JP2547790B2 - Stack for flat semiconductor devices - Google Patents

Stack for flat semiconductor devices

Info

Publication number
JP2547790B2
JP2547790B2 JP62232278A JP23227887A JP2547790B2 JP 2547790 B2 JP2547790 B2 JP 2547790B2 JP 62232278 A JP62232278 A JP 62232278A JP 23227887 A JP23227887 A JP 23227887A JP 2547790 B2 JP2547790 B2 JP 2547790B2
Authority
JP
Japan
Prior art keywords
stack
plate
pressing
pressure
laminated body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62232278A
Other languages
Japanese (ja)
Other versions
JPS6476749A (en
Inventor
寿彰 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP62232278A priority Critical patent/JP2547790B2/en
Publication of JPS6476749A publication Critical patent/JPS6476749A/en
Application granted granted Critical
Publication of JP2547790B2 publication Critical patent/JP2547790B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Die Bonding (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は平形半導体素子とヒートシンクを積層し弾性
的な押圧力を加えてなる平形半導体素子用スタックに関
する。
DETAILED DESCRIPTION OF THE INVENTION Object of the Invention (Field of Industrial Application) The present invention relates to a stack for a flat semiconductor device in which a flat semiconductor device and a heat sink are laminated and an elastic pressing force is applied.

(従来の技術) 近年半導体変換装置(以下、装置と称する)は大容量
化(高電圧化)の傾向にありそれに伴い多数個の平形半
導体素子(以下、素子と称する)が用いられる。装置は
複数個の素子とその素子を冷却するためのヒートシンク
を交互に積層し弾性的な押圧力を保持するための押え
板、スタッド、バネ等から成る平形半導体素子用スタッ
ク(以下、スタックと称する)を装置の回路構成要素と
して多数使用している。
(Prior Art) In recent years, a semiconductor conversion device (hereinafter referred to as a device) tends to have a large capacity (higher voltage), and accordingly, a large number of flat semiconductor elements (hereinafter referred to as elements) are used. The apparatus is a stack for flat semiconductor devices (hereinafter referred to as a stack) that is composed of a plurality of elements and heat sinks for cooling the elements that are alternately stacked to each other and that includes a holding plate, a stud, and a spring for holding an elastic pressing force. ) Is used as a large number of circuit components of the device.

近年、特に設置場所、スペース等の制限から増々装置
のコンパクト化が要求されているが装置の大容量化(高
電圧化)は部品の大形化ばかりでなく用品間の絶縁距離
確保の点からコンパクト化と相反する要因となってい
る。
In recent years, more and more compact devices have been required due to restrictions on installation location and space. However, increasing the capacity (increasing the voltage) of the device is not only due to the increase in the size of parts, but also to ensure the insulation distance between the products. This is a factor that conflicts with compactness.

以下、装置に使用している従来のスタックを第4図か
ら第6図を用いて説明する。
The conventional stack used in the apparatus will be described below with reference to FIGS. 4 to 6.

一般に装置はモジュールと呼ばれるユニットを複合台
塔載して構成している。第4図は代表的なモジュール内
の回路を示している。モジュール23は複数個の素子12、
(図では6個直列)及びその付属回路であるアノードリ
アクトル20、分圧抵抗21、コンデンサー22を収納して構
成されており、破線の部分がスタック1である。
Generally, the apparatus is constructed by mounting units called modules on a composite platform. FIG. 4 shows the circuitry within a typical module. The module 23 includes a plurality of elements 12,
(6 in series in the figure) and its associated circuit, the anode reactor 20, the voltage dividing resistor 21, and the capacitor 22, are housed, and the broken line portion is the stack 1.

第5図は第4図のスタック1を示す正面図、第6図は
スタック1の側面図を示す。
FIG. 5 is a front view showing the stack 1 of FIG. 4, and FIG. 6 is a side view of the stack 1.

スタック1は複数個の素子12(図では6個直列)及び
ヒートシンク11を積層し更にその両端に電気回路接続素
子となる導体10、電気絶縁の為の絶縁座9と座8を積層
しこれらの積層体に弾性的な押圧力を保持するための押
え板2−a,2−b、スタッド3、皿バネ4、皿バネ押え
板5及び締付ナット6から構成される。
The stack 1 is formed by laminating a plurality of elements 12 (six in series in the figure) and a heat sink 11, and further laminating a conductor 10 which becomes an electric circuit connecting element, an insulating seat 9 and a seat 8 for electrical insulation on both ends thereof. The laminated body is composed of pressing plates 2-a and 2-b for holding elastic pressing force, studs 3, disc springs 4, disc spring pressing plates 5 and tightening nuts 6.

従来スタッド3は鋼材を使用しておりその両端にはネ
ジ加工が施され図に示すように片端を押え板2−aのネ
ジ穴加工に固定し、他端を押え板2−bの貫通穴を通し
皿バネ4を装着して皿バネ押え板5を通し締付ナット6
で締付けるように考慮されている。ここで皿バネ4は装
置運転中の素子12の熱損失による素子12そのものの熱膨
張と素子12を冷却するヒートシンク11の熱膨張による加
圧力の変動を吸収し、素子の許容加圧力以下にて弾性的
に加圧維持する機能がある。
Conventionally, the stud 3 is made of steel, and is threaded at both ends. As shown in the figure, one end is fixed to the screw hole drilled in the holding plate 2-a and the other end is a through hole in the holding plate 2-b. Insert the disc spring 4 and insert the disc spring retainer plate 5 and tighten the nut 6.
Considered to be tightened in. Here, the disc spring 4 absorbs the thermal expansion of the element 12 itself due to the heat loss of the element 12 during the operation of the device and the fluctuation of the pressurizing force due to the thermal expansion of the heat sink 11 which cools the element 12, and is kept below the allowable pressurizing force of the element. It has the function of elastically maintaining pressure.

(発明が解決しようとする問題点) 押え板2−a,2−bは電気的にはスタッド3と同電位
となる為通常スタック1の中央の箇所のヒートシンク11
と押え板2−b(又は2−a)を電線にて電気的に接続
してスタック中央のヒートシンクと同電位としている。
その為複数の素子12とヒートシンク11の積層体の両端と
押え板2−a,2−bの電位とは異なる為、絶縁座9を介
してスタッキングしている。また通常スタッド3はコロ
ナ等の放電現象を発生せぬよう両端のネジ部以外をエポ
キシやテフロン等の絶縁材料による表面コーティングを
施している。もちろんスタッド3と素子12及びヒートシ
ンク11の積層体との空間絶縁距離Lは充分確保する必要
がある。この空間絶縁距離Lは基本的には素子が分担す
る電圧とスタッキングする素子数の積に比例して大きく
なる。これらは簡素化,コンパクト化の要求とは矛盾す
る要因となっていた。また装置の大容量化(高電圧化)
と簡素化を要求されるため多数個の素子及びヒートシン
クがまとめて1つのスタックとして構成しているが、そ
れなりの絶縁距離Lを確保する必要上モジュール23内に
於けるスタック1の占有体積が増加するばかりでなく、
押え板2−a,2−bの長さlが長くなることにより、加
圧時に押え板のたわみ量が大きくならないよう押え板の
厚みtを厚くして曲げ強度を強くする必要もありスタッ
クの重量が極端に増加するという問題を生じていた。
(Problems to be Solved by the Invention) Since the pressing plates 2-a and 2-b are electrically at the same potential as the stud 3, the heat sink 11 at the central portion of the stack 1 is usually provided.
And the pressing plate 2-b (or 2-a) are electrically connected by an electric wire so as to have the same potential as the heat sink in the center of the stack.
Therefore, both ends of the laminated body of the plurality of elements 12 and the heat sink 11 and the electric potentials of the pressing plates 2-a and 2-b are different, and therefore stacking is performed via the insulating seat 9. Further, the stud 3 is usually surface-coated with an insulating material such as epoxy or Teflon except the screw portions at both ends so as not to generate a discharge phenomenon such as corona. Of course, it is necessary to secure a sufficient space insulation distance L between the stud 3 and the laminated body of the element 12 and the heat sink 11. This space insulation distance L basically increases in proportion to the product of the voltage shared by the elements and the number of elements stacked. These were factors that contradicted the requirements for simplification and compactness. In addition, increase the capacity of the device (higher voltage)
Since a large number of elements and heat sinks are integrated into one stack because of the simplification required, the volume occupied by the stack 1 in the module 23 is increased because it is necessary to secure a certain insulation distance L. Not only
It is also necessary to increase the bending strength by increasing the thickness t of the pressing plate so that the amount of deflection of the pressing plate does not increase when pressure is applied due to the length l of the pressing plates 2-a and 2-b increasing. There was a problem that the weight was extremely increased.

さらに、従来の半導体スタックは2ケの締付ナット6
で加圧力を保持する構造となっているが、この締付ナッ
ト6をゆるめると、スタッド3が押え板2−aにネジ込
まれているとはいえ多少のガタつきがあり素子変換後の
再加圧はこのガタつきを押えながら、しかも加圧の偏り
がないように2つの締付ナット6を交互に締付けて所定
の加圧力とする必要がある。その際、工具の関係である
程度のスペースも必要とし通常装置の中に組込まれたま
までの素子交換は困難であった。
Furthermore, the conventional semiconductor stack has two tightening nuts 6
Although the pressurizing force is held by, the loosening of the tightening nut 6 causes some play even though the stud 3 is screwed into the holding plate 2-a. It is necessary to pressurize this rattling, and to tighten the two tightening nuts 6 alternately so that there is no unevenness of the pressurization, so that a predetermined pressure is applied. At that time, a certain amount of space was required due to the tools, and it was difficult to replace the element while it was still incorporated in the normal device.

本発明は従来例の問題点を克服し、簡素でコンパクト
で軽量なしかもスタッキングの容易な平形半導体素子用
スタックを提供することを目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to overcome the problems of the conventional example, and to provide a stack for flat semiconductor devices which is simple, compact, lightweight and easy to stack.

〔発明の構成) (問題点を解決するための手段) 前述した問題点を解決するためスタックを構成するス
タッドのかわりとしてガラスクロス積層強化プラスチッ
ク等の絶縁材料平板としこの絶縁平板2枚と押え板2枚
でスタッキングフレームを構成したことを第1の特徴と
し、次に複数個の平形半導体素子とヒートシンクを複数
個積層して成る積層体に弾性的な押圧力で圧接保持する
機構として両端の押え板に積層体に沿った貫通穴を設
け、一方の押え板の貫通穴には自在に可動し得る加圧ロ
ッドを表着しかつ加圧ロッドにはネジ切りを施してロッ
クナットを具備し他方の押え板の貫通穴には自在に可動
しかつ皿ばねを装着した皿バネロッドを設けたことを第
2の特徴とし、更に前述加圧シリンダーに押圧力を加
え、素子及びヒートシンクの積層体を圧接せしめる例え
ばハンディタイプの油圧による加圧ユニットが前記押え
板に具備可能としたことを第3の特徴とする。
[Means for Solving the Problems] (Means for Solving the Problems) In order to solve the above-mentioned problems, instead of the studs forming the stack, an insulating material flat plate made of glass cloth laminated reinforced plastic or the like is used. The first feature is that the stacking frame is composed of two sheets, and then the both ends are pressed down as a mechanism for pressing and holding the stacked body formed by stacking a plurality of flat semiconductor elements and a plurality of heat sinks with elastic pressing force. The plate is provided with a through hole along the laminated body, a pressure rod that can be freely moved is attached to the through hole of one of the pressing plates, and the pressure rod is threaded to provide a lock nut. The second feature is that a disc spring rod having a disc spring mounted therein is provided in the through hole of the holding plate of No. 2, and further, a pressing force is applied to the pressurizing cylinder so that the device and the heat sink Pressure unit according to pressure allowed to example handheld hydraulic layer body is a third feature in that to allow provided on the holding plate.

(作 用) 以上述べた構成とすれば、前述した第1の特徴により
第5図の図中に示す空間距離Lを確保する必要がなくな
る。すなわち従来のスタッドは導電性の鋼材を用いてい
たためある電位をもつ電極となり又素子及びヒートシン
クの積層体もある電位分布をもつ電極となるためこの間
を充分確保して電界緩和を施す必要があったが、スタッ
ドを絶縁材平板で構成することにより空間距離Lを確保
する必要がなくなる。又押え板と絶縁材平板との固定は
絶縁材平板を構成する繊維例えばガラスクロスマット積
層板の場合その積層板に沿った方向に力が加わるよう押
え板への固定を配慮することにより、引張り力に対して
強いというガラスクロスマット積層板の特徴を発揮した
使い方となる。更に従来のスタックの構成要素として必
要だった第5図の絶縁座9が不要となる。当然電位固定
の為の電線7も不要となる。以上第1の特徴はスタック
の簡素化、コンパクト化ができる。
(Operation) With the configuration described above, it is not necessary to secure the spatial distance L shown in FIG. 5 due to the above-mentioned first feature. That is, since the conventional stud uses an electrically conductive steel material, it serves as an electrode having a certain potential, and the laminated body of the element and the heat sink also serves as an electrode having a certain potential distribution. However, it is not necessary to secure the space distance L by forming the stud with an insulating material flat plate. In addition, when the pressing plate and the insulating flat plate are fixed, the fibers forming the insulating flat plate, for example, in the case of a glass cloth mat laminated plate, are pulled by considering the fixing to the pressing plate so that a force is applied in the direction along the laminated plate. It is used to demonstrate the characteristics of the glass cloth mat laminate, which is strong against force. Further, the insulating seat 9 shown in FIG. 5, which was necessary as a constituent element of the conventional stack, is unnecessary. Of course, the electric wire 7 for fixing the electric potential is also unnecessary. The first feature described above enables the stack to be simplified and made compact.

また、前述の第2の特徴により複数個の素子及びヒー
トシンクを交互に積層した積層体に弾性的な押圧力で圧
接保持する作用を有することができる。特に皿バネロッ
ドを皿バネに通して皿バネを装着したことによりスタッ
ク加圧時のすわり(安定性)を向上している。又加圧ロ
ッドに外部から押圧力を加えて積層体を圧接後、加圧ロ
ッドのロックナットで加圧を保持することができる。
Further, according to the second characteristic described above, it is possible to have an action of pressing and holding a laminated body in which a plurality of elements and heat sinks are laminated alternately by elastic pressing force. In particular, by mounting the disc spring by passing the disc spring rod through the disc spring, the sitting (stability) at the time of pressurizing the stack is improved. Further, after pressing the laminated body by applying a pressing force to the pressing rod from the outside, the pressure can be retained by the lock nut of the pressing rod.

そして第3の特徴により加圧ユニットを取付ければど
こでも簡単にスタックの加圧力を解除して素子が交換で
き、再び加圧し弾性的な圧接力の保持が実現できるとい
う作用がある。すなわちモジュールユニットに組込まれ
たスタックをモジュールから取り出すことなくそのまま
の状態で手軽に素子交換することができる。これは本発
明の第2の特徴である加圧ロッドの機構を利用した加圧
ユニットをスタックに取付けるだけで容易にスタッキン
グの解除及び再加圧が可能となる。
With the third feature, when the pressure unit is attached, the pressure applied to the stack can be easily released anywhere to replace the element, and the pressure can be applied again to maintain the elastic pressure contact force. That is, it is possible to easily replace the elements as they are without removing the stack assembled in the module unit from the module. This makes it possible to easily release stacking and re-pressurize by simply attaching a pressure unit utilizing the mechanism of the pressure rod, which is the second feature of the present invention, to the stack.

(実施例) 以下、本発明を第1乃至第3図を参照して説明する。(Example) Hereinafter, the present invention will be described with reference to FIGS.

第1図は本発明の平形半導体素子用スタックの正面
図、第2図は第1図の側面図、第3図は本発明で述べて
いる加圧ユニット図である。
FIG. 1 is a front view of a stack for a flat semiconductor device of the present invention, FIG. 2 is a side view of FIG. 1, and FIG. 3 is a pressurizing unit diagram described in the present invention.

第1図に示すように、ガラスクロス積層材等の絶縁平
板25を押え板2へ取付ボルト15で固定してスタッキング
のためのフレームを構成し、両端の押え板2には平形半
導体素子12及びヒートシンク11の積層体に沿った貫通穴
24を設け、一方の押え板の貫通穴24には自在に可動し得
る加圧ロッド13を設けこの加圧シリンダーにネジ加工を
施してロックナット26を装着し、他方の押え板の貫通穴
24には自在に可動しかつ皿バネ4を装着した皿バネロッ
ド14を設ける。尚押え板2の貫通穴24、加圧ロッド13、
平形半導体素子12等の積層体、皿バネロッド14は加圧軸
に一致するよう配列している。スタッキングの際の加圧
は第3図に示す加圧ユニット16を押え板2に適宜な方法
で取付けて加圧を行う。加圧ユニット16は油圧シリンダ
ー17を取付治具19に固定して構成される。図に示さない
が油圧ポンプ等からの油圧を油圧ホース18で油圧シリン
ダー17に伝達し加圧ロッド13を押圧し適当な加圧力とな
ったところで加圧ロッド13に装着してあるロックナット
26を押え板2側に締め付けて加圧ロッド13を固定し、半
導体スタックの弾性的押圧力を維持する。
As shown in FIG. 1, an insulating flat plate 25 such as a glass cloth laminated material is fixed to the holding plate 2 with mounting bolts 15 to form a frame for stacking, and the holding plate 2 at both ends has flat semiconductor elements 12 and Through holes along the stack of heat sinks 11
24 is provided, a pressure rod 13 that can be freely moved is provided in the through hole 24 of one holding plate, this pressure cylinder is threaded and a lock nut 26 is attached, and a through hole of the other holding plate is provided.
24 is provided with a disc spring rod 14 which is freely movable and to which the disc spring 4 is attached. In addition, the through hole 24 of the pressing plate 2, the pressure rod 13,
A stack of flat semiconductor elements 12 and the like, and disc spring rods 14 are arranged so as to coincide with the pressing axis. Pressurization at the time of stacking is performed by attaching the pressurizing unit 16 shown in FIG. 3 to the holding plate 2 by an appropriate method. The pressurizing unit 16 is constructed by fixing a hydraulic cylinder 17 to a mounting jig 19. Although not shown in the figure, the hydraulic pressure from a hydraulic pump, etc. is transmitted to the hydraulic cylinder 17 by the hydraulic hose 18 to press the pressure rod 13 and when the appropriate pressure is applied, the lock nut mounted on the pressure rod 13
The pressing rod 13 is fixed by tightening 26 on the holding plate 2 side to maintain the elastic pressing force of the semiconductor stack.

〔発明の効果〕〔The invention's effect〕

以上説明したように、本発明によれば、簡素でコンパ
クトなかつ軽量でしかも素子交換の容易な平形半導体素
子用スタックを提供することができる。
As described above, according to the present invention, it is possible to provide a flat semiconductor device stack that is simple, compact, lightweight, and is easy to replace.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の半導体スタックの正面図、第2図は第
1図の側面図、第3図は本発明のスタックを加圧する加
圧ユニットを示す図、第4図は変換装置を構成するモジ
ュールユニットの回路図、第5図は従来の半導体スタッ
クを示す正面図、第6図は第5図の側面図である。 1……スタック、2……押え板 3……スタッド、4……皿バネ 5……押え板、6……締付ナット 7……電線、8……座 9……絶縁座、10……導体 11……ヒートシンク、12……平形半導体 13……加圧ロッド、14……皿バネロッド 15……加圧ボルト、16……加圧ユニット 17……油圧シリンダー、18……油圧ホース 19……取付治具、26……アノードリアクトル 21……分圧用抵抗、22……コンデンサー 23……モジュール、24……貫通穴 25……絶縁平板、26……ロックナット
1 is a front view of a semiconductor stack of the present invention, FIG. 2 is a side view of FIG. 1, FIG. 3 is a view showing a pressurizing unit for pressurizing the stack of the present invention, and FIG. 4 is a conversion device. FIG. 5 is a front view showing a conventional semiconductor stack, and FIG. 6 is a side view of FIG. 1 ... Stack, 2 ... Holding plate 3 ... Stud, 4 ... Disc spring 5 ... Holding plate, 6 ... Tightening nut 7 ... Electric wire, 8 ... Seat 9 ... Insulating seat, 10 ... Conductor 11 …… Heat sink, 12 …… Flat semiconductor 13 …… Pressure rod, 14 …… Disc spring rod 15 …… Pressure bolt, 16 …… Pressure unit 17 …… Hydraulic cylinder, 18 …… Hydraulic hose 19 …… Mounting jig, 26 …… Anode reactor 21 …… Voltage dividing resistor, 22 …… Capacitor 23 …… Module, 24 …… Through hole 25 …… Insulating flat plate, 26 …… Lock nut

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】複数個の平形半導体素子及びヒートシンク
を積層した積層体と、 該積層体の両側に積層体と平行に配置されるガラスクロ
スエポキシ強化樹脂等の一対の絶縁材平板と、 一対の前記絶縁平板の両端部寄りに絶縁平板と直交し且
つ絶縁平板に固定される一対の押え板と、 前記積層体の中心線が前記一対の押え板の貫通穴の中心
と一致するように前記一致の押え板に設けられる貫通穴
と、 皿バネが装着され一端が前記積層体の一端と接触し他端
が前記一方の押え板の貫通穴に挿入され且つ前記積層体
の積層方向に自在に可動し得る皿バネロッドと、 ネジ山が設けられ一端が前記積層体の他端と接触し他端
が油圧力を利用した加圧ユニットを着脱自在に取付け可
能な他方の押え板の貫通穴を貫通し且つ前記積層体の積
層方向に自在に可動し得る加圧ロッドと、 前記加圧ロッドの一端と前記他方の押え板の内側に設け
られ前記加圧ロッドに螺着されるロックナットを具備
し、 前記加圧ユニットで前記積層体に所定の押圧力を加えて
から前記ロックナットを前記他方の押え板の内側に締付
けた後で前記加圧ユニットを取外すことを特徴とする平
形半導体素子用スタック。
1. A laminated body in which a plurality of flat semiconductor elements and a heat sink are laminated, a pair of insulating material flat plates made of glass cloth epoxy reinforced resin or the like arranged on both sides of the laminated body in parallel with the laminated body, A pair of holding plates that are orthogonal to the insulating flat plate and are fixed to the insulating flat plate near both ends of the insulating flat plate, and the center line of the laminated body matches the center of the through holes of the pair of holding plates. The through hole provided in the holding plate and the disc spring are mounted so that one end is in contact with one end of the laminate and the other end is inserted into the through hole of the one holding plate, and freely movable in the stacking direction of the laminate. And a conical spring rod that is threaded and has one end in contact with the other end of the laminate and the other end through a through hole in the other holding plate to which a pressure unit utilizing hydraulic pressure can be detachably attached. And freely in the stacking direction of the stack A movable pressure rod, and a lock nut that is provided inside one end of the pressure rod and the other pressing plate and that is screwed to the pressure rod. A stack for flat semiconductor devices, characterized in that the pressing unit is removed after the lock nut is tightened to the inside of the other pressing plate after the pressing force is applied.
JP62232278A 1987-09-18 1987-09-18 Stack for flat semiconductor devices Expired - Lifetime JP2547790B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62232278A JP2547790B2 (en) 1987-09-18 1987-09-18 Stack for flat semiconductor devices

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62232278A JP2547790B2 (en) 1987-09-18 1987-09-18 Stack for flat semiconductor devices

Publications (2)

Publication Number Publication Date
JPS6476749A JPS6476749A (en) 1989-03-22
JP2547790B2 true JP2547790B2 (en) 1996-10-23

Family

ID=16936726

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62232278A Expired - Lifetime JP2547790B2 (en) 1987-09-18 1987-09-18 Stack for flat semiconductor devices

Country Status (1)

Country Link
JP (1) JP2547790B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113363025A (en) * 2021-06-17 2021-09-07 西安西电变压器有限责任公司 Fixing device and fixing method for simultaneous pressing and drying of transposed conductor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51109776A (en) * 1975-03-24 1976-09-28 Hitachi Ltd HIRAGATASEIRYUSOSHINO KAATSUSOCHI

Also Published As

Publication number Publication date
JPS6476749A (en) 1989-03-22

Similar Documents

Publication Publication Date Title
WO2014016393A1 (en) Energy storage device
JPH1197054A (en) Fastening structure and method of layered body
JP2014510381A (en) Energy storage device with temperature control means
JP2547790B2 (en) Stack for flat semiconductor devices
US4636917A (en) Precalibrated element for securing and locking semiconductors and heat sinks arranged in alternating rows
EP0092720B1 (en) Clamping device for disc-type semiconductur devices
US11705708B2 (en) Laminated busbar and arrangement comprising laminated busbars
KR101099897B1 (en) Lightning arrestor
JP2002063929A (en) Stack structure of fuel cell
US3209208A (en) Mounting assembly for modular electronic units
JP4620910B2 (en) Stack for flat semiconductor devices
CN107947137B (en) Power electronic branch circuit valve section structure of ultrahigh voltage direct current breaker
JP3410011B2 (en) Stack for flat type semiconductor device
JP3432876B2 (en) Disc spring tightening device for core transformer with gap
JP4546008B2 (en) Stack for flat semiconductor devices
JP3004548B2 (en) Semiconductor stack
JP2003168778A (en) Stack for flat semiconductor element
JPH0786500A (en) Stack for flat type semiconductor element using insulating band
JPS62141751A (en) Flat semiconductor element stack
JP2004063172A (en) Clamping mechanism for fuel cell
JPS6158158A (en) Fuel cell for motor car
JPS5958855A (en) Power semiconductor module
EP2520454A2 (en) Electrical energy storage device for vehicle with electric drive
JP2004179057A (en) Tightening structure of solid polymer fuel cell stack
JPH08330484A (en) Fixing structure of semiconductor element