が必要である。
V: At least 6.0% is required to combine with the contained C to crystallize a carbide having a high hardness. However, if it exceeds 16.0%, the balance with C to be bonded sooner is lost, and it is not possible to crystallize only the added carbide, so that not only the effect is not accompanied but also the impact resistance is lowered. Therefore, it was limited to 6.0 to 16.0%. However, practically, it is 8.0 from the result of the embodiment described later.
The range of 13.0% is preferred. Mg is an indispensable element for reliably changing the shape of the V carbide crystallized in the natural solidification process into a spherical or granular shape that can be formed into an unstable chrysanthemum valve shape as it is.
According to the bubble theory, which is one of the spherical graphitization theories proposed for spheroidal graphite cast iron, Mg added to the cast iron melt becomes bubbles, and graphite grows centripetally from the outer periphery of the bubbles. I have. Even when the base component is white cast iron as in the cast iron of the present invention, it is unclear whether such Mg bubbles are elements that spheroidize carbides, and the deoxidizing effect of Mg itself is inherently unknown. It is also conceivable to reduce spherical vanadium carbide to a spherical form. In any case Mg
It is speculated that the addition contributes to promoting spheroidization. M
In order to ensure a sufficient spheroidization reaction in anticipation of instantaneous explosive combustion and oxidation consumption, the same addition technique as in the case of spheroidal graphitization was used. The amount and method of addition must be such that residual components of 0.01% to 0.1% can be confirmed.

【0014】Ni:添加の有無は基地の組織を変え、
組織によって硬度や耐摩耗性が大きな影響を受ける。特
に耐摩耗性を重視する製品の場合には0.04%以上添
加すれば熱処理によってマルテンサイト化する可能性も
確かめられている。鋳放しで基地をマルテンサイト化す
るには1%以上の添加が必要であり、好ましくは1〜3
%の添加が推奨できる。製品(鋳造品)の肉厚や、耐摩
耗性と靭性の何れに重点をおくかによって添加の有無や
添加量は定められるが、耐摩耗性と耐衝撃性の両立とい
う原点に立てば、上限としては5.0%に留めるべきで
あり、結局、添加量は0〜5.0%に限定される。 その他、Mnは溶解時の脱酸調整作用、脱硫作用に有
効で最低限は欠かせないが、一方では白銑化が助長する
顕著な働きもすることや偏析を促進する作用が無視でき
ないことなどから、0.06〜1.5%に限定する。ま
た、PやSについても通常の鋳鉄とほぼ同等の範疇であ
れば特に問題はないが、Sは黒鉛の場合と同様に球状化
を阻害する因子であるから、Mnとの関係によってでき
るだけ排除することが必要である。
Ni: The presence or absence of addition changes the structure of the base,
Hardness and wear resistance are greatly affected by the structure. In particular, in the case of a product that emphasizes abrasion resistance, it has been confirmed that if added in an amount of 0.04% or more, it is possible to form martensite by heat treatment. In order to convert the as-cast martensite into a matrix, it is necessary to add 1% or more, preferably 1 to 3%.
% Can be recommended. The presence or absence and amount of addition are determined depending on the thickness of the product (cast product) and whether the emphasis is on wear resistance or toughness. Should be kept at 5.0%, and eventually the amount added is limited to 0 to 5.0%. In addition, Mn is effective for deoxidation adjustment and desulfurization during dissolution, and at the very least is indispensable, but on the other hand, it also has a remarkable function to promote white ironing and a function that promotes segregation cannot be ignored. Therefore, it is limited to 0.06 to 1.5%. There is no particular problem for P and S as long as they are in the same category as that of ordinary cast iron. However, S is a factor that inhibits spheroidization as in the case of graphite. It is necessary.

【0015】[0015]

【実施例】本発明の作用と効果を確認するためには、所
望%のVを添加した白鋳鉄を無処理で鋳造した比較例
と、ほぼ同一成分の溶湯にMgを添加して球状化処理を
した実施例の試験片をそれぞれ作成し、衝撃値、硬さの
測定、衝撃摩耗試験の結果得られた摩耗係数、さらにそ
れぞれの顕微鏡組織写真を画像処理して計測される炭化
物の球状化率を対比することによって純粋にMg添加の
有無による両者の差違を知る事ができる。
EXAMPLE In order to confirm the function and effect of the present invention, a comparative example in which white iron to which desired V was added was cast without processing, and a spheroidizing treatment in which Mg was added to a molten metal having almost the same components. Specimens of each example were prepared, and the impact value, the hardness, the wear coefficient obtained as a result of the impact wear test, and the spheroidization ratio of carbide measured by image processing of each microstructure photograph By contrast, the difference between the two due to the presence or absence of the addition of Mg can be known purely.

【0016】試験片の作成はすべて同一条件で統一し
た。すなわち黒鉛坩堝内へ成分調整した材料を挿入し高
周波炉で溶解し、昇温後、比較例はそのままクロマイト
サンドで造形した鋳型に鋳造する。実施例は溶湯中へM
g添加処理後、直ちにクロマイトサンドの鋳型に鋳造、
何れも断面が10×10mmのテストブロックを作成
し、JIS規定のシャルピー衝撃試験片を削り出した。
試験後の試料はロックウェルC硬度(HRC)を測定
し、ショア硬度(HS)にも換算して表示した。表1は
実施例および比較例の化学成分とMg処理の有無、基地
の種類を一括して示したものであるが、純粋にMg添加
処理の作用、効果だけを比較するため基地毎にグループ
分けして、基地がパーライトのグループ1(請求項1)
と、基地が下部ベイナイトまたはマルテンサイトのグル
ープ2(請求項2)の二群に分けて表示し、それぞれの
グループの中に実施例と比較例とを含めた。各グループ
に含まれる比較例はそれぞれ同群の実施例に準じた成
分、基地よりなる。表2はこれら実施例、比較例の衝撃
値、硬さ、摩耗係数の試験結果を一括示したものであ
る。
The preparation of the test pieces was all the same under the same conditions. That is, the material whose components have been adjusted is inserted into a graphite crucible, melted in a high-frequency furnace, heated, and then cast in a mold made of chromite sand as it is in the comparative example. In the embodiment, M
g After casting, immediately cast into chromite sand mold,
In each case, a test block having a cross section of 10 × 10 mm was prepared, and a Charpy impact test specimen specified by JIS was cut out.
The sample after the test was measured for Rockwell C hardness (HRC) and converted to Shore hardness (HS) for display. Table 1 collectively shows the chemical components of Examples and Comparative Examples, the presence / absence of Mg treatment, and the types of bases. And the base is perlite group 1 (Claim 1)
And the base is divided into two groups of lower bainite or martensite group 2 (Claim 2), and examples and comparative examples are included in each group. The comparative examples included in each group include components and bases according to the examples of the same group. Table 2 shows the test results of the impact value, hardness, and wear coefficient of these examples and comparative examples.

【0017】[0017]

【表1】 [Table 1]

【0018】[0018]

【表2】 [Table 2]

【0019】衝撃摩耗係数を計測するには乾式摩耗試験
機を使用した。試験機の概略は図4に示す通り、回転軸
1から出た4本のアーム2に試験片TPを取り付け、所
定時間、回転軸1を電動機3によって回転して試験片を
石英斑岩Rに衝突させ、その間に生じた各試験片TPの
重量減を計測して標準材(SS400)の重量減と比較
して耐摩耗性の優劣の指標とした。
A dry wear tester was used to measure the impact wear coefficient. As shown in FIG. 4, the test device is attached to four arms 2 protruding from the rotary shaft 1, and the rotary shaft 1 is rotated by the electric motor 3 for a predetermined time to convert the test sample into quartz porphyry R. The weight loss of each test piece TP generated during the collision was measured, and compared with the weight loss of the standard material (SS400), and used as an index of the superiority of the abrasion resistance.

【0020】炭化物の球状化率は顕微鏡組織においてJ
IS G5502(球状黒鉛鋳鉄品)の規定に準じて表
すことにした。該規定によれば、顕微鏡倍率は800
倍、5視野に亘って行ない平均値を求める。図5(A)
(B)に示す標準の球状化に達した視野中の炭化物の個
数を数え、全視野の炭化物の総数に対する割合を%で示
して球状化率とするとあり、コンピュータによる画像処
理を行なって算出する場合もこれに準ずるとある。画像
処理の一例を図2に示す。
[0020] The spheroidization rate of the carbide is J
It is determined according to the provisions of IS G5502 (spheroidal graphite cast iron product). According to the regulations, the microscope magnification is 800
Double over 5 fields of view to determine the average value. FIG. 5 (A)
The number of carbides in the visual field that has reached the standard spheroidization shown in (B) is counted, and the ratio to the total number of carbides in the entire visual field is indicated by%, which is referred to as the spheroidization rate, and is calculated by computer image processing. In some cases, this is followed. FIG. 2 shows an example of the image processing.

【0021】図1(A)は画像処理の対象となる実施例
2および同図(B)は比較例1の顕微鏡組織写真をそれ
ぞれ示し、ナイタール腐食によって組織を現出させ倍率
は800倍である。図2(A)(B)は実施例2と比較
例1の試験片の組織写真を画像処理、二値化した炭化物
の形状を示したもので、各炭化物粒子毎に形状係数Kを
画像解析により求めた。各炭化物粒子の面積M、周囲S
を測定し、これから形状係数K=4πM/S2を算出
し、この値が0.523を超えた粒子を前記の図5
(A)(B)に示す球状化に達した合格粒子として計数
した。なお、誤差を避けるために直径2μm以下の円相
当面積を有する微細な粒子は形状係数を求める粒子から
除外した。表3は実施例2、比較例1の各試料の1視野
について、炭化物粒子毎の形状係数を計算し、球状化率
を算出した一例を示したもので、Mg添加による球状化
処理の有無による球状化の差違が如実に顕示されてい
る。
FIG. 1 (A) is a microscopic photograph of Example 2 and FIG. 1 (B) is a microscopic photograph of Comparative Example 1 in which image processing is performed. The structure is revealed by nital corrosion and the magnification is 800 times. . FIGS. 2 (A) and 2 (B) show the textures of the test pieces of Example 2 and Comparative Example 1 by image processing and binarized carbide shapes. Image analysis of shape factor K for each carbide particle Determined by Area M of each carbide particle, circumference S
Is calculated, and a shape factor K = 4πM / S2 is calculated from the particle size.
(A) Counted as acceptable particles that reached spheroidization as shown in (B). In order to avoid errors, fine particles having a circle-equivalent area of 2 μm or less in diameter were excluded from the particles for which the shape factor was determined. Table 3 shows an example of calculating the shape factor for each carbide particle and calculating the spheroidization ratio for one field of view of each sample of Example 2 and Comparative Example 1, depending on the presence or absence of spheroidization treatment by adding Mg. The difference in spheroidization is clearly shown.

【0022】[0022]

【表3】 [Table 3]

【0023】図3(A)(B)は別の実施形態であるN
i:2.74%、Mo:0.45%配合のグループ2
(請求項2)に係る実施例4と、これとほぼ同成分で無
処理の比較例3の顕微鏡組織写真であって、組織はナイ
タール腐食により基地を現出させたものである。写真中
白色に観察されるV炭化物は比較例3では球状化の崩れ
たものや棒状の形態であるのに対し、実施例4のV炭化
物は明らかに球状化が達成されている。また、基地組織
は、Ni、Moを配合しない図1(A)の実施例2のパ
ーライトに対し、硬度が大きく耐摩耗性に優れたマルテ
ンサイトと下部ベイナイト組織の混合組織が鋳放しで得
られている。このことから実施例4では鋳造後の熱処理
により耐摩耗性に優れた特性を具えたマルテンサイト、
ベイナイト組織とすることが容易であると考えられる。
先に説明した炭化物の球状化率を表1に掲げたすべての
試験片について計測した結果(各試験片につき、5視野
の球状化率の平均値を最終球状化率とした)を纏めたも
のが表4である。
FIGS. 3A and 3B show another embodiment of N
Group 2: i: 2.74%, Mo: 0.45%
7 is a photograph of a microstructure of Example 4 according to (Claim 2) and Comparative Example 3 which is substantially the same component and is untreated, in which a base is revealed by nital corrosion. The V-carbide observed in white in the photograph has a spheroidized or rod-shaped form in Comparative Example 3, whereas the V-carbide of Example 4 has clearly achieved spheroidization. In addition, as for the base structure, a mixed structure of martensite and lower bainite structure having high hardness and excellent abrasion resistance is obtained as-cast with respect to the pearlite of Example 2 in FIG. ing. For this reason, in Example 4, martensite having characteristics excellent in wear resistance by heat treatment after casting,
It is considered easy to form a bainite structure.
A summary of the results of measuring the spheroidization rate of the carbide described above for all the test specimens listed in Table 1 (the average value of the spheroidization rates in five visual fields for each test specimen was taken as the final spheroidization rate). Is Table 4.

【0024】[0024]

【表4】 [Table 4]

【0025】実施例、比較例の成分、衝撃値、硬度、衝
撃摩耗係数および球状率を総括して判断すれば、無処理
の比較例もMg処理の実施例も基地の組織自体には大差
は見られないにも拘わらず、衝撃値に顕著な差違が顕れ
ることが第一に挙げられる。衝撃値はNi、またはMo
を全く、または低くしか含まないグループ1の場合、基
地は何れもパーライトと変りはないが、実施例の平均衝
撃値9.2J/cm2は比較例の平均衝撃値6.0J/
cm2の1.53倍に相当し、Ni:3%、Mo:0.
5%前後のグループ2では、基地は何れも下部ベイナイ
トまたはマルテンサイトと変りはないが、比較例3に対
して実施例4、5は何れも衝撃値において1.66〜
1.64倍を示し、何れの実施形態でも確実に大幅な衝
撃値の向上、少なくともほぼ1.4倍以上の向上を示し
ている。
If the components, impact value, hardness, impact wear coefficient and spheroidity of the examples and comparative examples are comprehensively determined, there is no significant difference between the untreated comparative example and the Mg-treated example in the base structure itself. First of all, a remarkable difference in impact value appears despite not being seen. Impact value is Ni or Mo
In the case of Group 1 containing no or only low, the bases were not different from the pearlite, but the average impact value of 9.2 J / cm 2 of the example was 6.0 J / cm 2 of the comparative example.
cm3, 1.53 times of cm2, Ni: 3%, Mo: 0.
In Group 2 of about 5%, the base was not different from lower bainite or martensite, but Examples 4 and 5 in Comparative Example 3 were 1.66 to less in impact value.
It is 1.64 times, and in each of the embodiments, the impact value is surely greatly improved, and at least approximately 1.4 times or more.

【0026】硬度については基地自体が前記のように実
施例、比較例、共に大きな差違がなく、結果的に衝撃摩
耗係数はこの硬度差に応じてほぼ同じレベルの範囲に収
っている。このように衝撃値に関しては顕著な大差があ
り、硬度と耐摩耗性については明瞭な差違が認め難いこ
とからも、これらの物理的数値の変化の傾向は、晶出し
た炭化物の球状率の多寡とよく整合すると認められ、成
分上、唯一の差であるMg添加による球状化処理の有無
のみに基づく成果であることと断定される。
As described above, the hardness of the base itself is not significantly different from that of the embodiment and the comparative example, and as a result, the impact wear coefficient falls within the substantially same level range according to the difference in hardness. As described above, there is a remarkable large difference in the impact value, and it is difficult to recognize a clear difference between the hardness and the abrasion resistance. And it was concluded that the result was based solely on the presence or absence of the spheroidization treatment by the addition of Mg, which is the only difference in the components.

【0027】[0027]

【発明の効果】以上述べた通り本発明に係る合金白鋳鉄
は、耐摩耗性をほぼ同じレベルに持続したまま、耐衝撃
性を大幅に向上する効果がある。しかもそのためにN
i、Crなどの高価な合金元素を大量に配合する必要が
なく、溶湯処理だけで確実に実施できることから経済的
にも従来技術に比べると遥かに有利である。この結果、
とくに衝撃摩耗が装置の機能を決定的に支配する破砕
機、粉砕機、その他のハンマーや打撃子類をはじめ全て
の摩耗部材に好適な靭性と耐摩耗性とを同時に満足する
理想的な材質として産業上に貢献するところ極めて大で
ある。
As described above, the alloy white cast iron according to the present invention has the effect of greatly improving the impact resistance while maintaining the wear resistance at substantially the same level. And because of that N
There is no need to mix a large amount of expensive alloying elements such as i and Cr, and the method can be reliably performed only by molten metal treatment. Therefore, it is far more economically advantageous than the conventional technology. As a result,
In particular, it is an ideal material that simultaneously satisfies the toughness and wear resistance suitable for all wear members including crushers, crushers, other hammers and strikers where impact wear crucially controls the function of the device The contribution to the industry is extremely large.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態である実施例2(A)と、ほ
ぼ同一成分からなる比較例1(B)の腐食により現出さ
せた顕微鏡組織の写真(倍率800)をそれぞれ示す。
FIG. 1 is a photograph (magnification: 800) of a microscopic structure revealed by corrosion in Example 2 (A), which is an embodiment of the present invention, and in Comparative Example 1 (B) having substantially the same components.

【図2】同じ実施例、比較例の球状化率計測対象である
炭化物を画像処理により二値化した画像を(A)(B)
でそれぞれ示す。
FIG. 2 shows images (A) and (B) obtained by binarizing a carbide as a spheroidization rate measurement object of the same example and comparative example by image processing.
Are indicated by.

【図3】本発明の別の実施形態における実施例4(A)
と、比較例3(B)の腐食により現出させた顕微鏡組織
の写真(倍率800)をそれぞれ示す。
FIG. 3 (Example 4 (A)) in another embodiment of the present invention.
And a photograph (magnification: 800) of a microstructure revealed by corrosion in Comparative Example 3 (B).

【図4】摩耗試験に使用した摩耗試験機の概要を示す一
部断面正面図である。
FIG. 4 is a partial cross-sectional front view showing an outline of a wear tester used for a wear test.

【図5】JIS規定において組織上、球状と認められる
標準の二形態を(A)(B)で示す。
FIGS. 5A and 5B show two forms of a standard recognized as a sphere on a tissue in accordance with JIS regulations.

【符号の説明】[Explanation of symbols]

1 回転軸 2 アーム 3 電動機 TP 試験片 R 石英斑岩 Reference Signs List 1 rotation axis 2 arm 3 motor TP test piece R quartz porphyry

───────────────────────────────────────────────────── フロントページの続き (72)発明者 橘堂 忠 大阪府和泉市あゆみ野2丁目7番1号 大 阪府立産業技術総合研究所内 (72)発明者 武村 守 大阪府和泉市あゆみ野2丁目7番1号 大 阪府立産業技術総合研究所内 (72)発明者 松室 光昭 大阪府和泉市あゆみ野2丁目7番1号 大 阪府立産業技術総合研究所内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Tadashi Tachibana 2-7-1, Ayumino, Izumi-shi, Osaka Inside the Osaka Prefectural Institute of Advanced Industrial Science and Technology (72) Mamoru Takemura 2--7, Ayumino, Izumi-shi, Osaka No. 1 Inside the Osaka Prefectural Institute of Industrial Science and Technology (72) Inventor Mitsuaki Matsumuro 2-7-1 Ayumino, Izumi-shi, Osaka Pref.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 重量%にしてC:2.0〜4.0、S
i:0.5〜3.0、Mn:0.06〜1.5、V:
6.0〜16.0、Mg:0.01〜0.1、Ni:0
〜1.0、残り実質的に不純物を含むFeよりなり、顕
微鏡組織においてほぼパーライトの母相へMgの溶湯添
加処理によって球状化したV炭化物が晶出することによ
り無処理のほぼ同一成分の材料よりほぼ1.4倍以上の
衝撃値を具えたことを特徴とする球状炭化物合金白鋳
鉄。
1. C: 2.0 to 4.0 in terms of% by weight, S
i: 0.5 to 3.0, Mn: 0.06 to 1.5, V:
6.0-16.0, Mg: 0.01-0.1, Ni: 0
1.0, the remaining substantially composed of Fe containing impurities, and in the microscopic structure, a V-carbide crystallized by the treatment of adding a molten metal of Mg to the mother phase of pearlite almost uncrystallized material of substantially the same component. Spherical carbide alloy white cast iron characterized by having an impact value almost 1.4 times or more.
【請求項2】 請求項1において、Ni:1.0〜5.
0、Mo:0.01〜0.8%を含む顕微鏡組織がほぼ
下部ベイナイトまたはマルテンサイトの母相として耐摩
耗性を一層高めることを特徴とする球状炭化物合金白鋳
鉄。
2. The method according to claim 1, wherein Ni: 1.0-5.
0, Mo: Spherical carbide alloy white cast iron characterized in that the microstructure containing 0.01 to 0.8% substantially enhances wear resistance as a matrix of lower bainite or martensite.
JP2001074906A 2001-03-15 2001-03-15 Spheroidal carbide alloy white cast iron Expired - Lifetime JP3937128B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001074906A JP3937128B2 (en) 2001-03-15 2001-03-15 Spheroidal carbide alloy white cast iron

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001074906A JP3937128B2 (en) 2001-03-15 2001-03-15 Spheroidal carbide alloy white cast iron

Publications (2)

Publication Number Publication Date
JP2002275573A true JP2002275573A (en) 2002-09-25
JP3937128B2 JP3937128B2 (en) 2007-06-27

Family

ID=18932077

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001074906A Expired - Lifetime JP3937128B2 (en) 2001-03-15 2001-03-15 Spheroidal carbide alloy white cast iron

Country Status (1)

Country Link
JP (1) JP3937128B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004232032A (en) * 2003-01-30 2004-08-19 Osaka Prefecture Spheroidal vanadium carbide-containing high manganese cast iron material, and production method therefor
JP2006291333A (en) * 2005-04-14 2006-10-26 Kimura Chuzosho:Kk Iron-vanadium carbide-based wear-resistant casting material
JP2007016842A (en) * 2005-07-06 2007-01-25 Okamoto Co Ltd Metal touch type fluid flow control device
JP2008174788A (en) * 2007-01-18 2008-07-31 Osaka Prefecture High-hardness alloy cast iron material containing spheroidal vanadium carbide and its manufacturing method
JP2016061123A (en) * 2014-09-22 2016-04-25 清水建設株式会社 Roller cutter and manufacturing method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6043462A (en) * 1983-08-18 1985-03-08 Toyota Motor Corp Cast iron for rocker arm
JPH06256888A (en) * 1993-03-05 1994-09-13 Kubota Corp High-speed steel series cast iron containing graphite and composite roll
JP2001234288A (en) * 2000-02-21 2001-08-28 Nippon Steel Corp Tool material for hot working
JP2001247928A (en) * 2000-03-06 2001-09-14 Nippon Steel Corp Outer layer material of composite roll for rolling
JP2002161332A (en) * 2000-11-20 2002-06-04 Nippon Steel Corp Composite roll for hot rolling made with continuous hardfacing by casting

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6043462A (en) * 1983-08-18 1985-03-08 Toyota Motor Corp Cast iron for rocker arm
JPH06256888A (en) * 1993-03-05 1994-09-13 Kubota Corp High-speed steel series cast iron containing graphite and composite roll
JP2001234288A (en) * 2000-02-21 2001-08-28 Nippon Steel Corp Tool material for hot working
JP2001247928A (en) * 2000-03-06 2001-09-14 Nippon Steel Corp Outer layer material of composite roll for rolling
JP2002161332A (en) * 2000-11-20 2002-06-04 Nippon Steel Corp Composite roll for hot rolling made with continuous hardfacing by casting

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004232032A (en) * 2003-01-30 2004-08-19 Osaka Prefecture Spheroidal vanadium carbide-containing high manganese cast iron material, and production method therefor
JP2006291333A (en) * 2005-04-14 2006-10-26 Kimura Chuzosho:Kk Iron-vanadium carbide-based wear-resistant casting material
JP2007016842A (en) * 2005-07-06 2007-01-25 Okamoto Co Ltd Metal touch type fluid flow control device
JP2008174788A (en) * 2007-01-18 2008-07-31 Osaka Prefecture High-hardness alloy cast iron material containing spheroidal vanadium carbide and its manufacturing method
JP4646926B2 (en) * 2007-01-18 2011-03-09 大阪府 Spherical vanadium carbide-containing high-hardness cast iron material and method for producing the same
JP2016061123A (en) * 2014-09-22 2016-04-25 清水建設株式会社 Roller cutter and manufacturing method thereof

Also Published As

Publication number Publication date
JP3937128B2 (en) 2007-06-27

Similar Documents

Publication Publication Date Title
RU2156176C2 (en) Method of casting of metal alloy containing primary phase dispersed in eutectic phase
Davis Alloying: understanding the basics
CN106232849B (en) Spring steel and its manufacture method
AU2011201781A1 (en) Improved wear resistant alloy
WO2005073424A1 (en) High-chromium nitrogen containing castable alloy
MX2012008918A (en) Metal alloys for high impact applications.
JP2019119924A (en) Spheroidal graphite cast iron
JP2007154295A (en) Wear resistant cast steel and its production method
CN1044494C (en) Corrosion and wear-resistant chill casting
JP2002275573A (en) Spheroidal carbide alloy white cast iron
Stefanescu Classification and basic types of cast iron
JP2004232032A (en) Spheroidal vanadium carbide-containing high manganese cast iron material, and production method therefor
TW390910B (en) High strength spheroidal graphite cast iron
JP2019116688A (en) Powder high speed tool steel
JP2003013171A (en) Stainless spheroidal carbide cast iron material
Melali et al. Influence of number of investment cast revert remelting on microstructure and mechanical properties of Fe–Cr–Co heat-resistant stainless steel alloy
AU603496B2 (en) Corrosion and abrasion resistant alloy
JP3456635B2 (en) Spherical carbide cast iron
JP6328967B2 (en) Spheroidal graphite cast iron pipe and manufacturing method of spheroidal graphite cast iron pipe
Raman Uses of Rare Earth Metals and Alloys in Metallurgy: Part I. Applications in Ferrous Materials
JP5475380B2 (en) Austenitic cast iron, its manufacturing method and austenitic cast iron casting
JP6950071B2 (en) Ni-Cr-Mo-Nb alloy
JP2000265243A (en) Bi FREE-CUTTING STEEL
JP3401534B2 (en) Tough high carbon vanadium cementite alloy cast iron
JPS62274037A (en) Precipitation curable nickel base alloy having improved stress corrosion cracking resistance

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20041215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20041215

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061107

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070313

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070313

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3937128

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100406

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110406

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120406

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120406

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130406

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130406

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130406

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130406

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130406

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130406

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140406

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term