JP3004548B2 - Semiconductor stack - Google Patents

Semiconductor stack

Info

Publication number
JP3004548B2
JP3004548B2 JP24580194A JP24580194A JP3004548B2 JP 3004548 B2 JP3004548 B2 JP 3004548B2 JP 24580194 A JP24580194 A JP 24580194A JP 24580194 A JP24580194 A JP 24580194A JP 3004548 B2 JP3004548 B2 JP 3004548B2
Authority
JP
Japan
Prior art keywords
presser
block
insulating
pressing
insulating band
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP24580194A
Other languages
Japanese (ja)
Other versions
JPH08111504A (en
Inventor
利行 矢野
寿彰 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP24580194A priority Critical patent/JP3004548B2/en
Publication of JPH08111504A publication Critical patent/JPH08111504A/en
Application granted granted Critical
Publication of JP3004548B2 publication Critical patent/JP3004548B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Die Bonding (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、平形半導体素子とヒー
トシンクを積層し弾性的な押圧力を加えるために絶縁バ
ンドを用いた半導体スタックに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor stack in which a flat semiconductor element and a heat sink are laminated and an insulating band is used to apply elastic pressing force.

【0002】[0002]

【従来の技術】一般に半導体変換装置は複数個の半導体
素子とその素子を冷却するためのヒ―トシンクを交互に
積層し弾性的な押圧力(加圧力)を保持するための押え
板、スタッド、バネ等から構成して成る半導体スタック
(以下単にスタックと記す)を収納したモジュ―ルと呼
ばれるユニットを複数台搭載して構成している。
2. Description of the Related Art In general, a semiconductor converter has a plurality of semiconductor elements and heat sinks for cooling the elements alternately stacked, and a holding plate, stud, and the like for holding an elastic pressing force (pressing force). A plurality of units called modules, each containing a semiconductor stack (hereinafter simply referred to as a stack) made of springs or the like, are mounted.

【0003】図7は、代表的なモジュ―ル内の回路を示
している。モジュ―ル1は複数個の半導体素子3(図で
は6個直列)及びその付属回路であるアノ―ドリアクト
ル6、分圧抵抗4A、スナバ抵抗4B、スナバコンデン
サ5を収納して構成されており、破線の部分がスタック
2である。
FIG. 7 shows a circuit in a typical module. The module 1 includes a plurality of semiconductor elements 3 (six in the figure) and ancillary circuits such as an anode reactor 6, a voltage dividing resistor 4A, a snubber resistor 4B, and a snubber capacitor 5. , The portion indicated by the broken line is the stack 2.

【0004】図8(a)は従来のスタック2を示す正面
図、図8(b)はスタック2の側面図を示している。図
8に示すようにガラスクロス積層材等の絶縁平板11を
押え板10へボルト19で固定してスタッキングのため
のフレ―ムを構成し、両端の押え板10には素子3及び
ヒ―トシンク7の積層体に沿った穴を設け、一方の押え
板の貫通穴17には自在に可動し得る加圧ロッド15を
設けこの加圧ロッド15にネジ加工を施してロックナッ
ト18を装着し、他方の押さえ板の貫通穴17には自在
に可動し且つ皿バネ12を装着した皿バネロッド16を
設ける。尚、押え板10の貫通穴17、加圧ロッド1
5、素子3やヒ―トシンク7等の積層体、皿バネロッド
16は加圧軸に一致するように配列している。スタッキ
ングの際の加圧は図示しない加圧ユニット22を押え板
10に適宜な方法で取付けて加圧を行う。
FIG. 8A is a front view showing a conventional stack 2, and FIG. 8B is a side view of the stack 2. As shown in FIG. 8, an insulating flat plate 11 made of a glass cloth laminated material or the like is fixed to the holding plate 10 with bolts 19 to form a frame for stacking. The holding plates 10 at both ends constitute the element 3 and the heat sink. 7, a through hole 17 of one of the holding plates is provided with a freely movable pressure rod 15, a thread is formed on the pressure rod 15, and a lock nut 18 is attached. A disc spring rod 16 which is freely movable and has a disc spring 12 is provided in a through hole 17 of the other holding plate. In addition, the through hole 17 of the holding plate 10 and the pressure rod 1
5. The laminated body of the element 3, the heat sink 7, and the like, and the disc spring rod 16 are arranged so as to coincide with the pressing axis. Pressing during stacking is performed by attaching a pressing unit 22 (not shown) to the holding plate 10 by an appropriate method.

【0005】押え板10は電気的にはそれぞれ図7の
A、Kの電位となっていてステ―ジ8とは碍子21で絶
縁されている。また絶縁平板11そのものが絶縁物なの
で各々の押え板10とも絶縁されている。
The holding plate 10 is electrically at the potentials A and K in FIG. 7 and is insulated from the stage 8 by an insulator 21. Further, since the insulating plate 11 itself is an insulator, it is insulated from each of the holding plates 10.

【0006】[0006]

【発明が解決しようとする課題】近年、サイリスタ素子
の大容量化に伴って素子の直径が大きくなり、素子の圧
接力が増大している。これは平形半導体素子ポスト面で
の接触熱抵抗と電気的な抵抗を低減するためで、圧接力
の大きさは接触面積に比例している。
In recent years, as the capacity of a thyristor element has been increased, the diameter of the element has increased, and the pressure contact force of the element has increased. This is to reduce the contact thermal resistance and the electrical resistance at the flat semiconductor element post surface, and the magnitude of the pressure contact force is proportional to the contact area.

【0007】図9(a)は絶縁平板11の破断を説明す
る図、図9(b)は絶縁平板11と押え板10の取付部
に作用する力を説明する部分断面図である。前述の方法
で素子3が加圧維持されると図9(b)に示すように押
え板10と固定ボルト19の嵌合部に素子圧接力による
剪断力が作用する。また図9(a)に示すように絶縁平
板11にも固定ボルト19用の穴に図のような剪断力が
作用する。特に絶縁平板11は固定ボルト19用の取付
穴に設計値を越えた剪断力が作用すると、その破断は図
9(a)の“X”や“Y”で発生する。絶縁平板11を
最適に設計してもその破断荷重Fa は最大でも次の式で
与えられる値にしかならない。
FIG. 9A is a view for explaining the breakage of the insulating flat plate 11, and FIG. 9B is a partial sectional view for explaining the force acting on the mounting portion between the insulating flat plate 11 and the holding plate 10. When the element 3 is pressurized and maintained by the above-described method, a shear force due to the element pressure contact force acts on the fitting portion between the holding plate 10 and the fixing bolt 19 as shown in FIG. 9B. Further, as shown in FIG. 9A, a shear force as shown in FIG. In particular, when a shearing force exceeding the designed value acts on the mounting hole for the fixing bolt 19 on the insulating flat plate 11, the break occurs at "X" or "Y" in FIG. 9A. Even if the insulating plate 11 is optimally designed, its breaking load Fa is at most a value given by the following equation.

【0008】[0008]

【数1】 Fa =σa ×(w−2d)×t ………(1) σa :絶縁平板の引張り破断応力 w :絶縁平板の幅 d :絶縁平板の固定穴の径 t :絶縁平板の板厚 実際には絶縁平板11にあけられた固定穴に応力集中が
発生するので破断荷重Fa は(1)式で得られた値以下
となる。
## EQU1 ## Fa = .sigma.a.times. (W-2d) .times.t (1) .sigma.a: Tensile breaking stress of insulating plate w: Width of insulating plate d: Diameter of fixing hole of insulating plate t: Plate of insulating plate Thickness Actually, stress concentration occurs in the fixing holes formed in the insulating plate 11, so that the breaking load Fa is less than the value obtained by the equation (1).

【0009】素子大容量化に対応したスタックを設計す
るには素子の圧接力に充分耐える設計が要求される。当
然のことながら(1)式の破断荷重を大きくするには絶
縁板厚t,幅wを大きくしなければならない。ところが
固定ボルト19の径も太くしないとボルトが負荷荷重で
破断してしまうので、絶縁板11は更に大きなものにな
ってしまうことになる。また押さえ板10も太い固定ボ
ルト19と嵌合することになり、やはり形状が大きくな
りコンパクト化、軽量化の要求とは矛盾する要因となっ
ていた。
In order to design a stack corresponding to an increase in the capacity of the element, it is necessary to design a stack that sufficiently withstands the pressing force of the element. As a matter of course, in order to increase the breaking load of the equation (1), the thickness t and the width w of the insulating plate must be increased. However, if the diameter of the fixing bolt 19 is not large, the bolt is broken by the applied load, so that the insulating plate 11 becomes larger. In addition, the holding plate 10 is also fitted with the thick fixing bolt 19, so that the holding plate 10 becomes large in size, which is a factor contradictory to the demand for compactness and light weight.

【0010】本発明の目的は、前述の問題点を克服し簡
素で、軽量なしかも圧接が容易で、圧接力を長期間保持
できる絶縁バンドを用いた半導体スタックを提供するこ
とにある。
It is an object of the present invention to provide a semiconductor stack using an insulating band which overcomes the above-mentioned problems, is simple, lightweight and easy to press-connect, and can maintain a press-contact force for a long period of time.

【0011】[0011]

【課題を解決するための手段】前記目的を達成するため
に、請求項1に記載の発明は、複数個の平形半導体素子
とヒートシンクとを交互に積層した積層体と、この積層
体の一方の端部に設けられる加圧側押えブロックと、他
方の端部に設けられる皿バネ側押えブロックと、前記加
圧側押えブロックに装着され積層方向に自在に可動し得
るネジ加工が施された加圧ロッドと、この加圧ロッドに
装着されるロックナットと、この皿バネ側押えブロック
に装着され積層方向に自在に可動し得かつ皿バネが装着
される皿バネロッドと、前記積層体と前記加圧側押えブ
ロック及び前記皿バネ側押えブロックを取囲むガラス繊
維強化プラスチック絶縁材料による絶縁バンドから成
り、前記絶縁バンドの曲線部の半径を曲線部分の板厚の
2倍から12倍の間のいずれかに設定することを特徴と
したものである。
In order to achieve the above object, the invention according to claim 1 provides a laminate in which a plurality of flat semiconductor elements and heat sinks are alternately laminated, and one of the laminates. A pressing-side pressing block provided at one end, a disc spring-side pressing block provided at the other end, and a pressure rod mounted on the pressing-side pressing block and having a threaded process capable of freely moving in the stacking direction. A lock nut attached to the pressure rod, a disc spring rod attached to the disc spring-side holding block, movable in the stacking direction, and fitted with a disc spring, the stacked body and the press-side presser. The insulating band is made of a glass fiber reinforced plastic insulating material surrounding the block and the disc spring side holding block, and the radius of the curved portion of the insulating band is between 2 and 12 times the thickness of the curved portion. It is obtained by and sets to one.

【0012】又、請求項2に記載の発明は、前記絶縁バ
ンドの縁部に突出部を設け断面形状をコ字状、又はH
形、或いはL形とし、前記突出部に部品取付用の孔或い
は溝を設けたことを特徴とするものである。
According to a second aspect of the present invention, a protrusion is provided at an edge of the insulating band, and the sectional shape is a U-shape or H-shaped.
Or a L-shape, wherein the projecting portion is provided with a hole or a groove for mounting a component.

【0013】更に、請求項3に記載の発明は、前記絶縁
バンドに部品取付用の絶縁部材を設けたことを特徴とす
るものである。更に又、請求項4に記載の発明は、前記
絶縁バンドを複数枚積層接着したことを特徴とするもの
である。
Further, the invention according to claim 3 is characterized in that the insulating band is provided with an insulating member for mounting components. Further, the invention according to claim 4 is characterized in that a plurality of the insulating bands are laminated and bonded.

【0014】[0014]

【作用】請求項1に記載の発明は、絶縁バンドの引張り
破壊強度は、絶縁バンドの曲線部の半径と板厚との比に
よって引張り破壊強度が変化することを実験によって確
認されたことに基づいて、その比が2倍から12倍の間
にすれば最適な半導体スタックを提供できる。
According to the first aspect of the present invention, the tensile strength of the insulating band is based on the fact that the tensile strength is changed by the ratio of the radius of the curved portion of the insulating band to the thickness of the insulating band. If the ratio is between 2 and 12, an optimal semiconductor stack can be provided.

【0015】又、請求項2に記載の発明によれば、請求
項1に記載の発明の効果に加え絶縁バンドの突出部に設
けた孔或いは溝を利用して、絶縁バンドを部品取付部材
として用いることもできる。
According to the second aspect of the present invention, in addition to the effects of the first aspect, the insulating band is used as a component mounting member by utilizing a hole or a groove provided in a protruding portion of the insulating band. It can also be used.

【0016】更に、請求項3に記載の発明によれば、請
求項1に記載の発明の効果に加え絶縁バンドに突出部を
設けることなく、絶縁バンドを部品取付部材として用い
ることもできる。
Further, according to the third aspect of the present invention, in addition to the effects of the first aspect, the insulating band can be used as a component mounting member without providing a protruding portion on the insulating band.

【0017】更に又、請求項4に記載の発明によれば、
絶縁バンドの板厚を薄くすると曲線部の半径が小さくて
も曲線部半径に対する板厚の比が大となり強度が高くな
る。このよにして作った絶縁バンドを積層するため非常
に強度の高い絶縁バンドとなる。
Further, according to the invention described in claim 4,
When the thickness of the insulating band is reduced, the ratio of the thickness to the radius of the curved portion becomes large and the strength becomes high even if the radius of the curved portion is small. Since the insulating bands thus formed are laminated, an insulating band having extremely high strength is obtained.

【0018】[0018]

【実施例】以下、本発明による絶縁バンドの実施例を図
面を参照して説明する。図8と同一部に同一符号を付し
て示す図1は、請求項1に記載の発明による半導体スタ
ックの一実施例を示す構成図で、(a)は正面図、
(b)は側面図である。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a block diagram showing an embodiment of an insulation band according to the present invention. FIG. 1 in which the same parts as in FIG. 8 are assigned the same reference numerals is a configuration diagram showing one embodiment of the semiconductor stack according to the first aspect of the present invention.
(B) is a side view.

【0019】スタック2は複数個の素子3(図では6個
直列)及びヒ―トシンク7を交互に積層し更にその両端
に電気回路接続端子となる導体14と、その外側に押え
座13を配置して成る積層体と、この積層体の一方の端
部に設けられるU字状ブロックから成りその開口側の中
心に前記積層方向に移動可能に螺着された加圧ロッド1
5と、この加圧ロッド15に螺着されたロックナット1
8を備えた押えブロックと、この積層体の他方の端部に
設けられるU字状ブロックから成りその開口側の中心に
前記積層方向に移動可能に螺着され且つ皿バネ12が装
着された皿バネロッド16を備えた押えブロックと、前
記積層体と前記一対の押えブロックを取囲む、例えばガ
ラス繊維強化プラスチック絶縁材から成る絶縁バンド2
3で構成する。
The stack 2 has a plurality of elements 3 (six in the figure) and heat sinks 7 alternately stacked, and a conductor 14 serving as an electric circuit connection terminal is disposed at both ends thereof, and a holding seat 13 is disposed outside the conductor 14. And a pressure rod 1 made of a U-shaped block provided at one end of the laminate and screwed to the center of the opening side so as to be movable in the laminating direction.
5 and a lock nut 1 screwed onto the pressure rod 15
And a U-shaped block provided at the other end of the laminated body, which is screwed to the center of the opening side movably in the laminating direction, and on which a disk spring 12 is mounted. A holding block provided with a spring rod 16 and an insulating band 2 made of, for example, glass fiber reinforced plastic insulation, surrounding the laminate and the pair of holding blocks.
3

【0020】前述のように構成された半導体スタックに
弾性的な圧接力を保持させるため、図1(b)に示すよ
うに図示しないプレス機により所定の圧接力Fを加え
る。その後加圧ロッド15を押え座13に接触するまで
下げ、ロックナット18がU字状ブロックの開口面に接
触するまで上げる。この状態では絶縁バンド23には引
張り力が加わっていないが、図示しないプレス機を取去
るとレ―ス・トラック形状の絶縁バンド23に圧接力の
反力として引張り力Fが加わる。つまり、圧接力を絶縁
バンド23内側に閉じ込めるような構造で絶縁バンド2
3に圧接力の反力としての引張り力が加わることにな
る。
In order to maintain an elastic pressing force on the semiconductor stack configured as described above, a predetermined pressing force F is applied by a press (not shown) as shown in FIG. 1B. Thereafter, the pressure rod 15 is lowered until it comes into contact with the presser seat 13, and is raised until the lock nut 18 comes into contact with the opening surface of the U-shaped block. In this state, no tensile force is applied to the insulating band 23, but when the press (not shown) is removed, the tensile force F is applied to the race track-shaped insulating band 23 as a reaction force of the pressing force. That is, the insulation band 2 has a structure in which the pressure contact force is confined inside the insulation band 23.
3, a tensile force as a reaction force of the pressing force is applied.

【0021】前述のように構成された半導体スタックに
おいては、実験の結果、絶縁バンド23の曲線部と直接
部の境目付近で引張力による破壊が起ることが分った。
更に、図1に示す絶縁バンド23の曲線部の半径rと板
厚tの比と、引張破壊強度(MPa)「メガパスカル」
との関係は図2の特性を示すことを解明した。
In the semiconductor stack configured as described above, as a result of an experiment, it was found that a breakdown due to a tensile force occurred near the boundary between the curved portion of the insulating band 23 and the direct portion.
Further, the ratio between the radius r of the curved portion of the insulating band 23 shown in FIG. 1 and the thickness t, and the tensile strength at break (MPa) “megapascal”
It has been clarified that the relationship shown in FIG.

【0022】この特性から明らかなように、板厚を一定
とすれば、絶縁バンド23の曲線部の半径rによって引
張破壊強度が変化し、板厚tの2倍の寸法の半径だと絶
縁バンドの引張破壊強度は母材の引張破壊強度の約半分
の値S1になる。又、絶縁バンド23の板厚tの12倍
の寸法の半径だと絶縁バンドの引張破壊強度は母材の引
張破壊強度とほぼ同じ値S2になる。
As is clear from this characteristic, if the plate thickness is fixed, the tensile strength at break varies with the radius r of the curved portion of the insulating band 23. If the radius is twice as large as the plate thickness t, the insulating band 23 becomes insulated. Has a value S1 which is about half of the tensile strength of the base material. If the radius is 12 times the thickness t of the insulating band 23, the tensile strength of the insulating band becomes almost the same value S2 as the tensile strength of the base material.

【0023】従って、半導体スタックの容量によって左
右される絶縁バンド23の曲線部の半径r、及び半導体
素子の圧接力等から最適な半導体スタックを提供するこ
とができる。
Therefore, an optimum semiconductor stack can be provided from the radius r of the curved portion of the insulating band 23 which depends on the capacitance of the semiconductor stack, the pressure contact of the semiconductor element, and the like.

【0024】図3は、請求項1に記載の発明の他の実施
例の絶縁バンドの斜視図である。この実施例は、半導体
スタックが更に大容量化した場合に、絶縁バンド23に
半径rの曲線部を4箇所設けて対処できることを示した
ものである。この場合も絶縁バンド23の曲線部の半径
rと板厚tの比と、引張破壊強度(MPa)「メガパス
カル」との関係は、図2の特性を示す。
FIG. 3 is a perspective view of an insulating band according to another embodiment of the present invention. This embodiment shows that, when the capacity of the semiconductor stack is further increased, the insulating band 23 can be dealt with by providing four curved portions having a radius r. Also in this case, the relationship between the ratio of the radius r of the curved portion of the insulating band 23 to the plate thickness t and the tensile breaking strength (MPa) “megapascal” shows the characteristics shown in FIG.

【0025】図4は、請求項2に記載の発明の一実施例
を示す絶縁バンドの斜視図である。この実施例は、図4
に示すように、絶縁バンド23の側端部に突出部を設け
断面形状をコ字状とし、突出部に部品取付用の孔24或
いは溝25を設け、素子冷却用配管の固定や絶縁の必要
な部品を取付けるようにしたものである。
FIG. 4 is a perspective view of an insulating band according to an embodiment of the present invention. This embodiment is shown in FIG.
As shown in the figure, a projecting portion is provided at a side end portion of the insulating band 23, the cross-sectional shape is U-shaped, and a hole 24 or a groove 25 for attaching a component is provided at the projecting portion. It is designed to attach various parts.

【0026】前記突出部は絶縁バンド23と同じ材料で
形成しても、或いはガラス繊維を含まない樹脂のみを型
を取付けて注形する等いずれかの方法でも良い。又、断
面形状は、H形、L形等のような形状としても良い。ま
た、絶縁バンド23の断面形状をコ字状(溝形)やH
形、L形とすることで強度の向上の他に製作時における
曲がりや変形を防止することができる。
The protruding portion may be formed of the same material as the insulating band 23, or may be formed by any method such as casting a resin containing no glass fiber with a mold. Further, the cross-sectional shape may be a shape such as an H shape or an L shape. Also, the cross-sectional shape of the insulating band 23 is U-shaped (groove-shaped) or H-shaped.
By adopting the shape and the L shape, bending and deformation at the time of manufacturing can be prevented in addition to improvement in strength.

【0027】図5は、請求項3に記載の発明の一実施例
を示す絶縁バンドの斜視図である。この実施例は、部品
取付け用の絶縁部材26を絶縁バンド23に接着または
かん合したもので配線、配管部品の取付けを行う。また
スタック自身を固定する絶縁支持部材27を取付けてス
タックを絶縁バンド23を支持することで固定すること
ができる。
FIG. 5 is a perspective view of an insulating band according to an embodiment of the present invention. In this embodiment, wiring and piping components are mounted by attaching or fitting an insulating member 26 for mounting components to the insulating band 23. The stack can be fixed by attaching an insulating support member 27 for fixing the stack itself and supporting the insulating band 23.

【0028】図6は、請求項4に記載の発明の一実施例
を示す絶縁バンドの斜視図である。図6は絶縁バンド2
3を、曲線部の半径がrの薄板の絶縁バンド23aを製
作し、この絶縁バンド23aより一回り曲線部の半径の
大きいサイズの絶縁バンド23bと、この絶縁バンド2
3bより更に一回り曲線部の半径の大きいサイズの絶縁
バンド23cとをFRPと同じ樹脂を前以て塗布してお
き挿入することによって大小絶縁バントの微小な間隙を
このFRPと同じ樹脂で埋め接着する。樹脂槽の中でこ
の作業を行っても同じ効果が得られる。又は、接着せず
積層したままでも同じ効果が得られる。
FIG. 6 is a perspective view of an insulating band according to an embodiment of the present invention. Figure 6 shows the insulation band 2
3, an insulating band 23a of a thin plate having a curved portion with a radius r is manufactured, and an insulating band 23b having a larger radius of a curved portion than the insulating band 23a and an insulating band 2
3b, the insulating band 23c having a larger radius of one round curve portion is coated with the same resin as the FRP beforehand and inserted, so that the minute gaps between the large and small insulating bands are filled with the same resin as the FRP and bonded. I do. The same effect can be obtained by performing this operation in a resin tank. Alternatively, the same effect can be obtained even when the layers are laminated without bonding.

【0029】薄板の絶縁バンドを積層して絶縁バンドと
すると、引張り強度は積層した絶縁バンド一枚一枚の引
張り強度の和となり高強度の絶縁バンドをつくることが
できる。又、板厚が薄いため曲線部のRを小さくできる
ので四角形に近い形状の絶縁バンドをつくることができ
る。他に仮に最も内側の絶縁バンドが破断しても次の絶
縁バンドのところで破断の進行を止めることができる。
When thin insulating bands are laminated to form an insulating band, the tensile strength becomes the sum of the tensile strength of each of the laminated insulating bands, and a high-strength insulating band can be produced. Further, since the plate thickness is small, the radius of the curved portion can be reduced, so that an insulating band having a shape close to a square can be formed. Alternatively, even if the innermost insulating band breaks, the progress of the break can be stopped at the next insulating band.

【0030】[0030]

【発明の効果】以上説明したように、請求項1に記載の
発明によれば、半導体スタックの容量によって左右され
る絶縁バンド23の曲線部の半径r、及び半導体素子の
圧接力等を考慮して最適な形状の半導体スタックを提供
することができる。
As described above, according to the first aspect of the present invention, the radius r of the curved portion of the insulating band 23, which depends on the capacitance of the semiconductor stack, and the pressing force of the semiconductor element are taken into consideration. Thus, a semiconductor stack having an optimal shape can be provided.

【0031】また、請求項2及び請求項3に記載の発明
は、請求項1に記載の発明の効果に加え、絶縁バンドを
部品取付用の部材として利用することもできる。更に、
請求項4に記載の発明によれば、薄板の絶縁バンドを積
層して絶縁バンドとすることにより、引張り強度は積層
した絶縁バンド一枚一枚の引張り強度の和となり高強度
の絶縁バンドを提供することができる。
Further, in the inventions according to the second and third aspects, in addition to the effects of the first aspect, the insulating band can be used as a member for mounting components. Furthermore,
According to the invention as set forth in claim 4, by forming the insulating bands by laminating the insulating bands of the thin plates, the tensile strength becomes the sum of the tensile strength of each of the laminated insulating bands, thereby providing a high-strength insulating band. can do.

【図面の簡単な説明】[Brief description of the drawings]

【図1】請求項1に記載の発明の一実施例を示す半導体
スタックの構成図で、(a)は正面図、(b)は側面
図。
FIG. 1 is a configuration diagram of a semiconductor stack showing one embodiment of the invention described in claim 1, wherein (a) is a front view and (b) is a side view.

【図2】半導体スタックの絶縁バンドの引張り破壊強度
に及ぼす曲線部の半径と板厚の関係を示す図。
FIG. 2 is a diagram showing a relationship between a radius of a curved portion and a thickness of the semiconductor band on a tensile breaking strength of an insulating band of a semiconductor stack.

【図3】請求項1に記載の発明の絶縁バンドの他の実施
例を示す斜視図。
FIG. 3 is a perspective view showing another embodiment of the insulating band according to the present invention.

【図4】請求項2に記載の発明の絶縁バンドの斜視図。FIG. 4 is a perspective view of the insulating band according to the second embodiment;

【図5】請求項3に記載の発明の絶縁バンドの斜視図。FIG. 5 is a perspective view of the insulating band according to the third embodiment;

【図6】請求項4に記載の発明の絶縁バンドの斜視図。FIG. 6 is a perspective view of the insulating band according to the invention of claim 4;

【図7】変換装置を構成するモジュールユニットの回路
図。
FIG. 7 is a circuit diagram of a module unit constituting the conversion device.

【図8】従来の半導体スタックの構成図で、(a)は正
面図、(b)は側面図。
8A and 8B are configuration diagrams of a conventional semiconductor stack, in which FIG. 8A is a front view and FIG. 8B is a side view.

【図9】従来の半導体スタックの絶縁板及び押え板に負
荷される剪断力を説明するための図で、(a)は絶縁板
に負荷される剪断力の図、(b)は押え板に負荷される
剪断力の図。
9A and 9B are diagrams for explaining the shearing force applied to the insulating plate and the holding plate of the conventional semiconductor stack, wherein FIG. 9A is a diagram of the shearing force applied to the insulating plate, and FIG. Diagram of the applied shear force.

【符号の説明】[Explanation of symbols]

1 ……サイリスタモジュール 2…… 半導
体スタック 3 ……半導体素子 4A… 分圧
抵抗 4B ……スナバ抵抗 5…… スナ
バコンデンサ 6 ……アノードリアクトル 7…… ヒー
トシンク 8 ……ステージ 10… 押え
板 11 ……絶縁平板 12… 皿バ
ネ 13 ……押え座 14… 導体 15 ……加圧ロッド 16… 皿バ
ネロッド 17 ……貫通穴 18… ロッ
クナット 19 ……ボルト 20… 取付
金具 21 ……碍子 22… 加圧
ユニット 23 ……絶縁バンド 24… 孔 25 ……溝 26… 絶縁
部材 27 ……絶縁支持部材
DESCRIPTION OF SYMBOLS 1 ... Thyristor module 2 ... Semiconductor stack 3 ... Semiconductor element 4A ... Divider resistance 4B ... Snubber resistor 5 ... Snubber capacitor 6 ... Anode reactor 7 ... Heat sink 8 ... Stage 10 ... Holding plate 11 ... Insulating flat plate 12 ... Belleville spring 13 ... Holder 14 ... Conductor 15 ... Pressing rod 16 ... Belleville spring rod 17 ... Through hole 18 ... Lock nut 19 ... Bolt 20 ... Mounting bracket 21 ... Insulator 22 ... Pressing unit 23 ... insulation band 24 ... hole 25 ... groove 26 ... insulation member 27 ... insulation support member

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 複数個の平形半導体素子とヒートシ
ンクとを交互に積層した積層体と、この積層体の一方の
端部に設けられる加圧側押えブロックと、他方の端部に
設けられる皿バネ側押えブロックと、前記加圧側押えブ
ロックに装着され積層方向に自在に可動し得るネジ加工
が施された加圧ロッドと、この加圧ロッドに装着される
ロックナットと、この皿バネ側押えブロックに装着され
積層方向に自在に可動し得かつ皿バネが装着される皿バ
ネロッドと、前記積層体と前記加圧側押えブロック及び
前記皿バネ側押えブロックを取囲むガラス繊維強化プラ
スチック絶縁材料による絶縁バンドから成り、前記絶縁
バンドの曲線部の半径を曲線部分の板厚の2倍から12
倍の間のいずれかに設定することを特徴とする半導体ス
タック。
1. A laminated body in which a plurality of flat semiconductor elements and heat sinks are alternately laminated, a pressing-side pressing block provided at one end of the laminated body, and a disc spring side provided at the other end. A presser block, a pressurized rod attached to the presser-side presser block, and having a threaded process capable of freely moving in the stacking direction, a lock nut mounted on the presser rod, and a disc spring-side presser block. A conical spring rod which is mounted and can be freely moved in the laminating direction and on which a conical spring is mounted, and an insulating band made of a glass fiber reinforced plastic insulating material surrounding the laminate, the pressing side holding block and the conical spring side pressing block. And the radius of the curved portion of the insulating band is set to twice to 12 times the thickness of the curved portion.
A semiconductor stack characterized by being set at any one of the times.
【請求項2】 複数個の平形半導体素子とヒートシ
ンクとを交互に積層した積層体と、この積層体の一方の
端部に設けられる加圧側押えブロックと、他方の端部に
設けられる皿バネ側押えブロックと、前記加圧側押えブ
ロックに装着され積層方向に自在に可動し得るネジ加工
が施された加圧ロッドと、この加圧ロッドに装着される
ロックナットと、この皿バネ側押えブロックに装着され
積層方向に自在に可動し得かつ皿バネが装着される皿バ
ネロッドと、前記積層体と前記加圧側押えブロック及び
前記皿バネ側押えブロックを取囲むガラス繊維強化プラ
スチック絶縁材料による絶縁バンドから成り、前記絶縁
バンドの曲線部の半径を曲線部分の板厚の2倍から12
倍の間のいずれかに設定し且つ縁部に四個以下の突出部
を設け該突出部に部品取付用の孔或いは溝を設けたこと
を特徴とする半導体スタック。
2. A laminated body in which a plurality of flat semiconductor elements and heat sinks are alternately laminated, a pressing-side pressing block provided at one end of the laminated body, and a disc spring side provided at the other end. A presser block, a pressurized rod attached to the presser-side presser block, and having a threaded process capable of freely moving in the stacking direction, a lock nut mounted on the presser rod, and a disc spring-side presser block. A conical spring rod which is mounted and can be freely moved in the laminating direction and on which a conical spring is mounted, and an insulating band made of a glass fiber reinforced plastic insulating material surrounding the laminate, the pressing side holding block and the conical spring side pressing block. And the radius of the curved portion of the insulating band is set to twice to 12 times the thickness of the curved portion.
A semiconductor stack characterized by being provided with four or less protruding portions at an edge portion thereof and provided with holes or grooves for mounting components on the protruding portions.
【請求項3】 複数個の平形半導体素子とヒートシ
ンクとを交互に積層した積層体と、この積層体の一方の
端部に設けられる加圧側押えブロックと、他方の端部に
設けられる皿バネ側押えブロックと、前記加圧側押えブ
ロックに装着され積層方向に自在に可動し得るネジ加工
が施された加圧ロッドと、この加圧ロッドに装着される
ロックナットと、この皿バネ側押えブロックに装着され
積層方向に自在に可動し得かつ皿バネが装着される皿バ
ネロッドと、前記積層体と前記加圧側押えブロック及び
前記皿バネ側押えブロックを取囲むガラス繊維強化プラ
スチック絶縁材料による絶縁バンドから成り、前記絶縁
バンドの曲線部の半径を曲線部分の板厚の2倍から12
倍の間のいずれかに設定し且つ前記絶縁バンドに部品取
付用の絶縁部材を設けたことを特徴とする半導体スタッ
ク。
3. A stacked body in which a plurality of flat semiconductor elements and heat sinks are alternately stacked, a pressing-side pressing block provided at one end of the stacked body, and a disc spring side provided at the other end. A presser block, a pressurized rod attached to the presser-side presser block, and having a threaded process capable of freely moving in the stacking direction, a lock nut mounted on the presser rod, and a disc spring-side presser block. A conical spring rod which is mounted and can be freely moved in the laminating direction and on which a conical spring is mounted, and an insulating band made of a glass fiber reinforced plastic insulating material surrounding the laminate, the pressing side holding block and the conical spring side pressing block. And the radius of the curved portion of the insulating band is set to twice to 12 times the thickness of the curved portion.
A semiconductor stack, wherein the insulating band is set to any one of two times and an insulating member for mounting components is provided on the insulating band.
【請求項4】 複数個の平形半導体素子とヒートシ
ンクとを交互に積層した積層体と、この積層体の一方の
端部に設けられる加圧側押えブロックと、他方の端部に
設けられる皿バネ側押えブロックと、前記加圧側押えブ
ロックに装着され積層方向に自在に可動し得るネジ加工
が施された加圧ロッドと、この加圧ロッドに装着される
ロックナットと、この皿バネ側押えブロックに装着され
積層方向に自在に可動し得かつ皿バネが装着される皿バ
ネロッドと、前記積層体と前記加圧側押えブロック及び
前記皿バネ側押えブロックを取囲むガラス繊維強化プラ
スチック絶縁材料による絶縁バンドから成り、前記絶縁
バンドの曲線部の半径を曲線部分の板厚の2倍から12
倍の間のいずれかに設定した絶縁バンドを複数枚積層接
着したことを特徴とする半導体スタック。
4. A stacked body in which a plurality of flat semiconductor elements and heat sinks are alternately stacked, a pressing-side pressing block provided at one end of the stacked body, and a disc spring side provided at the other end. A presser block, a pressurized rod attached to the presser-side presser block, and having a threaded process capable of freely moving in the stacking direction, a lock nut mounted on the presser rod, and a disc spring-side presser block. A conical spring rod which is mounted and can be freely moved in the laminating direction and on which a conical spring is mounted, and an insulating band made of a glass fiber reinforced plastic insulating material surrounding the laminate, the pressing side holding block and the conical spring side pressing block. And the radius of the curved portion of the insulating band is set to twice to 12 times the thickness of the curved portion.
A semiconductor stack, wherein a plurality of insulating bands set at any one of two times are laminated and bonded.
JP24580194A 1994-10-12 1994-10-12 Semiconductor stack Expired - Lifetime JP3004548B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24580194A JP3004548B2 (en) 1994-10-12 1994-10-12 Semiconductor stack

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24580194A JP3004548B2 (en) 1994-10-12 1994-10-12 Semiconductor stack

Publications (2)

Publication Number Publication Date
JPH08111504A JPH08111504A (en) 1996-04-30
JP3004548B2 true JP3004548B2 (en) 2000-01-31

Family

ID=17139047

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24580194A Expired - Lifetime JP3004548B2 (en) 1994-10-12 1994-10-12 Semiconductor stack

Country Status (1)

Country Link
JP (1) JP3004548B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008016601A (en) * 2006-07-05 2008-01-24 Toshiba Corp Semiconductor element stack

Also Published As

Publication number Publication date
JPH08111504A (en) 1996-04-30

Similar Documents

Publication Publication Date Title
US10270358B2 (en) Power electronics submodule having DC and AC voltage terminal elements, and assembly hereof
US5872711A (en) Low impedance contoured laminated bus assembly and method for making same
US20030094682A1 (en) Semiconductor module and insulating substrate thereof
KR20050106092A (en) Fuel cell
US20030122261A1 (en) Power semiconductor submodule, and a power semiconductor module
JP3004548B2 (en) Semiconductor stack
JP2009043775A (en) Semiconductor device
JP3410011B2 (en) Stack for flat type semiconductor device
JP4152575B2 (en) Semiconductor device
US4830979A (en) Method of manufacturing hermetically sealed compression bonded circuit assemblies
JP3476370B2 (en) Stack for flat semiconductor device
JP2003086765A (en) Stack for flat semiconductor element
JPH0786500A (en) Stack for flat type semiconductor element using insulating band
EP3817528B1 (en) Electronic assembly with a direct current bus connection
JPH10290000A (en) Pressure-connected semiconductor device
US4954876A (en) Hermetically sealed compression bonded circuit assembly having flexible walls at points of application of pressure for compression bonding circuit elements
JP2003168778A (en) Stack for flat semiconductor element
JPH11284125A (en) Stack device for flat semiconductor elements
US5034803A (en) Compression bonded semiconductor device having a plurality of stacked hermetically sealed circuit assemblies
JP4329197B2 (en) Gel electrolyte type multilayer electric double layer capacitor
JP2008016601A (en) Semiconductor element stack
KR102699497B1 (en) Reactor
JP2000068297A (en) Press-contact type semiconductor device and converter using the same
JP2547790B2 (en) Stack for flat semiconductor devices
JPH11274185A (en) Compression-bonded semiconductor device and converter using the same

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071119

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081119

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081119

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091119

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091119

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101119

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111119

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121119

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121119

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 14

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term